CN106769462A - 一种无粘性地基土内摩擦角和变形模量的预测方法 - Google Patents

一种无粘性地基土内摩擦角和变形模量的预测方法 Download PDF

Info

Publication number
CN106769462A
CN106769462A CN201611173993.8A CN201611173993A CN106769462A CN 106769462 A CN106769462 A CN 106769462A CN 201611173993 A CN201611173993 A CN 201611173993A CN 106769462 A CN106769462 A CN 106769462A
Authority
CN
China
Prior art keywords
soil
modulus
deformation modulus
soil layer
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611173993.8A
Other languages
English (en)
Inventor
刘华北
王杰
阿桑.佩格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201611173993.8A priority Critical patent/CN106769462A/zh
Publication of CN106769462A publication Critical patent/CN106769462A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0284Bulk material, e.g. powders

Abstract

本发明属于无粘性地基土工程技术领域,并公开了一种无粘性地基土内摩擦角和变形模量的预测方法。该预测方法包括:(a)测定土层压缩波波速、剪切波波速、以及土层厚度;(b)计算竖向有效应力、泊松比和变形模量;(c)计算无粘性土静止土压力系数和内摩擦角;(d)计算土层模量数;(e)计算土层变形模量。通过本发明,实现了在无室内土工试验的情况下通过测量剪切波和压缩波的波速计算无粘性地基土内摩擦角和变形模量的计算,完成结构物基础的初步设计,大大降低设计成本。

Description

一种无粘性地基土内摩擦角和变形模量的预测方法
技术领域
本发明属于无粘性地基土工程领域,更具体地,涉及一种无粘性地基土内摩擦角和变形模量的预测方法。
背景技术
有效内摩擦角是无粘性土的抗剪强度指标,变形模量是无粘性土的压缩性指标,它们是无粘性土上地基基础设计的两个重要参数。
根据我国建筑地基基础设计规范,无粘性土的有效内摩擦角主要采用原状土室内剪切试验获得,或者应用原位标准贯入试验结果与内摩擦角的经验公式估计得到。土的压缩性指标确定主要采用原状土室内压缩试验、原位浅层或深层平板载荷试验、或旁压试验等方法获取。上述室内试验方法由于会破坏土的原状性,对土层相关参数的真实值会有影响;同时,土工试验需要相关的高精密专业仪器设备,试验操作过程复杂。而以原位试验为基础的方法难以同时得到这两个重要参数。因此,如何在不进行室内土工试验的条件下,获取土层的有效内摩擦角和变形模量以指导初步的地基基础设计,有着高效、低成本等重要意义。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种无粘性地基土内摩擦角和变形模量的预测方法,通过现场获取的土层剪切波波速、压缩波波速以及土层深度,结合已有的土力学基本原理及经验公式,由此解决无室内土工试验下内摩擦角和变形模量计算的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种无粘性地基土内摩擦角和变形模量的预测方法,其特征在于,该预测方法包括下列步骤:
(a)测定待预测地基土的土层压缩波波速剪切波波速和中间深度Zi
(b)根据经验公式计算所述土层密度ρi,通过该土层密度与所述土层的中间深度Zi计算所述土层的竖向有效应力σ′voi,该竖向有效应力结合无限弹性介质内波的传播特性以及弹性理论计算出所述土层的泊松比vi和变形模量Ei
(c)根据广义胡克定律计算无粘性土静止土压力系数K0i,然后通过该K0i和待预测的内摩擦角的关系式计算所述
(d)根据无粘性土的初始变形模量Ei和有效围压应力σ′ci的关系式,得到所述土层模量数Ki的表达式,将所述泊松比vi、初始变形模量Ei和竖向有效应力σ′voi代入该表达式中计算出所述土层模量数Ki
(e)在所述待预测地基土上附加预设应力Δσi,根据待计算变形量与所述土层模量数Ki,所述泊松比vi和竖向有效应力σ′voi的关系式计算该待预测变形模量Ei *
优选地,在步骤(a)中,测定所述优选采用单孔法、跨孔法或面波法中的一种。
优选地,在步骤(b)中,所述经验公式优选采用下列表达式(一),
所述泊松比vi和变形模量Ei优选采用下列表达式(二)和(三),
优选地,在步骤(c)中,所述广义胡克定律计算K0i优选采用下列表达式(四),
所述该K0i和待预测的内摩擦角的关系式优选采用下列表达式(五)计算,
优选地,在步骤(d)中,所述土层模量数Ki的表达式优选按照下列表达式(六),其中,pa为标准大气压强,
优选地,在步骤(e)中,待预测变形模量与所述土层模量数Ki,所述泊松比vi和竖向有效应力σ′voi的关系式优选按照下列表达式(七)进行,
总体而言,通过本发明所构思的以上技术方案与现有技术相比,够取得下列有益效果:
1、本发明通过采用地质勘察的压缩波和剪切波波速,并且不采用土工试验,能够预测出非饱和无粘性土的强度和刚度参数,相对现有计算方法而言,更加经济高效;
2、本发明通过采用单孔法、跨孔法或面波法中的一种获得压缩波和剪切波波速,能够保证压缩波及剪切波速的准确性,同时通过结合广义胡克定律、无限弹性介质内波的传播特性、以及无粘性地基土本身特性,实现预测内摩擦角和变形量的准确性;
3、本发明提供的计算方法步骤简单,成本低廉,计算过程便于控制,所计算的无粘性土的内摩擦角和土层变形模量参数准确度高,可应用于结构基础初步设计中,大大降低设计成本。
附图说明
图1是按照本发明的优选实施例所构建的内摩擦角和变形量的计算方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是本发明的估计非饱和无粘性地基土内摩擦角和变形模量的方法的具体流程图,其技术原理是根据当前土层的压缩波波速剪切波波速并考虑基础施加的附加应力,用以估算当前土层的抗剪强度参数(有效内摩擦角)和土层的变形模量,该方法主要包括如下步骤:
1)在岩土工程勘察中,采用单孔法、跨孔法或面波法测定土层的压缩波波速剪切波波速计算出土层的中间深度Zi
2)根据下述经验公式求得土层的密度:
从而可得土层的竖向有效应力:
根据无限弹性介质内波的传播特性及弹性理论可得到:
联立上面两式既可以得到由压缩波波速剪切波波速表示土的泊松比vi和变形模量Ei的公式:
3)根据广义胡克定律,结合无黏性土的的静止土压力系数的计算公式,可建立用泊松比vi来表示有效内摩擦角的公式,求得有效内摩擦角的值:
4)根据无黏性土的变形模量公式和土层的有效围压应力σ′ci的计算公式:
可得土层的模量数Ki计算公式为:
将上述步骤2)求得的泊松比vi、变形模量Ei值和土层中间深度的竖向有效应力σ′voi带入上式可以求得模量数Ki
5)根据步骤4)求得的土层的模量数,考虑在原地基上建设基础的附加应力Δσi,计算原土层在建立基础后的地基变形模量Ei
以下为本发明的实施例:
根据勘擦报告,当前土层第一层的压缩波波速为328m/s2,剪切波波速为167m/s2,土层厚度为14m,用测量工具测量土层第一层中间深度为7m。拟建造的基础对土层的附加应力为Δσi=100KPa。
1)根据勘擦报告,获取土层的压缩波波速剪切波波速和计算出土层中间深度Zi值分别为167m/s2、328m/s2和7m。
2)根据经验公式求得土层的密度:
从而可得土层的竖向有效应力:
根据无限弹性介质内波的传播特性和弹性理论可得:
联立上面两式既可以得到由压缩波波速剪切波波速表示土的泊松比vi和变形模量Ei的值为:
3)根据广义胡克定律,结合无黏性土的静止土压力系数的计算公式,可建立用泊松比vi来表示有效内摩擦角的公式,求得有效内摩擦角的值:
4)根据无黏性土的变形模量公式和土层的有效围压应力σ′ci的计算公式:
将上述步骤2)求得的泊松比vi、变形模量Ei值和土层中间深度的竖向有效应力σ′voi带入上式可以求得模量数Ki为:
5)根据步骤4)求得的土层的模量数,考虑在原地基上建设基础的附加应力Δσi,计算原土层在建立基础后的地基变形模量Ei
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种无粘性地基土内摩擦角和变形模量的预测方法,其特征在于,该预测方法包括下列步骤:
(a)测定待预测地基土的土层压缩波波速剪切波波速和中间深度Zi
(b)根据经验公式计算所述土层密度ρi,通过该土层密度与所述土层的中间深度Zi计算所述土层的竖向有效应力σ′voi,该竖向有效应力结合无限弹性介质内波的传播特性以及弹性理论计算出所述土层的泊松比vi和变形模量Ei
(c)根据广义胡克定律计算无粘性土静止土压力系数K0i,然后通过该K0i和待预测的内摩擦角的关系式计算所述
(d)根据无粘性土的初始变形模量Ei和有效围压应力σ′ci的关系式,得到所述土层模量数Ki的表达式,将所述泊松比vi、初始变形模量Ei和竖向有效应力σ′voi代入该表达式中计算出所述土层模量数Ki
(e)在所述待预测地基土上附加预设应力Δσi,根据待计算变形量与所述土层模量数Ki,所述泊松比vi和竖向有效应力σ′voi的关系式计算该待预测变形模量Ei *
2.如权利要求1所述的计算方法,其特征在于,在步骤(a)中,测定所述优选采用单孔法、跨孔法或面波法中的一种。
3.如权利要求1所2所述的计算方法,其特征在于,在步骤(b)中,所述经验公式优选采用下列表达式(一),
所述泊松比vi和变形模量Ei优选采用下列表达式(二)和(三),
4.如权利要求1-3任一项所述的计算方法,其特征在于,在步骤(c)中,所述广义胡克定律计算K0i优选采用下列表达式(四),
所述该K0i和待预测的内摩擦角的关系式优选采用下列表达式(五)计算,
5.如权利要求1-4任一项所述的计算方法,其特征在于,在步骤(d)中,所述土层模量数Ki的表达式优选按照下列表达式(六),其中,pa为标准大气压强,
6.如权利要求1-5任一项所述的计算方法,其特征在于,在步骤(e)中,待预测变形模量与所述土层模量数Ki,所述泊松比vi和竖向有效应力σ′voi的关系式优选按照下列表达式(七)进行,
CN201611173993.8A 2016-12-19 2016-12-19 一种无粘性地基土内摩擦角和变形模量的预测方法 Pending CN106769462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611173993.8A CN106769462A (zh) 2016-12-19 2016-12-19 一种无粘性地基土内摩擦角和变形模量的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611173993.8A CN106769462A (zh) 2016-12-19 2016-12-19 一种无粘性地基土内摩擦角和变形模量的预测方法

Publications (1)

Publication Number Publication Date
CN106769462A true CN106769462A (zh) 2017-05-31

Family

ID=58889893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611173993.8A Pending CN106769462A (zh) 2016-12-19 2016-12-19 一种无粘性地基土内摩擦角和变形模量的预测方法

Country Status (1)

Country Link
CN (1) CN106769462A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130300A (zh) * 2019-05-17 2019-08-16 中冶集团武汉勘察研究院有限公司 采用剪切波速确定夯/压实填土层承载力特征值的方法
CN110567429A (zh) * 2019-09-25 2019-12-13 辽宁工程技术大学 一种侧限应力条件下地基土体实际泊松比测量装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7451666B2 (en) * 2006-01-13 2008-11-18 Jr Johanson, Inc. Apparatus and test procedure for measuring the cohesive, adhesive, and frictional properties of bulk granular solids
CN105046080A (zh) * 2015-07-20 2015-11-11 辽宁工程技术大学 一种岩体质量评价方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7451666B2 (en) * 2006-01-13 2008-11-18 Jr Johanson, Inc. Apparatus and test procedure for measuring the cohesive, adhesive, and frictional properties of bulk granular solids
CN105046080A (zh) * 2015-07-20 2015-11-11 辽宁工程技术大学 一种岩体质量评价方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EHSAN PEGAH等: "Application of near-surface seismic refraction tomography and multichannel analysis of surface waves for geotechnical site characterizations: A case study", 《ENGINEERING GEOLOGY》 *
黄博 等: "基于微观尺度的砂土剪切波速度", 《中南大学学报(自然科学版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110130300A (zh) * 2019-05-17 2019-08-16 中冶集团武汉勘察研究院有限公司 采用剪切波速确定夯/压实填土层承载力特征值的方法
CN110567429A (zh) * 2019-09-25 2019-12-13 辽宁工程技术大学 一种侧限应力条件下地基土体实际泊松比测量装置及方法

Similar Documents

Publication Publication Date Title
Hokmabadi et al. Assessment of soil–pile–structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations
Lin et al. Interaction between laterally loaded pile and surrounding soil
A. Rashid et al. Behavior of weak soils reinforced with end-bearing soil-cement columns formed by the deep mixing method
Groholski et al. Evaluation of 1-D non-linear site response analysis using a general quadratic/hyperbolic strength-controlled constitutive model
Grimstad et al. A non-associated creep model for structured anisotropic clay (n-SAC)
Zhou et al. Effect of shaft on resistance of a ball penetrometer
Ju Prediction of the settlement for the vertically loaded pile group using 3D finite element analyses
CN104462641A (zh) 考虑土体液化全过程的桥梁桩基抗震分析简化方法
Mayne et al. Shallow footing response on sands using a direct method based on cone penetration tests
Yun et al. Evaluation of virtual fixed points in the response spectrum analysis of a pile-supported wharf
CN106769462A (zh) 一种无粘性地基土内摩擦角和变形模量的预测方法
Vicent et al. Evaluation of horizontal and vertical bearing capacities of offshore bucket work platforms in sand
CN113420482B (zh) 一种基于结构内力监测值的管片荷载正交数值反演方法
Zhang et al. Field study on the behavior of destructive and non-destructive piles under compression
Shaban et al. Characterizing structural performance of unbound pavement materials using miniaturized pressuremeter and California bearing ratio tests
Kurian et al. Studies on the behaviour of axially loaded tapered piles by the finite element method
Nip et al. Back-analysis of laterally loaded bored piles
Korzani et al. Soil-structure interaction analysis of jack-up platforms subjected to monochrome and irregular waves
Bau et al. Testing a data assimilation approach to reduce geomechanical uncertainties in modelling land subsidence
Posse et al. Validation of a 3D numerical model for piled raft systems founded in soft soils undergoing regional subsidence
Tapper Bearing capacity of perforated offshore foundations under combined loading
Bán et al. Comparison of empirical liquefaction potential evaluation methods
Yarkin et al. Non-linear settlements of shallow foundation
Marzuki et al. Alternative Method of Calculation of Pile Bearing Capacity Using Graphical Correction N-SPT
Harutoonian Geotechnical characterisation of compacted ground by passive ambient vibration techniques

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication