CN106771498A - 可无线、无源、非接触、多线测量直流电流的装置及方法 - Google Patents

可无线、无源、非接触、多线测量直流电流的装置及方法 Download PDF

Info

Publication number
CN106771498A
CN106771498A CN201710027636.9A CN201710027636A CN106771498A CN 106771498 A CN106771498 A CN 106771498A CN 201710027636 A CN201710027636 A CN 201710027636A CN 106771498 A CN106771498 A CN 106771498A
Authority
CN
China
Prior art keywords
fixture block
type fixture
sensor
current
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710027636.9A
Other languages
English (en)
Other versions
CN106771498B (zh
Inventor
王东方
刘欢
李晓东
干伟灿
冼伟康
尙雪松
韩鸿翔
刘欣
杨旭
王昕�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201710027636.9A priority Critical patent/CN106771498B/zh
Publication of CN106771498A publication Critical patent/CN106771498A/zh
Application granted granted Critical
Publication of CN106771498B publication Critical patent/CN106771498B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • G01R15/148Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop involving the measuring of a magnetic field or electric field

Abstract

本发明涉及一种可无线、无源、非接触、多线测量直流电流的装置及方法,属于测量领域。固定V型夹块下部与导向光杠一端固定连接,可动V型夹块内部安装有一对直线轴承,通过轴用弹性挡圈将直线轴承固定在可动V型夹块内,直线轴承沿着导向光杠进行低摩擦移动,涨紧弹簧套入导向光杠并夹在调整螺母与可动V型夹块之间,调整螺母与导向光杆一端螺纹连接,直线电机通过直线电机支撑座与固定V型夹块固定连接,传感器模块放置于传感器调整台中,传感器调整台底部有螺纹通孔,直线电机的丝杆与调整台内部的螺纹通孔转动连接。本发明可实现无线、无源、非接触、多线测量,具有体积小、结构简单、应用范围广等特点。

Description

可无线、无源、非接触、多线测量直流电流的装置及方法
技术领域
本发明属于测量领域,涉及可实现无线、无源、非接触、多线测量直流电流监的测装置及方法。
背景技术
伴随着科学技术快速发展,电子设备、装备在人类社会各个环节扮演者不可替代的作用,如:当前电动汽车朝着电驱动方向快速发展,对电动汽车最主要的部分驱动电机、动力电池的闭环控制均通过电流检测实现。又如以风能、太阳能为代表的新一代清洁能源技术的发展,通过对电流的检测将产生的电能准确的、快速的并入智能电网中,因此对电流的监测成为保障产品安全、正常运行的重要保证。当前可用于监测电流的传感器主要包括以下几类:霍尔式传感器是根据霍尔效应的一种磁场传感器。霍尔电流传感器是由半导体材料制成的,由于元件材料、寄生直流电动势、不等位电动势、外界电磁波干扰等情况均会影响到霍尔式传感器的测量精确度,同时在测量过程中由于原理限制只能测量一根导线需要将封装好的导线拆开测量,极大的影响了系统安全,增大了测量复杂程度。互感式电流传感器依据变压器原理,通过铁芯和绕组串联进测量电路中实现对电流的测量,但该类传感器因其磁通饱和容易使测量发生畸变导致测量不准,同时磁通饱和,使铁心损耗增高,产生高热量损坏绝缘导致安全问题。分流式传感器主要根据欧姆原理通过串联进电路一小电阻测两端电压实现电流测量,但只能测量直流参量,严重限制其应用范围。基于以上原理,若实现无线测量,需添加无线发射模块、电源模块,大大增加了电流传感器的复杂程度、成本。
发明内容
本发明提供一种可无线、无源、非接触、多线测量直流电流的装置及方法。
本发明采取的技术方案是:固定V型夹块下部与导向光杠一端固定连接,可动V型夹块内部安装有一对直线轴承,通过轴用弹性挡圈将直线轴承固定在可动V型夹块内,直线轴承沿着导向光杠进行低摩擦移动,涨紧弹簧套入导向光杠并夹在调整螺母与可动V型夹块之间,调整螺母与导向光杆一端螺纹连接,直线电机通过直线电机支撑座与固定V型夹块固定连接,传感器模块放置于传感器调整台中,固定V型夹块包含有可使传感器调整台通过的通孔,传感器调整台底部有螺纹通孔,直线电机的丝杆与调整台内部的螺纹通孔转动连接。
本发明所述的传感器模块的结构是:压电悬臂梁一端与支撑基底固联、另一端表面粘结磁感应单元,在压电悬臂梁表面固定端一侧沉积一层叉指电极,悬臂梁中部光刻一层反射栅,寻址天线、回波天线分别与叉指电极汇流条相连,无线收发模块向寻址天线发射传感器设计频率的无线信号,并接收回波天线反馈电流变化引起频率变化的无线信号,回寻址天线、回波天线分别与支撑基底粘接,支撑基底与下层支撑结构粘接,下层支撑结构与上层玻璃薄板粘接。
一种可无线、无源、非接触、多线测量直流电流的测量方法,包括下列步骤:
步骤(1)将可动V型夹块1向着固定V型夹块2相反的方向推开并预留出夹持距离,夹持距离要大于电导线直径;
步骤(2)将被测电导线放置于固定V型夹块2、可动V型夹块1的V型孔处,释放可动V型夹块1,处于压缩状态的涨紧弹簧10推动可动V型夹块1沿着导向光杠移动,同固定V型夹块将导线夹紧;
步骤(3)将被测电导线接入标准直流电流I0
步骤(4)通过直线电机6带动传感器调整台移动,当传感器获得最大输出频率时,由导线双电芯磁场梯度中心处最大可确定,当传感器模块由导线一侧经过另一侧时必然存在一波峰,即为定位点并固定传感器模块;
步骤(5)将被测电导线通入被测电流I进行实际测量,被测电流值I可通过传感器模块输出频率变化Δf与传感器参数值K获得,公式如下:
其中:zm为磁铁与电导线中心处坐标、x1,x2为声表面波叉指电极306在坐标系下的坐标,a为被测电导线单根电芯一、单根电芯二半径、Br为磁铁剩余磁通量、rx、rz为压电材料应变系数、μ为泊松比、f0为叉指电极的中心频率、h为压电悬臂梁厚度、Iy为压电悬臂梁惯性矩,E为压电悬臂梁弹性模量、V为磁铁体积。
本发明的有益效果:
1、本发明不与导线直接连接,通过磁铁感应导线磁场,进而实现非接触式测量,降低安装拆卸操作复杂程度;
2、霍尔型式等传感器由于原理限制,只能测量单根电芯的导线,因此需要剪开导线外护层,破坏了导线结构,增加了传感器的测量复杂程度,本发明在不破坏导线外护层的前提下,通过定位夹紧模块将传感器固定在外护层表面,实现包含两根到多根导线电流的测量;
3、本发明以无线方式进行传输,无需布置信号线降低成本,提高系统可靠性,可应用于多个节点监测;
4、本发明不需要内部植入电源,无需拆卸被测电器设备为其更换电池。
附图说明
图1是本发明的结构示意图;
图2是本发明的主视图;
图3是本发明传感器模块的不带封装结构的轴测图;
图4是本发明传感器模块的轴测图;
图5是本发明传感器模块与传感器调整台的剖视图;
图6是本发明两根导线磁场梯度分布图;
图7是本发明传感器模块位置关系图;
图8是本发明阶跃电流下传感器输出响应曲线图;
图9是本发明斜率电流下传感器输出响应曲线图;
其中:可动V型夹块1、固定V型夹块2、传感器模块3、磁铁301、压电悬臂梁302、支撑基座303、寻址天线304、回波天线305、叉指电极306、反射栅307、无线收发模块308、传感器调整台4、直线电机支撑座5、直线电机6、导向光杆7、直线轴承8、轴用弹性挡圈9、涨紧弹簧10、调整螺母11、两线制电导线12、被测电导线外护层1201;被测电导线电芯一1202、被测电导线电芯二1203。
具体实施方式
固定V型夹块2下部与导向光杠7一端固定连接,可动V型夹块1内部安装有一对直线轴承8,通过轴用弹性挡圈9将直线轴承8固定在可动V型夹块1内,直线轴承8沿着导向光杠7进行低摩擦移动,涨紧弹簧10套入导向光杠7并夹在调整螺母11与可动V型夹块1之间,调整螺母11与导向光杆7一端螺纹连接,涨紧弹簧10推动可动V型夹块1与固定V型夹块2对包含两根电芯的电导线12实现夹紧,直线电机6通过直线电机支撑座5与固定V型夹块2固定连接,传感器模块3放置于传感器调整台4中,固定V型夹块2包含有可使传感器调整台4通过的通孔,传感器调整台4底部有螺纹通孔,直线电机6的丝杆与调整台4内部的螺纹通孔转动连接,来实现传感器模块3与电导线12位置的调整定位。
本发明所述的传感器模块3包括磁铁301、压电悬臂梁302、支撑基底303、寻址天线304、回波天线305、叉指电极306、反射栅307、无线收发模块308,其中:压电悬臂梁302一端与支撑基底303固联、另一端表面粘结磁感应单元301,在压电悬臂梁302表面固定端一侧沉积一层叉指电极306,悬臂梁中部光刻一层反射栅307,寻址天线304、回波天线305分别与叉指电极306汇流条相连,无线收发模块308向寻址天线304发射传感器设计频率的无线信号,并接收回波天线305反馈电流变化引起频率变化的无线信号,回寻址天线304、回波天线305分别与支撑基底303粘接,支撑基底303与下层支撑结构310粘接,下层支撑结构310与上层玻璃薄板309粘接,防止内部测量元件受到外界环境影响。
一种可无线、无源、非接触、多线测量直流电流的测量方法,包括下列步骤:
步骤(1)将可动V型夹块1向着固定V型夹块2相反的方向推开并预留出夹持距离,夹持距离要大于电导线直径;
步骤(2)将被测电导线12放置于固定V型夹块2、可动V型夹块1的V型孔处,释放可动V型夹块1,处于压缩状态的涨紧弹簧10推动可动V型夹块1沿着导向光杠移动,同固定V型夹块将导线夹紧;
步骤(3)将被测电导线接入标准直流电流I0
步骤(4)通过直线电机6带动传感器调整台4移动,当传感器获得最大输出频率时,由导线双电芯磁场梯度中心处最大可确定,当传感器模块由导线一侧经过另一侧时必然存在一波峰,即为定位点并固定传感器模块3;
步骤(5)将被测电导线通入被测电流I进行实际测量,被测电流值I可通过传感器模块输出频率变化Δf与传感器参数值K获得,公式如下
其中:zm为磁铁301与电导线12中心处坐标、x1,x2为声表面波叉指电极306在坐标系下的坐标,a为被测电导线单根电芯一1202、单根电芯二1203半径、Br为磁铁剩余磁通量、rx、rz为压电材料应变系数、μ为泊松比、f0为叉指电极306的中心频率、h为压电悬臂梁厚度302、Iy为压电悬臂梁302惯性矩,E为压电悬臂梁302弹性模量、V为磁铁体积。
以上电流传感器样机测量频率Δf与电流关系如下:
被测电流值可通过以下方法求得:
测量过程中将所述电流传感器感应磁铁布置于双根导线12附近位置或中心处,获得导线附近磁场力或中心处的磁场力,通过磁场力驱动悬臂梁变形,进而改变悬臂梁声表面波频率,测得电流值
磁场梯度、磁场力大小,根据以下公式可得到导线任意位置或中心处磁场梯度。如图6所示当传感器磁铁处于中心位置时磁场梯度最大,传感器灵敏度最大,双根磁场分布及梯度分布如下:
单根导线周围的磁场强度公式
左侧导线磁场强度为
右侧导线磁场强度为
左侧导线磁场强度在z轴方向分量
右侧导线磁场强度在z轴方向分量
两根导线在z轴方向的合成磁场强
其中:x、z为以双根导线中心建立的坐标系内任意一点坐标,a为单根电芯半径,I为被测导线电流。
对左侧、右侧电芯在z轴方向磁场强度以及z轴方向的合成磁场求导可得相应磁场梯度磁场力公式如下:
左侧导线在z轴方向磁场梯度
右侧导线在z轴方向磁场梯度
两根导线在z轴方向叠加磁场梯度
磁铁在磁场受力
磁铁在两根磁场叠加情况下受力为
磁铁在两根中心处磁场叠加情况下受力为
其中Br为永磁铁剩余磁通量、V为磁铁体积、Fz为任意位置磁场力通用公式、Fz(0,z)为两根电芯中心处z位置处磁场力;
如图7所示为双根电芯、磁铁、压电悬臂梁、叉指电极坐标位置关系,磁场力作用下悬臂梁上表面的应变关系如下,基于应变关系可得到变化的频率;
悬臂梁沿x轴方向应变公式如下:
z轴方向应变为:
x轴方向叉指电极的平均应变公式为
x轴方向叉指电极的平均应变为
z轴方向应变与x轴方向应变关系为εsz=-μεsx
z轴方向应变为
其中εx为悬臂梁长度方向x轴方向应变,εz为悬臂梁z轴方向任意位置应变,εsx为叉指电极谐振部分长度方向应变,εsz为叉指电极谐振部分厚度应变,x1,x2为谐振部分在长度方向坐标,h为悬臂梁厚度,F为电流磁场与悬臂梁磁场间的电磁力,μ为泊松比,Iz为悬臂梁惯性矩,E为悬臂梁弹性模量;
所述的应用于电流传感器的悬臂梁表面先沉积一层金属,在通过光刻的方式获得所需金属叉指电极;
磁铁受到电流产生的磁场力导致的悬臂梁应变引起的频率偏移量关系如下
波速与电流磁场力产生应变关系如下v=v0(1+rxεsx+rzεsz)
波长与电流磁场力产生应变如下λ(ε)=λ0(1+εsx)
频率与电流磁场力产生的应变如下
电流电磁力引起的频率偏移如下
简化如下△f=f(ε)-f0=[(rx-1)εsx+rzεsz]f0
矩形悬臂梁在双根电芯导线作用下频率偏移如下:
在双根电芯的磁场下磁铁受力:
通电电流为I时,电流传感器测量频率变化值为:
其中:xm,zm为磁铁与导线中心处坐标、x1,x2为声表面波谐振部分在坐标系下的坐标,a为单根导线半径、Br为磁铁剩余磁通量、rx、rz为压电材料应变系数、μ为泊松比、f0为叉指电极的中心频率。
以上参数均为已知量简化公式如下:△f=KI
其中K由悬臂梁结构与材料参数、导线与磁铁间距离参数确定,均为已知量
当传感器处于双根电芯中心处时:xm=0
因此已知系数K值与频率变化f即可得到电流值大小,
所述的应用于电流传感器的微带天线通过电导线与与叉指电极汇流条相连接进而改变声表面波的频率,测得变化的频率差△f即可确定被测电流;
如图8所示,应用例1采用矩形悬臂梁、矩形磁铁形式测量阶跃形式电流,磁铁置于双根通电导线中心处,阶跃电流产生半正弦脉冲冲击,悬臂梁发生振动
电流传感器输出频率为
如图8所示阶跃电流输入处于上升段时,悬臂梁受到半正弦脉冲冲击,向下运动对应的传感器输出为①频率段;达到第一个底端最大振幅输出为②频率点;阶跃电流达到稳态值时,悬臂梁按指数形式衰减,传感器输出如③频率段所示,随后悬臂梁衰减至平衡状态,传感器输出如④频率段;阶跃电流输入处于下降段时,悬臂梁向上运动对应传感器输出为⑤频率段,到达顶端最大振幅的传感器输出为⑥频率点。
]如图9所示,应用例2采用矩形悬臂梁、矩形磁铁形式测量斜率电流,悬臂梁发生单向弯曲,电流传感器输出频率为:
如图8所示电流以一定斜率由0正向上升,电流从0达到最大值,电流值变化由①上升至②到最大值③,悬臂梁由水平受力位置①下降至②至最低端③位置,传感器频率输出由基频①上升至②直至③频率点,电流由正向最大值以一定斜率下降时,电流由最大值到0,电流值变化由最大值③到④下降至⑤,悬臂梁由水平受力位置③上升至至④至水平受力⑤位置,电流以一定斜率由0反向上升时,电流从0达到最大值,电流值变化由⑤上升至⑥到最大值⑦,悬臂梁由水平受力位置⑤上升至⑥至最顶端⑦位置,传感器频率输出由基频⑤下降至⑥至⑦频率点,电流由反向最大值以一定斜率下降时,电流值变化由⑦上升至⑧到最大值⑨,悬臂梁由最顶端位置⑦下降至⑧至最低端位置⑨,传感器频率输出由⑦上升至⑧直至⑨频率点。

Claims (3)

1.一种可无线、无源、非接触、多线测量直流电流的装置,其特征在于:固定V型夹块下部与导向光杠一端固定连接,可动V型夹块内部安装有一对直线轴承,通过轴用弹性挡圈将直线轴承固定在可动V型夹块内,直线轴承沿着导向光杠进行低摩擦移动,涨紧弹簧套入导向光杠并夹在调整螺母与可动V型夹块之间,调整螺母与导向光杆一端螺纹连接,直线电机通过直线电机支撑座与固定V型夹块固定连接,传感器模块放置于传感器调整台中,固定V型夹块包含有可使传感器调整台通过的通孔,传感器调整台底部有螺纹通孔,直线电机的丝杆与调整台内部的螺纹通孔转动连接。
2.根据权利要求1所述的一种可无线、无源、非接触、多线测量直流电流的装置,其特征在于:所述传感器模块的结构是:压电悬臂梁一端与支撑基底固联、另一端表面粘结磁感应单元,在压电悬臂梁表面固定端一侧沉积一层叉指电极,悬臂梁中部光刻一层反射栅,寻址天线、回波天线分别与叉指电极汇流条相连,无线收发模块向寻址天线发射传感器设计频率的无线信号,并接收回波天线反馈电流变化引起频率变化的无线信号,回寻址天线、回波天线分别与支撑基底粘接,支撑基底与下层支撑结构粘接,下层支撑结构与上层玻璃薄板粘接。
3.一种可无线、无源、非接触、多线测量直流电流的测量方法,其特征在于包括下列步骤:
步骤(1)将可动V型夹块向着固定V型夹块相反的方向推开并预留出夹持距离,夹持距离要大于电导线直径;
步骤(2)将被测电导线放置于固定V型夹块、可动V型夹块的V型孔处,释放可动V型夹块,处于压缩状态的涨紧弹簧推动可动V型夹块沿着导向光杠移动,同固定V型夹块将导线夹紧;
步骤(3)将被测电导线接入标准直流电流I0
步骤(4)通过直线电机6带动传感器调整台移动,当传感器获得最大输出频率时,由导线双电芯磁场梯度中心处最大可确定,当传感器模块由导线一侧经过另一侧时必然存在一波峰,即为定位点并固定传感器模块;
步骤(5)将被测电导线通入被测电流I进行实际测量,被测电流值I可通过传感器模块输出频率变化Δf与传感器参数值K获得,公式如下
I = Δ f K c
K c = 2 az m B r Vf 0 πEI y h 4 ( x 1 + x 2 ) [ ( r x - 1 ) - μr z ] ( ( a ) 2 + z m 2 ) 2
其中:zm为磁铁与电导线中心处坐标、x1,x2为声表面波叉指电极在坐标系下的坐标,a为被测电导线单根电芯一、单根电芯二半径、Br为磁铁剩余磁通量、rx、rz为压电材料应变系数、μ为泊松比、f0为叉指电极的中心频率、h为压电悬臂梁厚度、Iy为压电悬臂梁惯性矩,E为压电悬臂梁弹性模量、V为磁铁体积,。
CN201710027636.9A 2017-01-16 2017-01-16 可无线、无源、非接触、多线测量直流电流的装置及方法 Active CN106771498B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710027636.9A CN106771498B (zh) 2017-01-16 2017-01-16 可无线、无源、非接触、多线测量直流电流的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710027636.9A CN106771498B (zh) 2017-01-16 2017-01-16 可无线、无源、非接触、多线测量直流电流的装置及方法

Publications (2)

Publication Number Publication Date
CN106771498A true CN106771498A (zh) 2017-05-31
CN106771498B CN106771498B (zh) 2017-11-10

Family

ID=58946710

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710027636.9A Active CN106771498B (zh) 2017-01-16 2017-01-16 可无线、无源、非接触、多线测量直流电流的装置及方法

Country Status (1)

Country Link
CN (1) CN106771498B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107765058A (zh) * 2017-11-26 2018-03-06 吉林大学 一种面向三相四线制对称负载的电流测量装置及方法
CN107807269A (zh) * 2017-11-26 2018-03-16 吉林大学 一种用于多种电缆的光电式电流检测装置及其检测方法
CN108152556A (zh) * 2018-01-18 2018-06-12 吉林大学 被动激励自供电无线非接触电流传感测量装置及测量方法
CN108414819A (zh) * 2018-04-01 2018-08-17 吉林大学 一种用于双芯导线的压电式无源电流检测装置及方法
CN109884365A (zh) * 2018-05-22 2019-06-14 国家电网有限公司 一种带电操作的变压器中性点直流偏磁电流测量仪
CN110244126A (zh) * 2019-06-14 2019-09-17 牡丹江市质量技术监督检验检测中心 光栅尺数控精准测量导线电阻值装置
CN114325061A (zh) * 2022-01-13 2022-04-12 吉林大学 一种用于多种频率的压电式电流检测装置及其检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735900A (zh) * 2011-04-01 2012-10-17 台达电子工业股份有限公司 无源式交流电流感测器
CN202939207U (zh) * 2012-12-04 2013-05-15 西安科技大学 一种基于光学读出的微机电电流传感装置
CN103245819A (zh) * 2013-04-23 2013-08-14 西安交通大学 采用磁激励谐振压阻式悬臂梁测量直流电流或直流电压的方法
CN103954823A (zh) * 2014-05-14 2014-07-30 中国科学院声学研究所 声表面波电流传感器
JP5631560B2 (ja) * 2009-06-10 2014-11-26 協立電機株式会社 電流検出装置
CN104483514A (zh) * 2014-12-11 2015-04-01 铜陵市启动电子制造有限责任公司 一种薄膜电容芯子测试夹具
CN204430471U (zh) * 2014-12-13 2015-07-01 西安志越机电科技有限公司 齿条精磨加工用夹紧装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5631560B2 (ja) * 2009-06-10 2014-11-26 協立電機株式会社 電流検出装置
CN102735900A (zh) * 2011-04-01 2012-10-17 台达电子工业股份有限公司 无源式交流电流感测器
CN202939207U (zh) * 2012-12-04 2013-05-15 西安科技大学 一种基于光学读出的微机电电流传感装置
CN103245819A (zh) * 2013-04-23 2013-08-14 西安交通大学 采用磁激励谐振压阻式悬臂梁测量直流电流或直流电压的方法
CN103954823A (zh) * 2014-05-14 2014-07-30 中国科学院声学研究所 声表面波电流传感器
CN104483514A (zh) * 2014-12-11 2015-04-01 铜陵市启动电子制造有限责任公司 一种薄膜电容芯子测试夹具
CN204430471U (zh) * 2014-12-13 2015-07-01 西安志越机电科技有限公司 齿条精磨加工用夹紧装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107765058A (zh) * 2017-11-26 2018-03-06 吉林大学 一种面向三相四线制对称负载的电流测量装置及方法
CN107807269A (zh) * 2017-11-26 2018-03-16 吉林大学 一种用于多种电缆的光电式电流检测装置及其检测方法
CN107765058B (zh) * 2017-11-26 2023-05-23 吉林大学 一种面向三相四线制对称负载的电流测量装置及方法
CN107807269B (zh) * 2017-11-26 2023-12-15 吉林大学 一种用于多种电缆的光电式电流检测装置及其检测方法
CN108152556A (zh) * 2018-01-18 2018-06-12 吉林大学 被动激励自供电无线非接触电流传感测量装置及测量方法
CN108152556B (zh) * 2018-01-18 2023-04-25 吉林大学 被动激励自供电无线非接触电流传感测量装置及测量方法
CN108414819A (zh) * 2018-04-01 2018-08-17 吉林大学 一种用于双芯导线的压电式无源电流检测装置及方法
CN108414819B (zh) * 2018-04-01 2023-09-29 吉林大学 一种用于双芯导线的压电式无源电流检测装置及方法
CN109884365A (zh) * 2018-05-22 2019-06-14 国家电网有限公司 一种带电操作的变压器中性点直流偏磁电流测量仪
CN110244126A (zh) * 2019-06-14 2019-09-17 牡丹江市质量技术监督检验检测中心 光栅尺数控精准测量导线电阻值装置
CN114325061A (zh) * 2022-01-13 2022-04-12 吉林大学 一种用于多种频率的压电式电流检测装置及其检测方法

Also Published As

Publication number Publication date
CN106771498B (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
CN106771498B (zh) 可无线、无源、非接触、多线测量直流电流的装置及方法
CN105612404B (zh) 具有传感器元件的传感器以及用于制造传感器元件的工艺
CN106018917B (zh) 一种无源型电流电压集成传感器
CN110333378B (zh) 一种基于磁汇聚效应的磁电层合材料电流传感装置
CN103140741A (zh) 用于检测磁场的方法和设备
CN104101899B (zh) 多线圈多端子闭环地震检波器加速计
CN105068027A (zh) 智能磁传感器和基于智能磁传感器的车辆检测方法
CN104006909A (zh) 一种索力检测方法及使用该方法的索力传感器
CN108414819B (zh) 一种用于双芯导线的压电式无源电流检测装置及方法
CN103439034B (zh) 一种多功能测力传感器
Hristoforou et al. Displacement sensors using soft magnetostrictive alloys
CN206399999U (zh) 可无线、无源、非接触、多线测量直流电流的装置
CN107765058A (zh) 一种面向三相四线制对称负载的电流测量装置及方法
CN103176031A (zh) 一种基于罗氏线圈的压电驱动式光纤Bragg光栅电流传感器及其使用方法
CN101251409A (zh) 一种InSb-NiSb磁敏电阻型振动传感器
CN106123967B (zh) 加速度、振幅检测系统
CN202057292U (zh) 一种压电式电流传感器
CN108152556B (zh) 被动激励自供电无线非接触电流传感测量装置及测量方法
CN110530501A (zh) 振动传感器
CN115452204A (zh) 一种基于逆磁致伸缩效应的力传感测量方法
CN202915880U (zh) 一种非接触式位移传感器
CN109709156A (zh) 磁流变液沉降性测试装置及测试方法
CN102384715B (zh) 一种压电式电流传感器
CN207440158U (zh) 一种面向三相四线制对称负载的电流测量装置
CN204495494U (zh) 带预压机构的铁镓合金力传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant