CN106767824B - 一种计算双探测器在地外天体表面相对位置的方法 - Google Patents

一种计算双探测器在地外天体表面相对位置的方法 Download PDF

Info

Publication number
CN106767824B
CN106767824B CN201611182104.4A CN201611182104A CN106767824B CN 106767824 B CN106767824 B CN 106767824B CN 201611182104 A CN201611182104 A CN 201611182104A CN 106767824 B CN106767824 B CN 106767824B
Authority
CN
China
Prior art keywords
coordinate system
celestial body
lander
calculating
extraterrestrial celestial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611182104.4A
Other languages
English (en)
Other versions
CN106767824A (zh
Inventor
周欢
张鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
63921 Troops of PLA
Original Assignee
63921 Troops of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 63921 Troops of PLA filed Critical 63921 Troops of PLA
Priority to CN201611182104.4A priority Critical patent/CN106767824B/zh
Publication of CN106767824A publication Critical patent/CN106767824A/zh
Application granted granted Critical
Publication of CN106767824B publication Critical patent/CN106767824B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation

Abstract

本发明属于深空测控领域,涉及一种计算双探测器在地外天体表面相对位置的方法。该方法利用地面无线电干涉测量得到的两个探测器赤经差、赤纬差和地外天体数字高程模型,通过循环迭代修正巡视器高程值,计算两个探测器在地外天体表面的北东地相对位置。具有适用范围广,收敛效果好,计算精度高,不需要测距、测速数据,不受探测器视觉可见性约束等优点。

Description

一种计算双探测器在地外天体表面相对位置的方法
技术领域
本发明涉及深空测控领域,具体涉及一种计算双探测器在地外天体表面相对位置的方法。
背景技术
在月球及深空地外天体着陆巡视探测任务中,“着陆器+巡视器”组合探测模式十分常见。嫦娥三号任务就采用该模式实现了我国对月球的初次着陆勘测,后续发射的嫦娥四号任务也将类似地对月球背面开展探测,而将于2020年发射的我国首次火星探测任务也包含了着陆器和火星车巡视器。在该类任务中,获取着陆器和巡视器精确的相对位置对于工程实施和科学探测至关重要。
在国外月球和火星着陆探测以及我国嫦娥三号任务中,通常采用“视觉+惯导”的组合方法对两个探测器进行相对定位,但视觉方法作用距离有限,当两器之间的视线存在遮挡或者距离太远不可见时,视觉定位方法就无法开展;而单纯的惯导方法则会随时间积累产生巨大的误差(参见Liu,Z.Q.,Di,K.C.,Peng,M.,et al.,2015.High precisionlanding site mapping and rover localization for Chang’e-3 mission.Sci.ChinaPhys.Mech.Astron.58,019601.)。另一种方法是通过地面无线电跟踪测量来计算两者的相对位置,但通常需要测距、测速和干涉测量三种数据综合才能进行定位,测距、测速数据用来约束视向位置关系,而干涉测量数据用来约束横向关系。
发明内容
本发明要解决的技术问题是:提供一种不需要测距和测速数据,不受视觉可见性约束,不存在累积误差的计算双探测器在地外天体表面相对位置的方法。
为了解决上述技术问题,本发明的技术方案如下:
一种计算双探测器在地外天体表面相对位置的方法,包括如下步骤:
步骤一、计算着陆器在地心J2000坐标系中的赤经αL、赤纬δL和着陆器至地心的距离dL
步骤二、计算巡视器在地心J2000坐标系中的赤经αR和赤纬δR,并给巡视器至地心的距离dR赋初值dL
步骤三、计算巡视器在地外天体中心固连坐标系中的高程值偏差ΔH;
3.1根据巡视器在地心J2000坐标系中的赤经αR、赤纬δR,和巡视器至地心的距离dR,计算巡视器在地外天体表面的经度LR,纬度BR和高程值HR
3.2根据步骤3.1得到的经度LR和纬度BR从地外天体数字高程模型中确定巡视器的数字高程值
Figure BSA0000137813820000021
3.3根据公式
Figure BSA0000137813820000022
计算巡视器在地外天体中心固连坐标系中的高程值偏差ΔH;
步骤四、判断巡视器高程值偏差ΔH是否小于10-5m;
若ΔH<10-5m,跳至步骤五;若ΔH≥10-5m,则按照公式dR_new=dR+K·ΔH,K为调整系数,将巡视器在地心J2000坐标系中的距离值dR赋值为dR_new后,跳转至步骤三;
步骤五、计算巡视器相对着陆器的地外天体表面北东地位置。
进一步的,所述步骤五中,巡视器相对着陆器的地外天体表面北东地位置计算过程如下:
1)根据下式计算地外天体中心固连坐标系到着陆器地外天体表面北东地坐标系的转换矩阵M3
Figure BSA0000137813820000031
式中,LL、BL分别为着陆器在地外天体表面的经度、纬度。
2)根据下式计算并输出巡视器相对着陆器的地外天体表面北东地位置(xR2L,yR2L,zR2L):
Figure BSA0000137813820000032
式中,(xR,yR,zR)为巡视器在地外天体中心固连坐标系中的三维坐标,(xL,yL,zL)为着陆器在地外天体中心固连坐标系中的三维坐标,M3为地外天体中心固连坐标系到着陆器地外天体表面北东地坐标系的转换矩阵。
进一步的,所述步骤一还包括:
1)利用着陆器在地外天体表面的经度LL、纬度BL和高程HL,根据下式计算着陆器在地外天体中心固连坐标系中的三维坐标(xL,yL,zL);
Figure BSA0000137813820000033
式中,N为地外天体的参考半径,LL、BL和HL分别为着陆器在地外天体表面的经度、纬度和高程;
2)从行星历表获得地外天体中心固连坐标系与地心J2000坐标系的转换矩阵M1及逆转换矩阵M2,和地外天体中心在地心J2000坐标系中的三维坐标(xO,yO,zO);
3)根据下式计算着陆器在地心J2000坐标系中的三维坐标
Figure BSA0000137813820000034
Figure BSA0000137813820000041
式中,(xO,yO,zO)为地外天体中心在地心J2000坐标系中的三维坐标,M1为地外天体中心固连坐标系与地心J2000坐标系的转换矩阵,(xL,yL,zL)为着陆器在地外天体中心固连坐标系中的三维坐标。
4)根据下式计算着陆器在地心J2000坐标系中的赤经αL、赤纬δL和着陆器至地心的距离dL
Figure BSA0000137813820000042
式中,
Figure BSA0000137813820000043
为着陆器在地心J2000坐标系中的三维坐标。
进一步的,所述步骤三中,巡视器在地外天体表面的经度LR,纬度BR和高程值HR计算过程如下:
1)根据下式计算巡视器在地心J2000坐标系中的三维坐标
Figure BSA0000137813820000044
Figure BSA0000137813820000045
式中,dR为巡视器至地心的距离,αR、δR分别为巡视器在地心J2000坐标系中赤经和赤纬。
2)根据下式计算巡视器在地外天体中心固连坐标系中的三维坐标(xR,yR,zR);
Figure BSA0000137813820000046
式中,
Figure BSA0000137813820000047
为巡视器在地心J2000坐标系中的三维坐标,(xO,yO,zO)为地外天体中心在地心J2000坐标系中的三维坐标,M2为地外天体中心固连坐标系与地心J2000坐标系的逆转换矩阵。
3)根据下式计算巡视器在地外天体表面的经度LR,纬度BR和高程HR
Figure BSA0000137813820000051
式中,(xR,yR,zR)为巡视器在地外天体中心固连坐标系中的三维坐标。
进一步的,所述的步骤二中,按照下式计算巡视器在地心J2000坐标系中的赤经αR和赤纬δR
Figure BSA0000137813820000052
式中,Δα,Δδ为地面无线电干涉测量获得的某时刻巡视器相对着陆器的赤经差、赤纬差;αL、δL分别为着陆器在地心J2000坐标系中的赤经、赤纬。
本发明所达到的有益效果:
本发明通过循环迭代的方式快速计算出巡视器相对着陆器的地外天体表面北东地位置,收敛效果好,计算精度高,适用于太阳系内各个地外天体,不需要测距和测速数据,不受视觉可见性约束,不存在累积误差。
附图说明
图1为本发明技术方案的流程图。
具体实施方式
以下结合附图和嫦娥三号实测数据对本发明的具体实施方式作进一步详细说明。
本发明的原理:利用地面无线电干涉测量得到的两个探测器赤经差、赤纬差和地外天体数字高程模型,通过循环迭代修正巡视器高程值,计算两个探测器在地外天体表面的北东地相对位置。
假设两个探测器分别命名为着陆器和巡视器,其中着陆器在地外天体表面的经度LL、纬度BL和高程HL已经确定,巡视器在地外天体表面自主或半自主运动。由地面无线电干涉测量获得的某时刻巡视器相对着陆器的赤经差、赤纬差为(Δα,Δδ)。视地外天体为均匀球体,参考半径为N。图1示出了本发明实现的流程,具体如下:
步骤一、计算着陆器在地心J2000坐标系中的赤经αL、赤纬δL和着陆器至地心的距离dL
1)利用着陆器在地外天体表面的经度LL、纬度BL和高程HL,根据式(1)计算着陆器在地外天体中心固连坐标系中的三维坐标(xL,yL,zL);
Figure BSA0000137813820000061
式中,N为地外天体的参考半径,LL、BL和HL分别为着陆器在地外天体表面的经度、纬度和高程。
地外天体包括,但不限于月球、火星、金星、小行星。
2)从喷气推进实验室(JPL)行星历表获得地外天体中心固连坐标系与地心J2000坐标系的转换矩阵M1及逆转换矩阵M2,和地外天体中心在地心J2000坐标系中的三维坐标(xO,yO,zO);
3)根据式(2)计算着陆器在地心J2000坐标系中的三维坐标
Figure BSA0000137813820000062
Figure BSA0000137813820000071
式中,(xO,yO,zO)为地外天体中心在地心J2000坐标系中的三维坐标,M1为地外天体中心固连坐标系与地心J2000坐标系的转换矩阵,(xL,yL,zL)为着陆器在地外天体中心固连坐标系中的三维坐标。
4)根据式(3)计算着陆器在地心J2000坐标系中的赤经αL、赤纬δL和着陆器至地心的距离dL
Figure BSA0000137813820000072
式中,
Figure BSA0000137813820000073
为着陆器在地心J2000坐标系中的三维坐标。
步骤二、计算巡视器在地心J2000坐标系中的赤经αR和赤纬δR,并给巡视器至地心的距离dR赋初值dL
根据式(4)计算巡视器在地心J2000坐标系中赤经αR和赤纬δR,考虑到巡视器和着陆器相对距离远小于巡视器到地心的距离,给巡视器至地心的距离dR赋初值dL
Figure BSA0000137813820000074
式中,Δα,Δδ为地面无线电干涉测量获得的某时刻巡视器相对着陆器的赤经差、赤纬差;
步骤三、计算巡视器在地外天体中心固连坐标系中的高程值偏差ΔH;
3.1计算巡视器在地外天体表面的的经度LR,纬度BR和高程值HR
1)根据式(5)计算巡视器在地心J2000坐标系中的三维坐标
Figure BSA0000137813820000075
Figure BSA0000137813820000081
式中,dR为巡视器至地心的距离,αR、δR分别为巡视器在地心J2000坐标系中赤经和赤纬。
2)根据式(6)计算巡视器在地外天体中心固连坐标系中的三维坐标(xR,yR,zR);
Figure BSA0000137813820000082
式中,
Figure BSA0000137813820000083
为巡视器在地心J2000坐标系中的三维坐标,(xO,yO,zO)为地外天体中心在地心J2000坐标系中的三维坐标,M2为地外天体中心固连坐标系与地心J2000坐标系的逆转换矩阵。
3)根据式(7)计算巡视器在地外天体表面的经度LR,纬度BR和高程HR
Figure BSA0000137813820000084
式中,(xR,yR,zR)为巡视器在地外天体中心固连坐标系中的三维坐标。
3.2根据步骤3.1中得到的经度LR和纬度BR从地外天体数字高程模型中确定巡视器的数字高程值
Figure BSA0000137813820000085
3.3根据式(8)计算巡视器在地外天体中心固连坐标系中的高程值偏差ΔH;
Figure BSA0000137813820000086
步骤四、判断巡视器高程值偏差ΔH是否小于10-5m;
若ΔH<10-5m,认为巡视器的计算位置与其在地外天体数字高程模型中的位置完全吻合,跳至步骤五;如果ΔH≥10-5m,则按式(9)将巡视器在地心J2000坐标系中的距离值dR赋值为dR_new后,跳转至步骤三,开始循环迭代计算;
dR_new=dR+K·ΔH (9)
式中,K为调整系数,可以根据迭代收敛情况适当选择。
步骤五、计算巡视器相对着陆器的地外天体表面北东地位置;
1)根据式(10)计算地外天体中心固连坐标系到着陆器地外天体表面北东地坐标系的转换矩阵M3
Figure BSA0000137813820000091
式中,LL、BL分别为着陆器在地外天体表面的经度、纬度。
2)根据式(11)计算并输出巡视器相对着陆器的地外天体表面北东地位置(xR2L,yR2L,zR2L);
Figure BSA0000137813820000092
式中,(xR,yR,zR)为巡视器在地外天体中心固连坐标系中的三维坐标,(xL,yL,zL)为着陆器在地外天体中心固连坐标系中的三维坐标,M3为地外天体中心固连坐标系到着陆器地外天体表面北东地坐标系的转换矩阵。
以下结合嫦娥三号实测数据对本发明的具体实施方式作进一步详细说明。
嫦娥三号任务是我国第一个月球表面着陆探测任务,包含着陆器和巡视器两部分。组合体着陆后,巡视器从着陆器上分离,开展月面半自主探测,着陆器则在原位开展定点观测。通过多种手段测得着陆器月面位置为44.1206°N,-19.5124°E,高程-2.632km(月球参考半径1737.4km)。四个地面测站(上海天马,云南昆明,北京密云和新疆乌鲁木齐)对两个探测器开展了无线电干涉测量,在2013年12月15日16:10测得巡视器相对着陆器的赤经、赤纬差为(-3.29,3.36)mas(毫角秒)。
Step 1:利用着陆器在月球表面的经度LL、纬度BL和高程HL计算得到着陆器在月球中心固连坐标系(平轴系)中的三维坐标为(1173.82707,-415.95989,1207.69508)km;
Step 2:从JPL行星历表获得该时刻月球中心固连坐标系与地心J2000坐标系的转换矩阵M1及逆转换矩阵M2,和月球中心在地心J2000坐标系中的三维坐标(xO,yO,zO)分别为:
Figure BSA0000137813820000101
(xO,yO,zO)=(171364.65484,338150.65016,128316.59429)km;
Step 3:计算得到着陆器在地心J2000坐标系中的三维坐标为(170442.82374,336897.75265,129084.64069)km;
Step 4:计算得到着陆器在地心J2000坐标系中的赤经为63.1643050544°、赤纬为18.8751770102°,距离为399015.90992km;
Step 5:计算得到巡视器在地心J2000坐标系中赤经为63.1643041405°,赤纬为18.8751779435°,并给距离赋初值为399015.90992km;
Step 6:计算得到巡视器在地心J2000坐标系中的三维坐标为(170442.82837,336897.74848,129084.64701)km;
Step 7:计算得到巡视器在月球中心固连坐标系中的三维坐标为(1173.82584,-415.95538,1207.70263)km;
Step 8:计算得到巡视器在月球表面的经度为-19.51224°E,纬度为44.12084°N,高程为-2.62866km。由于着陆器和巡视器相隔很近,着陆器所在周边区域地形平坦,从月球数字高程模型中可以近似认为巡视器和着陆器处于同一水平面,再考虑两器信号发射天线的安装位置高度差为1.52m,可以得到巡视器的数字高程值为-2.63352km。
Step 9:计算得到巡视器高程值偏差为4.86m;
Step 10:巡视器高程值偏差大于10-5m,系数K设为0.0005,调整巡视器在地心J2000坐标系中的距离值dR为399015.91235km,跳转至Step 6;
经过32次循环迭代后,巡视器高程偏差小于10-5m,跳转至Step 11,此时dR为399015.91743km;
Step 11:计算得到月球中心固连坐标系到着陆器月球表面北东地坐标系的转换矩阵为
Figure BSA0000137813820000111
Step 12:计算并输出巡视器相对着陆器的月球表面北东地位置为(11.47,1.02,1.52)m。
根据视觉定位方法得到的两器相对位置为(10.87,1.11,1.52)m。
由于巡视器在月球表面运动,其相对着陆器的位置在不断变化,在2013年12月16日12:00、2013年12月20日17:00、2013年12月20日22:30、2013年12月21日19:10等观测时间,利用本发明方法与视觉定位方法得到的两器相对位置对比如下表。本发明方法与视觉定位方法的定位偏差均方根为(0.42,0.18,0.22)m,即位置偏差小于1m,充分验证本发明方法的有效性和高精度。
表1不同时刻得到的两器相对位置结果对比
Figure BSA0000137813820000121
通过上述实施例,完全有效地实现了本发明的目的。该领域的技术人员可以理解本发明包括但不限于附图和以上具体实施方式中描述的内容。虽然本发明就目前认为最为实用且优选的实施例进行说明,但应知道,本发明并不限于所公开的实施例,任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims (5)

1.一种计算双探测器在地外天体表面相对位置的方法,其特征在于,包括如下步骤:
步骤一、计算着陆器在地心J2000坐标系中的赤经αL、赤纬δL和着陆器至地心的距离dL
步骤二、利用地面无线电干涉测量获得的某时刻巡视器相对着陆器的赤经差、赤纬差计算巡视器在地心J2000坐标系中的赤经αR和赤纬δR,并给巡视器至地心的距离dR赋初值dL
步骤三、计算巡视器在地外天体中心固连坐标系中的高程值偏差ΔH;
3.1根据巡视器在地心J2000坐标系中的赤经αR、赤纬δR,和巡视器至地心的距离dR,计算巡视器在地外天体表面的经度LR,纬度BR和高程值HR
3.2根据步骤3.1得到的经度LR和纬度BR从地外天体数字高程模型中确定巡视器的数字高程值
Figure FDA0002367314620000011
3.3根据公式
Figure FDA0002367314620000012
计算巡视器在地外天体中心固连坐标系中的高程值偏差ΔH;
步骤四、判断巡视器高程值偏差ΔH是否小于10-5m;
若ΔH<10-5m,跳至步骤五;若ΔH≥10-5m,则按照公式dR_new=dR+K·ΔH,K为调整系数,将巡视器在地心J2000坐标系中的距离值dR赋值为dR_new后,跳转至步骤三;
步骤五、计算巡视器相对着陆器的地外天体表面北东地位置。
2.如权利要求1所述的一种计算双探测器在地外天体表面相对位置的方法,其特征在于,所述步骤五中,巡视器相对着陆器的地外天体表面北东地位置计算过程如下:
1)根据下式计算地外天体中心固连坐标系到着陆器地外天体表面北东地坐标系的转换矩阵M3
Figure FDA0002367314620000021
式中,LL、BL分别为着陆器在地外天体表面的经度、纬度;
2)根据下式计算并输出巡视器相对着陆器的地外天体表面北东地位置(xR2L,yR2L,zR2L):
Figure FDA0002367314620000022
式中,(xR,yR,zR)为巡视器在地外天体中心固连坐标系中的三维坐标,(xL,yL,zL)为着陆器在地外天体中心固连坐标系中的三维坐标,M3为地外天体中心固连坐标系到着陆器地外天体表面北东地坐标系的转换矩阵;
3.如权利要求1或2所述的一种计算双探测器在地外天体表面相对位置的方法,其特征在于,所述步骤一还包括:
1)利用着陆器在地外天体表面的经度LL、纬度BL和高程HL,根据下式计算着陆器在地外天体中心固连坐标系中的三维坐标(xL,yL,zL);
Figure FDA0002367314620000023
式中,N为地外天体的参考半径,LL、BL和HL分别为着陆器在地外天体表面的经度、纬度和高程;
2)从行星历表获得地外天体中心固连坐标系与地心J2000坐标系的转换矩阵M1及逆转换矩阵M2,和地外天体中心在地心J2000坐标系中的三维坐标(xO,yO,zO);
3)根据下式计算着陆器在地心J2000坐标系中的三维坐标
Figure FDA0002367314620000031
Figure FDA0002367314620000032
式中,(xO,yO,zO)为地外天体中心在地心J2000坐标系中的三维坐标,M1为地外天体中心固连坐标系与地心J2000坐标系的转换矩阵,(xL,yL,zL)为着陆器在地外天体中心固连坐标系中的三维坐标;
4)根据下式计算着陆器在地心J2000坐标系中的赤经αL、赤纬δL和着陆器至地心的距离dL
Figure FDA0002367314620000033
式中,
Figure FDA0002367314620000034
为着陆器在地心J2000坐标系中的三维坐标;
4.如权利要求1或2所述的一种计算双探测器在地外天体表面相对位置的方法,其特征在于,所述步骤三中,巡视器在地外天体表面的经度LR,纬度BR和高程值HR计算过程如下:
1)根据下式计算巡视器在地心J2000坐标系中的三维坐标
Figure FDA0002367314620000035
Figure FDA0002367314620000036
式中,dR为巡视器至地心的距离,αR、δR分别为巡视器在地心J2000坐标系中赤经和赤纬;
2)根据下式计算巡视器在地外天体中心固连坐标系中的三维坐标(xR,yR,zR);
Figure FDA0002367314620000041
式中,
Figure FDA0002367314620000042
为巡视器在地心J2000坐标系中的三维坐标,(xO,yO,zO)为地外天体中心在地心J2000坐标系中的三维坐标,M2为地外天体中心固连坐标系与地心J2000坐标系的逆转换矩阵;
3)根据下式计算巡视器在地外天体表面的经度LR,纬度BR和高程HR
Figure FDA0002367314620000043
式中,(xR,yR,zR)为巡视器在地外天体中心固连坐标系中的三维坐标;
5.如权利要求1或2所述的一种计算双探测器在地外天体表面相对位置的方法,其特征在于,所述的步骤二中,按照下式计算巡视器在地心J2000坐标系中的赤经αR和赤纬δR
Figure FDA0002367314620000044
式中,Δα,Δδ为地面无线电干涉测量获得的某时刻两个探测器的赤经差、赤纬差;αL、δL分别为着陆器在地心J2000坐标系中的赤经、赤纬。
CN201611182104.4A 2016-12-14 2016-12-14 一种计算双探测器在地外天体表面相对位置的方法 Expired - Fee Related CN106767824B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611182104.4A CN106767824B (zh) 2016-12-14 2016-12-14 一种计算双探测器在地外天体表面相对位置的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611182104.4A CN106767824B (zh) 2016-12-14 2016-12-14 一种计算双探测器在地外天体表面相对位置的方法

Publications (2)

Publication Number Publication Date
CN106767824A CN106767824A (zh) 2017-05-31
CN106767824B true CN106767824B (zh) 2020-05-12

Family

ID=58891203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611182104.4A Expired - Fee Related CN106767824B (zh) 2016-12-14 2016-12-14 一种计算双探测器在地外天体表面相对位置的方法

Country Status (1)

Country Link
CN (1) CN106767824B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454140B1 (fr) * 2017-09-08 2020-02-26 ETA SA Manufacture Horlogère Suisse Dispositif horloger astronomique
CN111308432B (zh) * 2019-12-03 2022-03-22 中国人民解放军63921部队 一种利用测速数据评估航天器测距数据精度的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101968542A (zh) * 2010-09-29 2011-02-09 中国科学院国家天文台 一种利用地球站对月球探测器进行跟踪的方法
US7967255B2 (en) * 2006-07-27 2011-06-28 Raytheon Company Autonomous space flight system and planetary lander for executing a discrete landing sequence to remove unknown navigation error, perform hazard avoidance and relocate the lander and method
CN102116630A (zh) * 2009-12-31 2011-07-06 北京控制工程研究所 一种绕火星探测器的星上快速高精度确定方法
CN106092099A (zh) * 2016-06-02 2016-11-09 哈尔滨工业大学 航天器相对位置增量定轨方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967255B2 (en) * 2006-07-27 2011-06-28 Raytheon Company Autonomous space flight system and planetary lander for executing a discrete landing sequence to remove unknown navigation error, perform hazard avoidance and relocate the lander and method
CN102116630A (zh) * 2009-12-31 2011-07-06 北京控制工程研究所 一种绕火星探测器的星上快速高精度确定方法
CN101968542A (zh) * 2010-09-29 2011-02-09 中国科学院国家天文台 一种利用地球站对月球探测器进行跟踪的方法
CN106092099A (zh) * 2016-06-02 2016-11-09 哈尔滨工业大学 航天器相对位置增量定轨方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VLBI相位参考成像方法用于玉兔巡视器精确定位;童锋贤等;《科学通报》;20141231;第59卷(第34期);第3362-3369页 *
同波束干涉测量在月面相对定位中的应用;黄岸毅等;《测绘学报》;20150930;第44卷(第9期);第973-第979页 *

Also Published As

Publication number Publication date
CN106767824A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN109556632B (zh) 一种基于卡尔曼滤波的ins/gnss/偏振/地磁组合导航对准方法
CN102175241B (zh) 一种火星探测器巡航段自主天文导航方法
CN109556631B (zh) 一种基于最小二乘的ins/gnss/偏振/地磁组合导航系统对准方法
CN108508918B (zh) 一种静轨遥感卫星数传天线高精度实时对地指向控制方法
CN102998690B (zh) 一种基于gps载波双差方程的姿态角直接求解方法
CN102322862B (zh) 一种编队飞行卫星绝对和相对轨道确定方法
CN107132542B (zh) 一种基于光学和多普勒雷达的小天体软着陆自主导航方法
CN113311436B (zh) 一种移动平台上激光测风雷达运动姿态测风订正方法
CN107727101B (zh) 基于双偏振光矢量的三维姿态信息快速解算方法
CN107316280B (zh) 离岛卫星影像rpc模型高精度几何定位方法
CN103822629A (zh) 基于多方向偏振光导航传感器的定位系统及其定位方法
CN105301601A (zh) 一种适用于全球区域的gnss电离层延迟三维建模方法
CN106885577B (zh) 拉格朗日导航卫星自主定轨方法
CN111156986A (zh) 一种基于抗差自适应ukf的光谱红移自主组合导航方法
CN106767824B (zh) 一种计算双探测器在地外天体表面相对位置的方法
CN110146052B (zh) 一种基于全站仪的平面法线天文定向测量方法及系统
CN107991696B (zh) 针对终端载体为高轨卫星的卫星导航信号仿真方法
CN107703527B (zh) 一种基于北斗三频单历元宽巷/超宽巷的组合定位方法
Yang et al. Simultaneous celestial positioning and orientation for the lunar rover
CN112985421A (zh) 一种基于角度约束辅助测量的航天器自主天文导航方法
CN110554443A (zh) 基于载波相位观测值和点加速度法确定地球重力场的方法
Huang et al. Research on UAV flight performance test method based on dual antenna GPS/INS integrated system
CN111897370B (zh) 基于航姿仪的动态天线跟星参数校正方法
CN114740541A (zh) 基于主从星测速模式的小行星重力场反演方法及系统
KR101565259B1 (ko) 비정지 위성용 안테나의 구동 제어 방법 및 이를 위한 프로그램 기록매체

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200512

CF01 Termination of patent right due to non-payment of annual fee