CN106767473A - 光学共振腔的腔长量测装置 - Google Patents

光学共振腔的腔长量测装置 Download PDF

Info

Publication number
CN106767473A
CN106767473A CN201610461302.8A CN201610461302A CN106767473A CN 106767473 A CN106767473 A CN 106767473A CN 201610461302 A CN201610461302 A CN 201610461302A CN 106767473 A CN106767473 A CN 106767473A
Authority
CN
China
Prior art keywords
frequency
light beam
chamber
light
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610461302.8A
Other languages
English (en)
Other versions
CN106767473B (zh
Inventor
陈生瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of CN106767473A publication Critical patent/CN106767473A/zh
Application granted granted Critical
Publication of CN106767473B publication Critical patent/CN106767473B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]

Abstract

本发明提供一种光学共振腔的腔长量测装置,包括频率可调光源、分光镜、频率调制器以及光学共振腔。所述频率可调光源用以发出一光束。所述分光镜位于所述光束的光路上,并将所述光束分为第一光束与第二光束。所述频率调制器位于所述第二光束的主光路上,其中所述第二光束的频率经由所述频率调制器调制后与所述第一光束的频率之间具有一拍频。光学共振腔位于第一光束的主光路上与频率调制后的第二光束的主光路上,其中第一光束及频率调制后的第二光束入射至光学共振腔中,以供量测光学共振腔的腔长,且光学共振腔的腔长变化量由拍频测得。

Description

光学共振腔的腔长量测装置
技术领域
本发明涉及一种光学共振腔的腔长量测装置。
背景技术
传统悬臂微梁的振荡位移量测方法以光偏折法(optical beam deflectionmethod)最为普遍,并广泛应用于商用化的原子力显微镜(atomic forcemicroscope,AFM)机台。然而,光偏折法欠缺位移变化的直接追溯性,仍需透过比对校正方法将偏折量转换为位移的长度量(unit of length)。此外,光偏折法的侦测灵敏度与侦测光点大小无法同时兼顾,越小的侦测光点需要越高放大倍率的聚焦透镜,因而造成越低的侦测灵敏度。
发明内容
本发明的目的在于提供一种光学共振腔的腔长偏移量测装置,用于量测悬臂微梁(micro cantilever)的形变量。
为了实现上述目的,根据本发明的实施例,光学共振腔的腔长量测装置包括频率可调光源、分光镜、频率调制器以及光学共振腔。频率可调光源用以发出一光束。分光镜位于光束的光路上,并将光束分为第一光束与第二光束。频率调制器位于第二光束的主光路上,其中第二光束的频率经由频率调制器调制后与第一光束的频率之间具有一拍频。光学共振腔,位于第一光束的主光路上与频率调制后的第二光束的主光路上,其中第一光束及频率调制后的第二光束入射至光学共振腔中,以供量测光学共振腔的腔长,且光学共振腔的腔长变化量由拍频测得。
根据本发明的另一实施例,光学共振腔的腔长量测装置,包括二频率可调光源、一绝对频率量测模块、一光学共振腔。此二频率可调光源用以分别发出一第一光束与一第二光束,第一光束的绝对频率与第二光束的绝对频率不同。绝对频率量测模块用以量测第一光束与第二光束的绝对频率以及二绝对频率之间的一拍频。光学共振腔位于第一光束的主光路上与第二光束的主光路上,其中第一光束及第二光束入射至光学共振腔中,以供量测光学共振腔的腔长,且光学共振腔的腔长变化量由拍频测得。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图说明
图1A为一实施例的光学共振腔的示意图;
图1B为另一种型态的光学共振腔的示意图;
图1C为另一种型态的光学共振腔的示意图;
图2是精细度F为10,000,光源波长为532nm时,本发明一实施例的光学共振腔的穿透率对应腔长变化量的关系图;
图3是根据本发明一实施例的光学共振腔的腔长量测装置的示意图;
图4是根据本发明另一实施例的光学共振腔的腔长量测装置的示意图。
附图标号说明
100:光学共振腔的腔长量测装置
101:频率可调光源
102:光学隔离器
103:主分光镜
104:频率调制器
105:第一偏振分光镜
106:第二偏振分光镜
107:第一稳频电路
108:第二稳频电路
109:第一平面反射镜
110:第二平面反射镜
111:第三平面反射镜
112:第四平面反射镜
113:偏振光束组合镜
114:光纤组件
115:光学共振腔
116:第三偏振分光镜
117:光传感器
118:频率计数器
119:第一取样器
120:第二取样器
121:悬臂梁
122:反射面
123:反射镜
124:反射曲面
125:透镜组
126:圆柱状透镜
127:反射曲面
128:光纤
129:反射面
L1:第一光束
L2:第二光束
PL1、PL2:主光路
SL1、SL2:分支光路
L:腔长
200:光学共振腔的腔长量测装置
201、202:频率可调光源
203:绝对频率量测模块
204:第一偏振分光镜
205:第二偏振分光镜
206:第一稳频电路
207:第二稳频电路
208:第一平面反射镜
209:第二平面反射镜
210:第三平面反射镜
211:第一取样器
212:第二取样器
213:偏振光束组合镜
214:光纤组件
215:光学共振腔
具体实施方式
下面结合附图和具体实施例对本发明技术方案进行详细的描述,以更进一步了解本发明的目的、方案及功效,但并非作为本发明所附权利要求保护范围的限制。
在本发明的一实施例中,揭露一种以法布里-珀罗干涉仪(Fabry-PerotInterferometer)的测长技术量测悬臂梁的形变量的腔长量测装置,请参照图1A,其中光学共振腔115由悬臂梁121的反射面122与反射镜123的反射面124所构成,在本实施例中,反射面124为反射曲面,但本发明并不限于此。反射面122与反射曲面124的中心之间的距离为光学共振腔115的腔长,以L表示。透镜组125设置在光纤组件114与反射镜123之间,用以调整光源的波前使其符合共振腔的横向模态,以提升光场耦合至共振腔的效率。
请参照图1B,其绘示另一种型态的光学共振腔115,其中光学共振腔115由悬臂梁121的反射面122与圆柱状透镜126的反射曲面127所构成,反射面122与反射曲面124的中心之间的距离为腔长L。透镜组125设置在光纤组件114与圆柱状透镜126之间,用以调整光源的波前使其符合共振腔的横向模态,以提升光场耦合至共振腔的效率。在一实施例中,圆柱状透镜126的直径与厚度皆为5mm,高反射曲面124的曲率半面为3mm,腔长例如在1mm以内,而投射在悬臂梁121上的光点半径例如在6至15微米之间。
请参照图1C,其绘示另一种型态的光学共振腔115,其中光学共振腔115由悬臂梁121的反射面122与光纤128出口的反射面129(例如为出口端经曲面加工及镀膜加工而成的反射镀膜曲面)所构成。
在上述光学共振腔115中,腔长量测分辨率(resolution)由光学共振腔115的精细度(finesse,F)所决定,精细度F与光学共振腔115的两反射面反射率R1,R2之间的关系式为:
当两反射面反射率相等时,R1=R2=R,精细度F可表示为:
光学共振腔115的输入光强度I0与输出光强度It之间有下列关系式:
当腔长L变化时,输出光强度It成周期性变化,在共振模下的半高全宽(Full Width at Half Maximum)△L,即基本光学位移解析能力,与输入光源的波长λ有下列关系式:
当反射面的反射率R大于0.9997,精细度F可达10,000以上,以输入光源的波长532nm计算出半高全宽△L=26.6pm,因此光学位移分辨率可达数十皮米(picometer,pm),再搭配频率解析,则分辨率可进一步提升至数个皮米。请参照图2,其绘示精细度F为10,000时,光学共振腔115的穿透率对应腔长变化的关系图,其中半高全宽△L(光学位移分辨率)为26.6pm。
以下列举二种光学共振腔的腔长量测装置,并进行详细说明,实施例仅用以作为范例说明,并非用以限缩本发明欲保护的范围。
第一实施例
请参照图3,其绘示依照本发明一实施例的光学共振腔的腔长量测装置100的示意图。光学共振腔的腔长量测装置100可包括频率可调光源101、光学隔离器102、主分光镜103、频率调制器104、第一偏振分光镜105、第二偏振分光镜106、第一稳频电路107、第二稳频电路108、第一平面反射镜109、第二平面反射镜110、第三平面反射镜111、第四平面反射镜112、偏振光束组合镜113、光纤组件114、光学共振腔115、第三偏振分光镜116、光传感器117、频率计数器118、第一取样器119以及第二取样器120。
频率可调光源101用以产生一光束L,例如是波长532纳米(nm)的雷射光。光学隔离器102与主分光镜103位于光束L的光路上。此光束L通过光学隔离器102后,再经由主分光镜103分为第一光束L1与第二光束L2。
第一偏振分光镜105、第一取样器119、第一平面反射镜109、第二平面反射镜110、偏振光束组合镜113、光纤组件114以及光学共振腔115依序位于第一光束L1的主光路PL1上。第一稳频电路107循环连接频率可调光源101与第一光束L1的主光路PL1之间。此外,第一偏振分光镜105位于第一光束L1的主光路PL1与第一稳频电路107的交点上,以使部分第一光束L1可经由第一偏振分光镜105反射而进入到第一稳频电路107中。第一取样器119位于第一光束L1的主光路PL1与分支光路SL1的交点上,用以撷取第一光束L1,使其进入分支光路SL1中。另外,第一光束L1的主光路PL1上亦可进一步设置常用的其他光学组件,例如相位调制器、半波片、法拉第旋转镜(Faradayrotator mirror)等(图中未绘示),藉以提高光学系统的稳定性。
此外,频率调制器104、第二取样器120、第二偏振分光镜106、第三平面反射镜111、第四平面反射镜112、偏振光束组合镜113、光纤以及光学共振腔115依序位于第二光束L2的主光路PL2上。第二稳频电路108循环连接频率调制器104与第二光束L2的主光路PL2之间。第二偏振分光镜106位于第二光束L2的主光路PL2与第二稳频电路108的交点上,以使部分第二光束L2可经由第二偏振分光镜106反射而进入到第二稳频电路108中。第二取样器120位于第二光束L2的主光路PL2与分支光路SL2的交点上,用以撷取第二光束L2,使其进入分支光路SL2中。另外,第二光束L2的主光路PL2上亦可进一步设置常用的其他光学组件,例如相位调制器、半波片、法拉第旋转镜等(图中未绘示),藉以提高光学系统的稳定性。
再者,光传感器117位于第一光束L1的一分支光路SL1上以及频率调制后的第二光束L2的一分支光路SL2上,用以撷取经由第三偏振分光镜116反射的部分第一光束L1的光影像与穿透第三偏振分光镜116的部分第二光束L2的光影像,并在光传感器117上产生拍频信号。频率计数器118耦接光传感器117,用以计算第一光束L1的频率以及频率调制后的第二光束L2的频率,以得知拍频信号的频率(拍频fb)。
请参照图3,第一光束L1的频率为频率可调光源101发出的光束L的频率,并且第一光束L1经过依序设置在第一光束L1的主光路PL1的各个光学组件之后,最后入射至由二反射镜面组成的光学共振腔115中。第一光束L1与光学共振腔115之间的频率差可由第一稳频电路107中的光传感器与解调器测得,并经由循环滤波器放大后回馈至频率可调光源101,以做为频率可调光源101的控制信号,使第一光束L1的频率锁定在光学共振腔115的一共振频率Nνfsr上。
第一光束L1的频率f1可由下列算式中光学共振腔115的腔长L与共振频率Nνfsr的关系而得知:
其中,N为整数并且代表纵模模数,n为共振腔内介质的折射率,c为光速,νfsr为自由光谱区(Free Spectral Range)。
接着,请参照图3,第二光束L2的频率经由频率调制器104调制后产生额外的频率偏移量Mνfsr,M为整数,并且第二光束L2经过依序设置在第二光束L2的主光路PL2的各个光学组件之后,最后入射至由二反射镜面组成的光学共振腔115中。第二光束L2与光学共振腔115之间的频率差可由第二稳频电路108中的光传感器与解调器测得,并经由循环滤波器放大后回馈至频率调制器104,以做为频率调制器104的控制信号,使第二光束L2的频率锁定在光学共振腔115的另一共振频率(N+M)νfsr上。
第二光束L2的频率f2可由下列算式中光学共振腔115的腔长L与共振频率(N+M)νfsr的关系而得知:
由算式(1)和(2),可得知第一光束L1的频率f1与第二光束L2的频率f2之间的频率差(拍频fb)为自由光谱范围的整数倍,表示如下:
其中,M为二共振频率Nνfsr与(N+M)νfsr的谐振模数差。
因此,藉由量测第一光束L1的频率f1与第二光束L2的频率f2之间的频率差(拍频fb),即可得知光学共振腔115的腔长。此外,光学共振腔115的腔长L的变化量可以拍频的变化量来表示,请参照下列算式:
由算式(4)的计算结果,便可得知光学共振腔115的腔长变化量(两反射镜面之间的距离变化),即为悬臂梁121的偏折位移量(形变量)。
在一实施例中,第一稳频电路107与第二稳频电路108可以采用庞德-雷弗-霍尔(Pound-Drever-Hall,PDH)稳频技术,其是将法布里-珀罗的光学共振腔115的共振频率作为参考频率,光束通过相位调制后,利用法布里-珀罗共振腔的共振特性和光外差拍频技术,得到一次微分以及鉴频特性。另外,采用回馈系统来控制光束的频率,从而将光束的频率锁定在光学共振腔115的共振频率上。
由上述的说明可知,本发明提出一种适用于悬臂微梁的光学共振腔的测长技术,可将绝对位移量转换为频率变化量,因此在光源的绝对频率是未知的情形下,腔长变化量仍可由拍频(即频率差)所测得,具备高直接溯源性、高位移分辨率、高响应带宽等特性。
第二实施例
请参照图4,其绘示依照本发明一实施例的光学共振腔的腔长量测装置200的示意图。光学共振腔的腔长量测装置200可包括二频率可调光源201及202、绝对频率量测模块203、第一偏振分光镜204、第二偏振分光镜205、第一稳频电路206、第二稳频电路207、第一平面反射镜208、第二平面反射镜209、第三平面反射镜210、第一取样器211、第二取样器212、偏振光束组合镜213、光纤组件214以及光学共振腔215。有关光学共振腔215的细部内容请参见图1A至图1C的光学共振腔115的说明,在此不再赘述。
此二频率可调光源101用以分别产生第一光束L1与第二光束L2。第一光束L1与第二光束L2的绝对频率不同,例如选自于波长500至600nm的雷射光。
第一偏振分光镜204、第一平面反射镜208、第一取样器211、第二平面反射镜209、偏振光束组合镜213、光纤组件214以及光学共振腔215依序位于第一光束L1的主光路PL1上。第一稳频电路206循环连接于其中一频率可调光源201与第一光束L1的主光路PL1之间。此外,第一偏振分光镜204位于第一光束L1的主光路PL1与第一稳频电路206的交点上,以使部分第一光束L1可经由第一偏振分光镜204反射而进入到第一稳频电路206中。第一取样器211位于第一光束L1的主光路PL1与分支光路SL1的交点上,用以撷取第一光束L1,使第一光束L1进入到绝对频率量测模块203中。另外,第一光束L1的主光路PL1上亦可进一步设置常用的其他光学组件,例如相位调制器、半波片、法拉第旋转镜等(图中未绘示),藉以提高光学系统的稳定性。
此外,第二偏振分光镜205、第三平面反射镜210、第二取样器212、偏振光束组合镜213、光纤组件214以及光学共振腔215依序位于第二光束L2的主光路PL2上。第二稳频电路207循环连接于另一频率可调光源202与第二光束L2的主光路PL2之间。第二偏振分光镜205位于第二光束L2的主光路PL1与第二稳频电路207的交点上,以使部分第二光束L2可经由第二偏振分光镜205反射而进入到第二稳频电路207中。第二取样器212位于第二光束L2的主光路PL2与分支光路SL2的交点上,用以撷取第二光束L2,使第一光束L1进入到绝对频率量测模块203中。另外,第二光束L2的主光路PL2上亦可进一步设置常用的其他光学组件,例如相位调制器、半波片、法拉第旋转镜等(图中未绘示),藉以提高光学系统的稳定性。
再者,绝对频率量测模块203位于第一光束L1的分支光路SL1与第二光束L2的分支光路SL2上,用以量测第一光束L1与第二光束L2的绝对频率以及此二绝对频率之间的一拍频。因此,藉由量测第一光束L1与第二光束L2的绝对频率之间的频率差(拍频fb),即可得知光学共振腔215的腔长。
在一实施例中,当光学共振腔215的腔长在毫米等级时,虽然可藉由第一稳频电路206将第一光束L1的频率锁定在光学共振腔215的一共振频率Nνfsr上,且藉由第二稳频电路207将第二光束L2的频率锁定在光学共振腔215的另一共振频率(N+M)νfsr上,但是此二共振频率之间的频率差(拍频fb)将会落在数十GHz,因而无法以频率计数器118测得拍频,必须改用绝对频率量测方式。
在一实施例中,绝对频率量测模块203可采用光学频率梳(OpticalFrequency Comb)为参考频率直接量测第一光束L1与第二光束L2的绝对频率与此二绝对频率之间的差值(拍频),并由算式(3)求得腔长L。此外,光学共振腔215的腔长的变化量可以拍频的变化量来表示,请参照下列算式:
在一实施例中,绝对频率量测模块203可包括二光传感器以及二频率计数器(图未绘示)。此二光传感器分别接收第一光束L1与第二光束L2的光影像,且光学频率梳可分别与第一光束L1与第二光束L2在此二光传感器上产生拍频信号,且拍频信号的频率可由各别的频率计数器量得。
由上述的说明可知,本发明提出一种适用于悬臂微梁的光学共振腔的测长技术,可将绝对位移量转换为频率变化量,因此在光源的绝对频率是未知的情形下,腔长变化量仍可由拍频(即频率差)所测得,具备高直接追溯性、高位移分辨率、高反应带宽等特性。
在本发明中,由于腔长变化量不需经过相位归零与连续积分等,可减少在传统分光外差干涉测长技术中必须进行相位归零与连续积分等步骤。此外,在本发明中,即使光源被遮蔽一段时间或被关闭,当光源再度恢复后,位移信息依然可透过拍频频率量测或绝对频率量测求得。另外,在本发明中,此二频率可调光源的绝对频率亦可做为长度量测的另一参考依据,可提供双重量测结果,相互参照与确认。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (18)

1.一种光学共振腔的腔长测量装置,其特征在于,包括:
频率可调光源,用以发出一光束;
分光镜,位于所述光束的光路上,并将所述光束分为第一光束与一第二光束;
频率调制器,位于所述第二光束的主光路上,其中所述第二光束的频率经由所述频率调制器调制后与所述第一光束的频率之间具有一拍频;以及
光学共振腔,位于所述第一光束的主光路上与频率调制后的所述第二光束的主光路上,其中所述第一光束及频率调制后的所述第二光束入射至所述光学共振腔中,以供测量所述光学共振腔的腔长,且所述光学共振腔的腔长变化量由所述拍频测得。
2.根据权利要求1所述的腔长测量装置,其特征在于,还包括:
光电传感器,位于所述第一光束的分支光路上以及频率调制后的所述第二光束的分支光路上,以撷取部分所述第一光束的光影像与部分所述第二光束的光影像,以产生拍频信号;以及
频率计数器,耦接所述光电传感器,用以计算所述拍频信号的频率。
3.根据权利要求2所述的腔长测量装置,其特征在于,还包括:
第一取样器,位于所述第一光束的主光路与所述第一光束的分支光路的交点上,用以撷取所述第一光束,使所述第一光束进入所述第一光束的分支光路中;以及
第二取样器,位于所述第二光束的主光路与所述第二光束的分支光路的交点上,用以撷取第二光束,使所述第二光束进入所述第二光束的分支光路中。
4.根据权利要求1所述的腔长测量装置,其特征在于,还包括:
第一稳频电路,循环连接所述频率可调光源与所述第一光束的主光路之间,用以锁定所述第一光束的频率在所述光学共振腔的第一谐振频率上;以及
第二稳频电路,循环连接所述频率调制器与所述第二光束的主光路之间,用以锁定所述第二光束的频率在所述光学共振腔的第二谐振频率上。
5.根据权利要求4所述的腔长测量装置,其特征在于,还包括:
第一偏振分光镜,位于所述第一光束的主光路与所述第一稳频电路的交点上,以使部分所述第一光束可经由所述第一偏振分光镜反射而进入到所述第一稳频电路中;以及
第二偏振分光镜,位于所述第二光束的主光路与所述第二稳频电路的交点上,以使部分所述第二光束可经由所述第二偏振分光镜反射而进入到所述第二稳频电路中。
6.根据权利要求5所述的腔长测量装置,其特征在于,其中所述光学共振腔的腔长与所述拍频的关系式为:
L = M c 2 n 1 f b
其中,L为所述光学共振腔的腔长,M为所述第一谐振频率与所述第二谐振频率的谐振模数差,n为共振腔内介质的折射率,c为光速,fb为所述拍频。
7.根据权利要求1所述的腔长测量装置,其特征在于,其中所述光学共振腔由悬臂梁的反射面与反射镜的反射面所构成,且所述光学共振腔的腔长为所述悬臂梁的所述反射面与所述反射镜的所述反射面的距离。
8.根据权利要求1所述的腔长测量装置,其特征在于,其中所述光学共振腔由悬臂梁的反射面与圆柱状透镜的反射面所构成,且所述光学共振腔的腔长为所述悬臂梁的所述反射面与所述圆柱状透镜的所述反射面的距离。
9.根据权利要求1所述的腔长测量装置,其特征在于,其中所述光学共振腔由悬臂梁的反射面与光纤出口的反射面所构成,所述光学共振腔的腔长为所述悬臂梁的所述反射面与所述光纤出口的所述反射面的距离。
10.一种光学共振腔的腔长测量装置,其特征在于,包括:
二频率可调光源,用以分别发出第一光束与第二光束,所述第一光束的绝对频率与所述第二光束的绝对频率不同;
绝对频率测量模块,用以测量所述第一光束与所述第二光束的绝对频率以及所述二绝对频率之间的一拍频;以及
光学共振腔,位于所述第一光束的主光路上与所述第二光束的主光路上,其中所述第一光束及所述第二光束入射至所述光学共振腔中,以供测量所述光学共振腔的腔长,且所述光学共振腔的腔长变化量由所述拍频测得。
11.根据权利要求10所述的腔长测量装置,其特征在于,其中所述绝对频率测量模块以光学频率梳为参考频率直接测量所述第一光束与所述第二光束的绝对频率与所述二绝对频率之间的所述拍频。
12.根据权利要求10所述的腔长测量装置,其特征在于,还包括:
第一取样器,位于所述第一光束的主光路与所述第一光束的分支光路的交点上,用以撷取所述第一光束,使所述第一光束进入到所述绝对频率测量模块中;以及
第二取样器,位于所述第二光束的主光路与所述第二光束的分支光路的交点上,用以撷取第二光束,使所述第二光束进入到所述绝对频率测量模块中。
13.根据权利要求12所述的腔长测量装置,其特征在于,还包括:
第一稳频电路,循环连接所述二频率可调光源之一与所述第一光束的主光路之间,用以锁定所述第一光束的频率在所述光学共振腔的第一谐振频率上;以及
第二稳频电路,循环连接所述二频率可调光源之另一与所述第二光束的主光路之间,用以锁定所述第二光束的频率在所述光学共振腔的第二谐振频率上。
14.根据权利要求13所述的腔长测量装置,其特征在于,还包括:
第一偏振分光镜,位于所述第一光束的主光路与所述第一稳频电路的交点上,以使部分所述第一光束可经由所述第一偏振分光镜反射而进入到所述第一稳频电路中;以及
第二偏振分光镜,位于所述第二光束的主光路与所述第二稳频电路的交点上,以使部分所述第二光束可经由所述第二偏振分光镜反射而进入到所述第二稳频电路中。
15.根据权利要求13所述的腔长测量装置,其特征在于,其中所述光学共振腔的腔长与所述拍频的关系式为:
L = M c 2 n 1 f b
其中,L为所述光学共振腔的腔长,M为所述第一谐振频率与所述第二谐振频率的谐振模数差,n为共振腔内介质的折射率,c为光速,fb为所述拍频。
16.根据权利要求10所述的腔长测量装置,其特征在于,其中所述光学共振腔由悬臂梁的反射面与反射镜的反射面所构成,且所述光学共振腔的腔长为所述悬臂梁的所述反射面与所述反射镜的所述反射面的距离。
17.根据权利要求10所述的腔长测量装置,其特征在于,其中所述光学共振腔由悬臂梁的反射面与圆柱状透镜的反射面所构成,且所述光学共振腔的腔长为所述悬臂梁的所述反射面与所述圆柱状透镜的所述反射面的距离。
18.根据权利要求10所述的腔长测量装置,其特征在于,其中所述光学共振腔由悬臂梁的反射面与光纤出口的反射面所构成,所述光学共振腔的腔长为所述悬臂梁的所述反射面与所述光纤出口的所述反射面的距离。
CN201610461302.8A 2015-11-23 2016-06-23 光学共振腔的腔长量测装置 Active CN106767473B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104138835A TW201719109A (zh) 2015-11-23 2015-11-23 光學共振腔之腔長量測裝置
TW104138835 2015-11-23

Publications (2)

Publication Number Publication Date
CN106767473A true CN106767473A (zh) 2017-05-31
CN106767473B CN106767473B (zh) 2019-10-18

Family

ID=58720164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610461302.8A Active CN106767473B (zh) 2015-11-23 2016-06-23 光学共振腔的腔长量测装置

Country Status (3)

Country Link
US (1) US10041782B2 (zh)
CN (1) CN106767473B (zh)
TW (1) TW201719109A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489939A (zh) * 2018-11-15 2019-03-19 中国科学院光电技术研究所 一种高反光学元件的s、p偏振反射率及相位差高精度同时测量方法
CN116428531A (zh) * 2023-05-09 2023-07-14 兰州大学 基于准分布式fbg监测信息的管道损伤识别方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175224B2 (en) 2018-08-06 2021-11-16 Government Of The United States Of America, As Represented By The Secretary Of Commerce Optical refraction barometer
US10948282B2 (en) * 2018-08-06 2021-03-16 Government Of The United States Of America, As Represented By The Secretary Of Commerce Deformometer for determining deformation of an optical cavity optic
US10942089B2 (en) * 2018-08-06 2021-03-09 Government Of The United States Of America, As Represented By The Secretary Of Commerce Deformometer for determining deformation of an optical cavity optic
CN115128800B (zh) * 2022-06-27 2024-02-02 西北工业大学 基于f-p腔的光学位移敏感单元及逆设计方法
CN116718123B (zh) * 2023-08-09 2023-10-20 中国科学院精密测量科学与技术创新研究院 一种基于pdh稳频的绝对长度测量装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288103A (zh) * 2011-06-27 2011-12-21 清华大学 基于折叠式法布里-珀罗腔的绝对距离测量方法及装置
CN102508231A (zh) * 2011-10-28 2012-06-20 清华大学 基于飞秒光频梳的法-珀干涉绝对距离测量方法及装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770352A (en) * 1972-05-08 1973-11-06 Philco Ford Corp Totally reflecting laser refractometer
US4122408A (en) 1977-11-14 1978-10-24 The United States Of America As Represented By The Secretary Of Commerce Frequency stabilization utilizing multiple modulation
CA1124100A (en) * 1980-06-16 1982-05-25 Albert D. May Optical measuring apparatus employing a laser
US4907237A (en) 1988-10-18 1990-03-06 The United States Of America As Represented By The Secretary Of Commerce Optical feedback locking of semiconductor lasers
US5177633A (en) * 1989-10-12 1993-01-05 Massachusetts Institute Of Technology Optical parametric oscillator wideband frequency comb generator
US5565987A (en) 1995-03-23 1996-10-15 Anvik Corporation Fabry-Perot probe profilometer having feedback loop to maintain resonance
US6882429B1 (en) 1999-07-20 2005-04-19 California Institute Of Technology Transverse optical fiber devices for optical sensing
US6400738B1 (en) * 2000-04-14 2002-06-04 Agilent Technologies, Inc. Tunable Fabry-Perot filters and lasers
KR100486937B1 (ko) * 2002-06-11 2005-05-03 한국표준과학연구원 광섬유에 의해 구현된 패브리 페로 공진기와 이를 이용한 원자간력 현미경에서의 외팔보 탐침의 변위 측정 및 보정시스템
CN100538913C (zh) 2002-08-14 2009-09-09 瑞士探测器股份公司 带有悬臂和光学共振器的传感器
US7492463B2 (en) 2004-04-15 2009-02-17 Davidson Instruments Inc. Method and apparatus for continuous readout of Fabry-Perot fiber optic sensor
WO2006041984A2 (en) * 2004-10-06 2006-04-20 Zygo Corporation Error correction in interferometry systems
CN1301400C (zh) 2004-12-10 2007-02-21 暨南大学 具有周期性输出的测量或检测装置的量程扩展方法
CN100445697C (zh) 2006-03-21 2008-12-24 大连理工大学 一种光纤f-p传感器的腔长解调算法
GB0707470D0 (en) * 2007-04-18 2007-05-23 Ucl Business Plc Method for using interference to infer the whole bedding profile of tethered and untethered micro cantilevers
FR2960354B1 (fr) 2010-05-18 2012-07-13 Centre Nat Rech Scient Dispositif de production de très hautes fréquences par battement de fréquences lumineuses.
CN102013622B (zh) 2010-11-18 2016-01-13 福州高意通讯有限公司 一种频率可调的单纵模微片激光器
TWI437208B (zh) 2011-11-18 2014-05-11 Univ Nat Formosa Length measuring device
US9316536B2 (en) * 2013-06-24 2016-04-19 ASTRODESIGN, Inc. Spatial frequency reproducing apparatus and optical distance measuring apparatus
DE102014201274A1 (de) * 2014-01-24 2015-07-30 Polytec Gmbh Vorrichtung und Verfahren zur interferometrischen Vermessung eines Objekts
CN104266593B (zh) 2014-10-22 2017-01-18 中国航空工业集团公司北京长城计量测试技术研究所 采用双可调光源法布里‑珀罗干涉仪的微位移测量系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288103A (zh) * 2011-06-27 2011-12-21 清华大学 基于折叠式法布里-珀罗腔的绝对距离测量方法及装置
CN102508231A (zh) * 2011-10-28 2012-06-20 清华大学 基于飞秒光频梳的法-珀干涉绝对距离测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏仁选 等: "基于光纤F-P透射光波长的微位移测量系统", 《机械制造》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489939A (zh) * 2018-11-15 2019-03-19 中国科学院光电技术研究所 一种高反光学元件的s、p偏振反射率及相位差高精度同时测量方法
CN109489939B (zh) * 2018-11-15 2020-09-25 中国科学院光电技术研究所 一种高反光学元件的s、p偏振反射率及相位差高精度同时测量方法
CN116428531A (zh) * 2023-05-09 2023-07-14 兰州大学 基于准分布式fbg监测信息的管道损伤识别方法
CN116428531B (zh) * 2023-05-09 2023-10-13 兰州大学 基于准分布式fbg监测信息的管道损伤识别方法

Also Published As

Publication number Publication date
US20170146337A1 (en) 2017-05-25
TW201719109A (zh) 2017-06-01
US10041782B2 (en) 2018-08-07
CN106767473B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN106767473A (zh) 光学共振腔的腔长量测装置
Guo et al. Self-mixing interferometry based on a double-modulation technique for absolute distance measurement
CN102607720B (zh) 一种测量光程的方法和系统
Wang et al. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter
CN107872274B (zh) 一种光纤色散系数的测量方法
CN104316186A (zh) 一种基于光学频率梳的光谱测量方法
CN103176329B (zh) 一种连续变量量子纠缠源产生装置
CN107941754B (zh) 一种气体折射率的测量方法
CN107894327B (zh) 一种光纤色散系数的测量装置
CN105762615B (zh) 一种基于单光子探测的单频光纤激光器跳模监测系统
CN102778306A (zh) 光子晶体光纤折射率温度传感器、制作方法及测量系统
CN107917669B (zh) 一种光纤位移传感器解调方法
CN113281278B (zh) 一种快速超高分辨瞬态吸收光谱测量装置及测量方法
Bitou et al. Accurate wide-range displacement measurement using tunable diode laser and optical frequency comb generator
CN104634370B (zh) 一种基于激光器的传感器
CN103075966A (zh) 位移测量系统
US11378401B2 (en) Polarization-maintaining fully-reciprocal bi-directional optical carrier microwave resonance system and angular velocity measurement method thereof
CN108955939B (zh) 一种光纤光栅温度传感解调系统
Lee et al. Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer
CN107796422B (zh) 一种光纤位移传感器解调装置
CN102636337A (zh) 一种测量光纤色散的方法
CN100593686C (zh) 一种光学干涉测量装置及其方法
CN104655029B (zh) 一种位相增强型薄膜厚度测量方法和系统
CN107941752B (zh) 一种气体折射率的测量装置
CN214893682U (zh) 一种快速超高分辨瞬态吸收光谱测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant