CN106766450A - Refrigeration heat pump system least energy consumption optimal control device and control method - Google Patents

Refrigeration heat pump system least energy consumption optimal control device and control method Download PDF

Info

Publication number
CN106766450A
CN106766450A CN201710148833.6A CN201710148833A CN106766450A CN 106766450 A CN106766450 A CN 106766450A CN 201710148833 A CN201710148833 A CN 201710148833A CN 106766450 A CN106766450 A CN 106766450A
Authority
CN
China
Prior art keywords
energy consumption
minimum energy
heat pump
water pump
refrigeration heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710148833.6A
Other languages
Chinese (zh)
Inventor
由玉文
王劲松
程保华
郭春梅
王宇
翟文鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Publication of CN106766450A publication Critical patent/CN106766450A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention provides a kind of refrigeration heat pump system least energy consumption optimal control device, and the control device receives the least energy consumption optimal control signal, and controls refrigeration heat pump system according to the least energy consumption optimal control.Also provide a kind of control method of utilization refrigeration heat pump system least energy consumption optimal control device simultaneously.Effect of the present invention can be achieved on the least energy consumption optimal control of refrigeration heat pump system, to reach the saving energy consumption under different cooling conditions.The method makes the change of the good following condition of refrigeration heat pump system and is adjusted, relatively conventional unity loop control, and energy-saving effect is up to more than 18% during 100% workload demand.

Description

制冷热泵系统最小能耗优化控制装置及控制方法Refrigeration heat pump system minimum energy consumption optimization control device and control method

技术领域technical field

本发明为一种制冷热泵系统最小能耗优化控制装置及控制方法,属于空调系统优化控制领域。The invention relates to a minimum energy consumption optimization control device and a control method of a refrigeration heat pump system, belonging to the field of optimization control of an air conditioning system.

背景技术Background technique

随着生活水平的不断改善,人们对室内舒适性的要求不断提高,导致空调能耗快速增长。据资料显示,建筑能耗所占社会商品总能耗的比例已从1978年的10%上升到25%左右,且将持续增加,并最终达到35%左右。而公共建筑夏季用电负荷中大约60%‐70%是消耗于中央空调系统,其中50%‐60%用于制冷机组制冷,20%‐30%用于冷冻水泵与冷却水泵的输配,可见降低空调制冷设备能耗,对建筑节能是非常有必要的。With the continuous improvement of living standards, people's requirements for indoor comfort continue to increase, resulting in a rapid increase in air-conditioning energy consumption. According to data, the proportion of building energy consumption to the total energy consumption of social commodities has risen from 10% in 1978 to about 25%, and will continue to increase, and finally reach about 35%. About 60%-70% of the electricity load in public buildings in summer is consumed by the central air-conditioning system, of which 50%-60% is used for cooling of refrigeration units, and 20%-30% is used for the transmission and distribution of chilled water pumps and cooling water pumps. It can be seen that Reducing the energy consumption of air-conditioning and refrigeration equipment is very necessary for building energy conservation.

目前,大量的计算机仿真技术应用于制冷系统的性能模拟、产品的优化设计及控制策略分析,而数学模型的建立是模拟仿真的核心。传统的制冷系统部件数学模型得建立是基于稳态的,未考虑系统工作状态对单个部件的影响,未考虑系统在整个循环过程中的能量动态平衡问题。At present, a large number of computer simulation techniques are used in the performance simulation of refrigeration systems, product optimization design and control strategy analysis, and the establishment of mathematical models is the core of simulation. The establishment of the traditional mathematical model of refrigeration system components is based on the steady state, without considering the influence of the system's working state on individual components, and without considering the energy dynamic balance of the system during the entire cycle.

目前常用制冷方法有三种,即蒸气压缩式、蒸汽喷射式和吸收式制冷,上述制冷方式均直接消耗电能或热能。通过理论制冷循环及实际能耗分析得出压缩式制冷方式具有较高的单位能耗制冷量,但存在部分负荷能效较低的问题。经典的制冷系统单回路控制结构,如图1所示。传统制冷系统控制中,压缩机、冷冻水系统、冷却水系统及电子膨胀阀四个回路的工作点设定值由操作人员根据经验给定,之后不再随工况变动而改变,这种控制方式不能在变工况下自动改变系统的输入,不能动态匹配系统变动和负荷需求,不能实现有效的节约能耗。图1中制冷负荷控制器2控制压缩机3,冷凝压力控制器4控制冷却水泵和冷凝器6,过热度控制器12控制电子膨胀阀7和蒸发器9,冷冻水泵控制器13控制冷冻水泵,制冷负荷测量10确定负荷需求,末端负荷11测定末端负荷,冷却塔5采用定频控制,传统的制冷热泵监控系统控制策略是未加优化的单回路控制,回路控制工作点设定值由操作人员根据经验设定,未加优化,工作点设定值不能跟随制冷工况的变化,不能实现最小能耗控制,节能效果差。At present, there are three commonly used refrigeration methods, namely, vapor compression type, steam injection type and absorption type refrigeration. The above-mentioned refrigeration methods all directly consume electric energy or heat energy. Through the analysis of theoretical refrigeration cycle and actual energy consumption, it is concluded that the compression refrigeration method has a high cooling capacity per unit energy consumption, but there is a problem of low partial load energy efficiency. The classic single-loop control structure of the refrigeration system is shown in Figure 1. In traditional refrigeration system control, the working point setting values of the four circuits of compressor, chilled water system, cooling water system and electronic expansion valve are given by the operator based on experience, and will no longer change with changes in working conditions. The method cannot automatically change the input of the system under changing working conditions, cannot dynamically match system changes and load demands, and cannot achieve effective energy saving. In Fig. 1, the refrigeration load controller 2 controls the compressor 3, the condensing pressure controller 4 controls the cooling water pump and the condenser 6, the superheat controller 12 controls the electronic expansion valve 7 and the evaporator 9, and the chilled water pump controller 13 controls the chilled water pump, The cooling load measurement 10 determines the load demand, the terminal load 11 determines the terminal load, and the cooling tower 5 adopts fixed frequency control. The control strategy of the traditional refrigeration heat pump monitoring system is single-loop control without optimization, and the setting value of the loop control operating point is determined by the operator. Based on empirical setting, without optimization, the set value of the working point cannot follow the change of the cooling condition, and the minimum energy consumption control cannot be achieved, and the energy saving effect is poor.

发明内容Contents of the invention

本发明的目的是提供一种制冷热泵系统最小能耗优化控制装置及控制方法,以解决变工况下制冷热泵系统能源消耗问题。The object of the present invention is to provide a minimum energy consumption optimization control device and control method for a refrigeration heat pump system to solve the energy consumption problem of the refrigeration heat pump system under variable working conditions.

为实现上述目的,本发明提供一种制冷热泵系统最小能耗优化控制装置,该装置与制冷热泵系统相连接,其中:该装置包括压缩机变频器、冷却水泵变频器、冷冻水泵变频器、设定点最优控制器,所述压缩机变频器输出端连接制冷热泵系统的压缩机、冷却水泵变频器输出端连接制冷热泵系统的冷却水泵、冷冻水泵变频器输出端连接制冷热泵系统的冷冻水泵;所述设定点最优控制器包括硬件模块KMD5831楼宇控制器和控制软件WinControl,设定点最优控制器接收制冷热泵系统工作状态信号,经WinControl编程计算得到控制信号,控制信号输出到所述压缩机变频器,形成制冷热泵系统最小能耗优化控制装置。。In order to achieve the above object, the present invention provides a minimum energy consumption optimization control device for a refrigeration heat pump system, the device is connected to the refrigeration heat pump system, wherein: the device includes a frequency converter for a compressor, a frequency converter for a cooling water pump, a frequency converter for a chilled water pump, a device A fixed-point optimal controller, the output end of the compressor frequency converter is connected to the compressor of the refrigeration heat pump system, the output end of the cooling water pump frequency converter is connected to the cooling water pump of the refrigeration heat pump system, and the output end of the chilled water pump frequency converter is connected to the chilled water pump of the refrigeration heat pump system The set point optimal controller includes a hardware module KMD5831 building controller and control software WinControl, the set point optimal controller receives the working status signal of the refrigeration heat pump system, obtains the control signal through WinControl programming calculation, and outputs the control signal to the set The frequency converter of the compressor is used to form an optimal control device for the minimum energy consumption of the refrigeration heat pump system. .

同时还提供一种利用制冷热泵系统最小能耗优化控制装置的控制方法。At the same time, it also provides a control method utilizing the minimum energy consumption optimization control device of the refrigeration heat pump system.

本发明的效果是:Effect of the present invention is:

第一,根据开发的制冷系统总能耗模型建立的设定点控制器,统筹考虑了系统的压缩机频率、冷冻水泵频率、冷却水泵频率、电子膨胀阀开度四个输入变量与系统的内部状态变量蒸发压力、冷凝压力和过热度的联系,比较全面的研究了制冷系统节能优化中存在的部分死角问题。First, the set-point controller established according to the total energy consumption model of the refrigeration system developed takes into account the four input variables of the system compressor frequency, chilled water pump frequency, cooling water pump frequency, electronic expansion valve opening and the system internal The relationship between the state variables evaporating pressure, condensing pressure and degree of superheat is used to comprehensively study some dead angle problems in energy-saving optimization of refrigeration systems.

第二,采用分层控制结构设计了最小能耗优化控制方案,此方法很好的适应了制冷系统在变工况下运行的节能要求,相比常规控制,具有跟踪性能良好、动态控制精度在±5%之内。Second, the optimal control scheme for minimum energy consumption is designed using a layered control structure. This method is well adapted to the energy-saving requirements of the refrigeration system under variable operating conditions. Compared with conventional control, it has good tracking performance and dynamic control accuracy within within ±5%.

第三,使用结合外罚函数的模式搜索算法对优化目标进行了求解,有效的解决了非线性能耗目标函数的导数计算问题。Thirdly, the optimization objective is solved by using the pattern search algorithm combined with the external penalty function, which effectively solves the problem of calculating the derivative of the nonlinear energy consumption objective function.

第四,在制冷系统变工况时,采用模型参数自适应的方法,在线优化各控制回路设定值,实际控制结果表明该方法使制冷热泵系统很好的跟随工况的变化而进行调节,相对传统单回路控制,100%负荷需求时节能效果达18%以上。Fourth, when the working conditions of the refrigeration system change, the model parameter self-adaptive method is used to optimize the set values of each control loop online. The actual control results show that this method makes the refrigeration heat pump system adjust well following the changes in working conditions. Compared with the traditional single-loop control, the energy-saving effect reaches more than 18% when the load demand is 100%.

附图说明Description of drawings

图1传统制冷系统单回路控制结构图;Figure 1 is a traditional refrigeration system single-loop control structure diagram;

图2本发明制冷系统优化控制整体方案图;Fig. 2 overall plan diagram of optimal control of refrigeration system of the present invention;

图3本发明制冷系统分层优化控制示意图;Figure 3 is a schematic diagram of layered optimization control of the refrigeration system of the present invention;

图4本发明制冷系统模型参数自适应结构图;Fig. 4 self-adaptive structural diagram of refrigeration system model parameters of the present invention;

图5本发明制冷热泵系统最小能耗控制流程图;Fig. 5 is the minimum energy consumption control flowchart of the refrigeration heat pump system of the present invention;

图6结合外罚函数的模式搜索法的流程图;Fig. 6 is in conjunction with the flowchart of the pattern search method of external penalty function;

图7本发明制冷系统设定点优化控制结构图。Fig. 7 is a structural diagram of the refrigeration system set point optimization control of the present invention.

图中:In the picture:

1.设定点最优控制器 2.制冷负荷控制器 3.压缩机 4.冷凝压力控制器 5.冷却塔 6.冷凝器 7.膨胀阀 8.蒸发压力控制器 9.蒸发器 10.制冷负荷测量 11.末端负荷12.蒸发器过热度控制器 13.冷冻水泵控制器 14.动态控制器 15.制冷机组 16.自适应层17.优化层 18.动态控制层 19.优化控制器 20.能耗函数评价 21.模型参数自适应 22.参数自适应 23.线性动态估计 24.稳态模型 25.低通滤波 26.冷却水泵 27.冷冻水泵 28.压缩机变频器 29.冷却水泵变频器 30.冷冻水泵变频器1. Set point optimal controller 2. Cooling load controller 3. Compressor 4. Condensing pressure controller 5. Cooling tower 6. Condenser 7. Expansion valve 8. Evaporating pressure controller 9. Evaporator 10. Refrigeration Load measurement 11. Terminal load 12. Evaporator superheat controller 13. Chilled water pump controller 14. Dynamic controller 15. Refrigeration unit 16. Adaptive layer 17. Optimization layer 18. Dynamic control layer 19. Optimal controller 20. Energy consumption function evaluation 21. Model parameter adaptation 22. Parameter adaptation 23. Linear dynamic estimation 24. Steady-state model 25. Low-pass filter 26. Cooling water pump 27. Chilled water pump 28. Compressor inverter 29. Cooling water pump inverter 30. Chilled water pump frequency converter

具体实施方案specific implementation plan

结合附图对本发明的制冷热泵系统最小能耗优化控制装置及控制方法加以说明。The minimum energy consumption optimization control device and control method of the refrigeration heat pump system of the present invention will be described in conjunction with the accompanying drawings.

本发明的制冷热泵系统最小能耗优化控制装置,该装置与制冷热泵系统相连接,该装置包括压缩机变频器28、冷却水泵变频器29、冷冻水泵变频器30、设定点最优控制器1,所述压缩机变频器28输出端连接制冷热泵系统的压缩机3、冷却水泵变频器29输出端连接制冷热泵系统的冷却水泵26、冷冻水泵变频器30)输出端连接制冷热泵系统的冷冻水泵27;所述设定点最优控制器1包括硬件模块KMD5831楼宇控制器和控制软件WinControl,设定点最优控制器1接收制冷热泵系统工作状态信号,经WinControl编程计算得到控制信号,控制信号输出到所述压缩机变频器28,形成制冷热泵系统最小能耗优化控制装置。The minimum energy consumption optimization control device of the refrigeration heat pump system of the present invention is connected with the refrigeration heat pump system, and the device includes a compressor frequency converter 28, a cooling water pump frequency converter 29, a chilled water pump frequency converter 30, and a set point optimal controller 1. The output end of the compressor inverter 28 is connected to the compressor of the refrigeration heat pump system. 3. The output end of the cooling water pump inverter 29 is connected to the cooling water pump 26 of the refrigeration heat pump system, and the output end of the chilled water pump inverter 30) is connected to the refrigeration unit of the refrigeration heat pump system. Water pump 27; the set point optimal controller 1 includes a hardware module KMD5831 building controller and control software WinControl, the set point optimal controller 1 receives the working state signal of the refrigeration heat pump system, and obtains the control signal through WinControl programming calculation, and controls The signal is output to the compressor frequency converter 28 to form a minimum energy consumption optimization control device for the refrigeration heat pump system.

本发明的利用制冷热泵系统最小能耗优化控制装置的控制方法,该控制方法是通过WinControl软件采用分层优化控制,所述分层优化控制包括自适应层16、优化层17和动态控制层18,通过制冷热泵系统最小能耗优化控制装置实现制冷热泵系统最小能耗控制,包括以下步骤:The control method of the present invention using the minimum energy consumption optimization control device of the refrigeration heat pump system, the control method adopts hierarchical optimization control through WinControl software, and the hierarchical optimization control includes an adaptive layer 16, an optimization layer 17 and a dynamic control layer 18 , realize the minimum energy consumption control of the refrigeration heat pump system through the minimum energy consumption optimization control device of the refrigeration heat pump system, including the following steps:

1)在设定点最优控制器1中通过WinControl软件编程建立制冷热泵系统压缩机能耗模型:1) In the set point optimal controller 1, the compressor energy consumption model of the refrigeration heat pump system is established through WinControl software programming:

式中,Wk—压缩机能耗(kW) Qe—蒸发器制冷量(kW)In the formula, W k —compressor energy consumption (kW) Q e —evaporator cooling capacity (kW)

hci—冷凝器入口焓值(kJ/kg) hco—冷凝器出口焓值(kJ/kg)h ci —enthalpy value of condenser inlet (kJ/kg) h co —enthalpy value of condenser outlet (kJ/kg)

heo—蒸发器出口焓值(kJ/kg) Pe—蒸发压力(kPa)h eo —Evaporator outlet enthalpy (kJ/kg) P e —Evaporation pressure (kPa)

Pc—冷凝压力(kPa)P c —condensing pressure (kPa)

冷却水泵能耗模型:Cooling water pump energy consumption model:

式中,mclw—冷却水质量流量(kg/s) ma—冷却塔空气质量流量(kg/s)In the formula, m clw —cooling water mass flow rate (kg/s) m a —cooling tower air mass flow rate (kg/s)

cp,w—冷却水比热容(kJ/kg·℃) Tclwo—冷却水出口温度(℃)c p,w — specific heat capacity of cooling water (kJ/kg·℃) T clwo — outlet temperature of cooling water (℃)

Tamb—室外空气温度(℃) Qclw—冷却塔负荷(kW)T amb —outdoor air temperature (℃) Q clw —cooling tower load (kW)

a1、a2、a3—与冷却塔结构有关的拟合系数a 1 , a 2 , a 3 —fitting coefficients related to cooling tower structure

冷冻水泵能耗模型:Chilled water pump energy consumption model:

式中,k2,chw,k2,cho—冷冻水质量流量与频率的关系系数In the formula, k 2,chw , k 2,cho —the relationship coefficient between chilled water mass flow rate and frequency

Te—蒸发器制冷剂温度(℃) Tchwi—冷冻水回水温度(℃)T e —refrigerant temperature of evaporator (°C) T chwi —refrigerant temperature of chilled water (°C)

αe—制冷剂与冷冻水热交换系数 me—换热指数α e — heat transfer coefficient between refrigerant and chilled water m e — heat transfer index

fchw—冷冻水泵频率(Hz)f chw — Chilled water pump frequency (Hz)

组合构建制冷热泵系统整体能耗模型;Combined construction of the overall energy consumption model of the refrigeration heat pump system;

2)依据所述整体能耗模型和自适应层16的最小能耗评价20,在设定点最优控制器1中通过WinControl软件编程建立最小能耗模型及确定约束条件实现;2) According to the overall energy consumption model and the minimum energy consumption evaluation 20 of the self-adaptive layer 16, the minimum energy consumption model is established and the constraint conditions are determined to be realized in the set point optimal controller 1 through WinControl software programming;

最小能耗模型:Minimum energy consumption model:

式中,Wk—压缩机能耗(kW) Wchw—冷冻水泵能耗(kW)In the formula, W k —compressor energy consumption (kW) W chw —chilled water pump energy consumption (kW)

Wclw—冷却水泵能耗(kW)W clw —cooling water pump energy consumption (kW)

约束条件为:状态变量限制:Exss+bx≤0The constraints are: state variable limit: Ex ss +b x ≤ 0

控制信号限制:Fuss(xss,vss)+bu≤0Control signal limit: Fu ss (x ss ,v ss )+b u ≤0

制冷量限制:Qe=Qe,o Cooling capacity limitation: Q e = Q e,o

过热度限制:Tsh=Tsh,min(Qe)Superheat limitation: T sh = T sh,min (Q e )

其中,xss=[Pe Pc Tsh]T是状态变量,Tsh是过热度,Among them, x ss =[P e P c T sh ] T is the state variable, T sh is the degree of superheat,

bx=[-Pc,max Pe,min 0]T,Pc,max是冷凝压力最大值,Pe,min是蒸发压力最小值,uss=[fk fclw fchw]T,fk是压缩机频率,fclw是冷却水水泵频率,fchw是冷冻水泵频率,是系统扰动,bu=[0 -fclw,max 0 -fchw,max 0 -fk,max]T,fclw,max是冷却水泵工作频率最大值,fchw,max是冷冻水泵工作频率最大值,fk,max是压缩机工作频率最大值,Qe,o是制冷需求,Tsh,min(Qe)是最小过热度,b x =[-P c,max P e,min 0] T , P c,max is the maximum value of condensing pressure, P e,min is the minimum value of evaporation pressure, u ss =[f k f clw f chw ] T , f k is the compressor frequency, f clw is the cooling water pump frequency, f chw is the chilled water pump frequency, is the system disturbance, b u =[0 -f clw,max 0 -f chw,max 0 -f k,max ] T , f clw,max is the maximum operating frequency of the cooling water pump, f chw,max is the operating frequency of the chilled water pump The maximum value, f k,max is the maximum operating frequency of the compressor, Q e,o is the cooling demand, T sh,min (Q e ) is the minimum superheat,

3)依据自适应层16的模型自适应控制21,在设定点最优控制器1中通过WinControl软件编程完成所述最小能耗模型的参数自适应控制。3) Based on the model adaptive control 21 of the adaptive layer 16, the parameter adaptive control of the minimum energy consumption model is completed in the set point optimal controller 1 through WinControl software programming.

4)依据优化层17的优化控制器19,在设定点最优控制器1中通过WinControl软件编程建立所述最小能耗模型的外罚函数完成最小能耗从有约束优化到无约束优化的转换,并依据模式搜索算法求解最小能耗值和最小能耗下的状态量值。4) According to the optimization controller 19 of the optimization layer 17, in the set-point optimal controller 1, the external penalty function of the minimum energy consumption model is established by WinControl software programming to complete the minimum energy consumption from constrained optimization to unconstrained optimization Convert, and solve the minimum energy consumption value and the state quantity value under the minimum energy consumption according to the pattern search algorithm.

5)依据动态控制层18,所述最小能耗下的状态量值作为动态控制层18动态控制器14的输入。5) According to the dynamic control layer 18, the state value under the minimum energy consumption is used as the input of the dynamic controller 14 of the dynamic control layer 18.

6)所述动态控制器14的输出信号接入上述最小能耗优化控制装置中的压缩机变频器28、冷却水泵变频器29、冷冻水泵变频器30和电子膨胀阀7。6) The output signal of the dynamic controller 14 is connected to the compressor frequency converter 28, the cooling water pump frequency converter 29, the chilled water pump frequency converter 30 and the electronic expansion valve 7 in the minimum energy consumption optimization control device.

7)所述最小能耗优化控制装置输出信号到制冷机组15,从而完成最小能耗优化控制。7) The minimum energy consumption optimization control device outputs signals to the refrigeration unit 15, thereby completing the minimum energy consumption optimization control.

当所述制冷热泵系统工况变化时,模型参数自适应21将自适应调整最小能耗函数评价20的系数。所述最小能耗函数评价20构建的最小能耗函数模型与制冷热泵系统状态量相关。When the working condition of the refrigeration heat pump system changes, the model parameter adaptation 21 will adaptively adjust the coefficient of the minimum energy consumption function evaluation 20 . The minimum energy consumption function model constructed by the minimum energy consumption function evaluation 20 is related to the state quantity of the refrigeration heat pump system.

所述优化层17的优化控制器19是采用结合外罚函数的模式搜索算法。The optimization controller 19 of the optimization layer 17 adopts a pattern search algorithm combined with an external penalty function.

所述的最小能耗模型是基于机理的最小能耗模型,分别采用压缩机能量守恒方程、冷却水系统能量守恒方程、冷冻水系统能量守恒方程推导出压缩机能耗模型、冷却水泵能耗模型及冷冻水泵能耗模型。The minimum energy consumption model is a mechanism-based minimum energy consumption model, and the compressor energy consumption model, cooling water pump energy consumption model and Chilled water pump energy consumption model.

本发明的制冷热泵系统最小能耗优化控制装置及控制方法功能是这样实现的:The functions of the refrigeration heat pump system minimum energy consumption optimization control device and control method of the present invention are realized in the following way:

图2是本发明制冷系统优化控制整体方案图,包括设定点最优控制器1,动态控制器14和制冷机组15。FIG. 2 is an overall scheme diagram of optimal control of the refrigeration system of the present invention, including a set point optimal controller 1 , a dynamic controller 14 and a refrigeration unit 15 .

图3是本发明制冷系统分层优化控制示意图,其包括自适应层16、优化层17和动态控制层18,所述自适应层16用模型参数自适应控制21实现,其输入为系统工作状态量、控制信号量,其输出送入优化层17,所述优化层17包括最小能耗函数评价20和优化控制器19,自适应层16的输出和控制信号量送到最小能耗函数评价20中,完成建立最小能耗模型及确定约束条件,最小能耗函数评价20的输出作为优化控制器19的输入,优化控制器19完成最小能耗值和最小能耗下状态量值的求解,优化控制器19输出端连接动态控制层18,所述动态控制层18包括动态控制器14,动态控制器14的输入信号为优化层17的输出和实际工作状态量的差值,动态控制器14输出信号分别接入压缩机变频器28、膨胀阀7、冷却水泵变频器29和冷冻水泵变频器30。Fig. 3 is a schematic diagram of the layered optimization control of the refrigeration system of the present invention, which includes an adaptive layer 16, an optimization layer 17 and a dynamic control layer 18, and the adaptive layer 16 is realized by a model parameter adaptive control 21, and its input is the system working state Quantity, control signal quantity, its output is sent to optimization layer 17, and described optimization layer 17 comprises minimum energy consumption function evaluation 20 and optimization controller 19, the output of adaptive layer 16 and control signal quantity are sent to minimum energy consumption function evaluation 20 In this process, the establishment of the minimum energy consumption model and the determination of the constraint conditions are completed, the output of the minimum energy consumption function evaluation 20 is used as the input of the optimization controller 19, and the optimization controller 19 completes the solution of the minimum energy consumption value and the state value under the minimum energy consumption, and optimizes Controller 19 output ends connect dynamic control layer 18, and described dynamic control layer 18 comprises dynamic controller 14, and the input signal of dynamic controller 14 is the difference value of the output of optimization layer 17 and actual working state quantity, and dynamic controller 14 outputs The signals are respectively connected to compressor frequency converter 28 , expansion valve 7 , cooling water pump frequency converter 29 and chilled water pump frequency converter 30 .

图4是本发明制冷系统模型参数自适应结构图,是典型的模型参数自适应控制,实现模型参数自适应,克服制冷系统能耗模型中模型参数会随工作状态的变化而发生改变的问题,其包括制冷机组15参考模型,参数自适应22,线性动态估计23,稳态模型24,低通滤波25,由于模型基于稳态模型24,参数自适应22只有在稳定状态下才是精确的,动态状况中最显著的动态过程由蒸发器的传热壁形成,这个动态过程用一个低通滤波25模拟,为了适应动态状况下系统的扰动,将线性动态估计23用于自适应层。Fig. 4 is the self-adaptive structural diagram of the refrigeration system model parameters of the present invention, which is a typical model parameter self-adaptive control, realizes the model parameter self-adaptation, and overcomes the problem that the model parameters in the refrigeration system energy consumption model will change with the change of the working state, It includes reference model of refrigeration unit 15, parameter self-adaptation 22, linear dynamic estimation 23, steady-state model 24, low-pass filter 25, since the model is based on steady-state model 24, parameter self-adaptation 22 is only accurate in steady state, The most significant dynamic process in the dynamic regime is formed by the heat transfer walls of the evaporator. This dynamic process is simulated with a low-pass filter 25. In order to adapt to the disturbance of the system in the dynamic regime, a linear dynamic estimation 23 is used for the adaptive layer.

图5是本发明制冷热泵系统最小能耗控制流程图,包括以下步骤:Fig. 5 is a flow chart of the minimum energy consumption control of the refrigeration heat pump system of the present invention, including the following steps:

步骤501:开始;Step 501: start;

步骤502:在设定点最优控制器1中用WinControl软件编程建立整体能耗模型;Step 502: In the set point optimal controller 1, use WinControl software programming to establish an overall energy consumption model;

整体能耗模型包括分别建立采用压缩机能量守恒方程、冷却水系统能量守恒方程、冷冻水系统能量守恒方程推导的压缩机能耗模型、冷却水泵能耗模型、冷冻水泵能耗模型。The overall energy consumption model includes the establishment of compressor energy consumption models, cooling water pump energy consumption models, and chilled water pump energy consumption models derived from compressor energy conservation equations, cooling water system energy conservation equations, and chilled water system energy conservation equations.

1)考虑压缩机频率与系统的内部状态变量蒸发压力、冷凝压力和过热度的联系而产生的能耗计算方法。1) The energy consumption calculation method that considers the relationship between the frequency of the compressor and the internal state variables of the system, evaporating pressure, condensing pressure, and degree of superheat.

压缩机单位时间的质量流量:Compressor mass flow per unit time:

mk=nkηvolVkρki(Pe) (1)m k =n k η vol V k ρ ki (P e ) (1)

式中,ρki——气态制冷剂的密度,kg/m3 In the formula, ρ ki ——the density of gaseous refrigerant, kg/m 3

ηvol——压缩机的体积效率η vol ——The volumetric efficiency of the compressor

Vk——理论输气量,m3/hV k ——Theoretical gas delivery volume, m 3 /h

nk——压缩机转速,rpmn k ——compressor speed, rpm

其中压缩机转速与频率关系式:Among them, the relationship between compressor speed and frequency:

压缩机实际出口焓值:Actual outlet enthalpy of compressor:

式中,hkois——压缩机绝热出口焓值,kJ/kgIn the formula, h kois ——Adiabatic outlet enthalpy value of compressor, kJ/kg

ηk——压缩机绝热效率η k ——Compressor adiabatic efficiency

由于压缩机出口焓值与冷凝器入口焓值,蒸发器出口焓值和压缩机入口焓值变化不大,分别用蒸发器出口和冷凝器入口焓值替代。式(3)变为式(4)。Since the compressor outlet enthalpy and the condenser inlet enthalpy, the evaporator outlet enthalpy and the compressor inlet enthalpy have little change, they are replaced by the evaporator outlet and condenser inlet enthalpy, respectively. Formula (3) becomes formula (4).

蒸发器制冷量:Evaporator cooling capacity:

Qe=mk(heo(Pe)-hei(pe))=mk(heo(Pe)-hco(pc)) (5)Q e =m k (h eo (P e )-h ei (p e ))=m k (h eo (P e )-h co (p c )) (5)

考虑到膨胀阀入、出口焓值不变,并且冷凝器出口焓值等于膨胀阀入口焓值,膨胀阀出口焓值等于蒸发器入口焓值,因此冷凝器出口焓值与蒸发器入口焓值相等。压缩机做功与蒸发器制冷量的比值如式(6)。Considering that the inlet and outlet enthalpy values of the expansion valve are constant, and the enthalpy value at the outlet of the condenser is equal to the enthalpy value at the inlet of the expansion valve, the enthalpy value at the outlet of the expansion valve is equal to the enthalpy value at the inlet of the evaporator, so the enthalpy value at the outlet of the condenser is equal to the enthalpy at the inlet of the evaporator . The ratio of the work done by the compressor to the refrigerating capacity of the evaporator is shown in formula (6).

推导得压缩机做功方程式为:The derived compressor work equation is:

2)考虑冷却水频率与系统的内部状态变量蒸发压力、冷凝压力和过热度的联系而产生的能耗计算方法。2) The energy consumption calculation method that considers the relationship between the cooling water frequency and the system's internal state variables evaporation pressure, condensation pressure and superheat.

冷却水泵做功与频率关系为:The relationship between cooling water pump work and frequency is:

Wclw=k1,clw(fclw)3+k1,clo (8)W clw =k 1,clw (f clw ) 3 +k 1,clo (8)

式中,fclw——冷却水泵输入频率,HzIn the formula, f clw ——cooling water pump input frequency, Hz

冷却水流量与频率关系:The relationship between cooling water flow and frequency:

mclw=k2,clwfclw+k2,clo (9)m clw =k 2,clw f clw +k 2,clo (9)

冷凝器热交换系数:Condenser heat transfer coefficient:

式中,αc——制冷剂与冷却水热交换系数In the formula, α c ——refrigerant and cooling water heat exchange coefficient

mc——换热指数,取值0.4-0.84m c —— heat transfer index, value 0.4-0.84

冷却水出水温度:Cooling water outlet temperature:

冷却水进水温度Tclwi,通过冷却塔热平衡方程式(12)进行求取。The cooling water inlet temperature T clwi is calculated by the cooling tower heat balance equation (12).

式中,Qclw—冷却塔负荷,kWIn the formula, Q clw —cooling tower load, kW

ma、mclw—冷却塔空气、冷却水质量流量,kg/sm a , m clw —mass flow rate of cooling tower air and cooling water, kg/s

a1、a2、a3—拟合系数,与冷却塔结构有关a 1 , a 2 , a 3 —fitting coefficients, related to cooling tower structure

Tamb—室外空气的温度,℃T amb — the temperature of the outdoor air, °C

冷凝器管壁上制冷剂和冷却水能量平衡方程式Energy balance equation of refrigerant and cooling water on the tube wall of condenser

mk(hci(Pe,Pc)-hco(Pc))=mclwcp,w(Tclwo-Tclwi) (13)m k (h ci (P e ,P c )-h co (P c ))=m clw c p,w (T clwo -T clwi ) (13)

整理可得Organized and available

mk(hci(Pe,Pc)-hco(Pc))-mclwcp,w(Tclwo-Tclwi)=0 (14)m k (h ci (P e ,P c )-h co (P c ))-m clw c p,w (T clwo -T clwi )=0 (14)

将式(8)-(12)带入式(14)可得,冷凝器能量守恒方程式Substituting equations (8)-(12) into equation (14), we can get the energy conservation equation of the condenser

式(15)中包含有冷却水流量与状态变量的隐函数关系,通过方程求解得不同状态变量下的流量mclw,进而可得到相应的冷却水泵功耗WclwEquation (15) contains the implicit function relationship between cooling water flow and state variables, and the flow m clw under different state variables can be obtained by solving the equation, and then the corresponding cooling water pump power consumption W clw can be obtained.

3)考虑冷冻水频率与系统的内部状态变量蒸发压力、冷凝压力和过热度的联系而产生的能耗计算方法。3) The energy consumption calculation method that considers the relationship between the chilled water frequency and the system's internal state variables evaporation pressure, condensation pressure and superheat.

冷冻水泵做功与频率关系为:The relationship between chilled water pump work and frequency is:

Wchw=k1,chw(fchw)3+k1,cho (16)W chw =k 1,chw (f chw ) 3 +k 1,cho (16)

式中,fchw——冷冻水泵输入频率,HzIn the formula, f chw —— chilled water pump input frequency, Hz

冷冻水量与频率关系:The relationship between chilled water volume and frequency:

mchw=k2,chwfchw+k2,cho (17)m chw =k 2,chw f chw +k 2,cho (17)

蒸发器热交换系数:Evaporator heat transfer coefficient:

式中,αe——制冷剂与冷冻水热交换系数,kJ/(kg·K)In the formula, α e ——refrigerant and chilled water heat exchange coefficient, kJ/(kg K)

me——换热指数,取值0.4-0.84m e —— heat transfer index, value 0.4-0.84

冷冻供水温度:Chilled water supply temperature:

式中,Tchwi——冷冻水回水温度In the formula, T chwi ——refrigerated water return temperature

蒸发器管壁上的制冷剂和冷冻水能量平衡方程式:The energy balance equation of refrigerant and chilled water on the tube wall of the evaporator:

Qe-mchwcp,w(Tchwo-Tchwi)=0 (20)Q e -m chw c p,w (T chwo -T chwi )=0 (20)

将式(16)—(19)带入式(20)可得蒸发器上能量守恒方程式:Put equations (16)-(19) into equation (20) to get the energy conservation equation on the evaporator:

式(21)中包含有冷冻水频率fchw与状态变量的非线性函数关系,通过方程求解得到不同状态变量下的频率fchw,进而可得到相应的冷冻水泵功耗WchwEquation (21) contains the nonlinear functional relationship between chilled water frequency f chw and state variables, and the frequency f chw under different state variables can be obtained by solving the equation, and then the corresponding chilled water pump power consumption W chw can be obtained.

步骤503:在设定点最优控制器1中用WinControl软件编程建立最小能耗模型,确定模型约束条件;Step 503: In the set point optimal controller 1, use WinControl software programming to establish a minimum energy consumption model, and determine model constraints;

综合压缩机功耗、冷却水循环泵功耗、冷冻水循环泵功耗,建立制冷系统总能耗模型,构建能耗优化目标函数如式(22)。Combining the power consumption of the compressor, the power consumption of the cooling water circulation pump, and the power consumption of the chilled water circulation pump, the total energy consumption model of the refrigeration system is established, and the energy consumption optimization objective function is constructed as in formula (22).

限定条件如下:The restrictions are as follows:

状态变量限制:Exss+bx≤0State variable limit: Ex ss +b x ≤ 0

控制信号限制:Fuss(xss,vss)+bu≤0Control signal limit: Fu ss (x ss ,v ss )+b u ≤0

制冷量限制:Qe=Qe,o Cooling capacity limitation: Q e = Q e,o

过热度限制:Tsh=Tsh,min(Qe)Superheat limitation: T sh = T sh,min (Q e )

所述模型中Wk为压缩机功耗、Wclw为冷却水泵功耗、Wchw为冷冻水泵功耗;xss=[PePc Tsh]T作为状态变量,其中Pe为蒸发压力、Pc为冷凝压力、Tsh为蒸发器过热度,冷凝压力Pc和蒸发压力Pe为自由变量,过热度Tsh的设定值(最小稳定过热度)根据制冷量Qe进行修改和设定;uss=[fk fclw fchw]T为控制变量,其中fk为压缩机输入频率、fclw为冷却水泵输入频率、fchw为冷冻水泵输入频率;系统扰动,其中室外环境温度Tamb为系统的主要扰动,Tw为系统补水温度、为相对湿度、v为室外风速,由于对系统的影响较小此处忽略;Qe为系统的制冷量要求。In the model, W k is the power consumption of the compressor, W clw is the power consumption of the cooling water pump, and W chw is the power consumption of the chilled water pump; x ss = [P e P c T sh ] T is used as a state variable, where P e is the evaporation pressure , P c is the condensing pressure, T sh is the degree of superheat of the evaporator, the condensing pressure P c and the evaporation pressure Pe are free variables, the set value of the superheat T sh (minimum stable superheat ) is modified according to the cooling capacity Q e and Setting; u ss =[f k f clw f chw ] T is the control variable, where f k is the input frequency of the compressor, f clw is the input frequency of the cooling water pump, and f chw is the input frequency of the chilled water pump; System disturbance, where the outdoor ambient temperature T amb is the main disturbance of the system, Tw is the system water supply temperature, is the relative humidity, and v is the outdoor wind speed, which is ignored here because of the small impact on the system; Q e is the cooling capacity requirement of the system.

步骤504:在设定点最优控制器1中用WinControl软件依据如图4所示的模型参数自适应控制方法编程实现最小能耗参数的自适应调整;Step 504: In the set point optimal controller 1, use WinControl software to program according to the model parameter adaptive control method shown in Figure 4 to realize the adaptive adjustment of the minimum energy consumption parameter;

图4是典型的模型参数自适应控制图,包括制冷机组15参考模型,参数自适应22,线性动态估计23,稳态模型24,低通滤波25,由于模型是基于稳态条件稳态模型24,参数自适应22只有在稳定状态下才是精确的,动态状况中最显著的动态过程由蒸发器的传热壁形成,这个动态过程用一个低通滤波25模拟,为了适应动态状况下系统的扰动,将线性动态估计23用于自适应层。Figure 4 is a typical model parameter adaptive control diagram, including reference model of refrigeration unit 15, parameter adaptive 22, linear dynamic estimation 23, steady-state model 24, low-pass filter 25, since the model is based on steady-state condition steady-state model 24 , the parameter self-adaptation 22 is accurate only in the steady state, the most significant dynamic process in the dynamic state is formed by the heat transfer wall of the evaporator, this dynamic process is simulated with a low-pass filter 25, in order to adapt to the dynamic state of the system perturbation, using linear motion estimation 23 for the adaptive layer.

步骤505:依据外罚函数公式23,在设定点最优控制器1中用WinControl软件编程实现最小能耗有约束化到无约束化的转换;Step 505: According to the external penalty function formula 23, use WinControl software programming in the set point optimal controller 1 to realize the conversion of the minimum energy consumption from constrained to unconstrained;

如图3所示优化层17优化控制器19采用外罚函数对步骤503中带约束的最小能耗优化转化为无约束的优化,如式(23)。As shown in FIG. 3 , the optimization layer 17 and the optimization controller 19 use an external penalty function to transform the constrained minimum energy consumption optimization in step 503 into an unconstrained optimization, as shown in formula (23).

式中Qss=Qe-Qe,o,冷凝器放热量受外界环境影响,优化问题中必须考虑周围环境温度的变化。In the formula, Q ss =Q e -Q e,o , the heat release of the condenser is affected by the external environment, and the change of the ambient temperature must be considered in the optimization problem.

步骤506:在设定点最优控制器1中用WinControl软件编程实现模式搜索算法求解最小能耗值和最小能耗下的状态值;Step 506: use WinControl software programming in the set point optimal controller 1 to realize the pattern search algorithm to solve the minimum energy consumption value and the state value under the minimum energy consumption;

图6是结合外罚函数的模式搜索算法的流程图,实现对式(23)的求解,搜索过程每一次迭代都是交替进行轴向移动和模式移动,轴向移动的目的是搜索函数值下降的有利方向,模式移动的目的是沿着有利方向加速移动,流程图中出现的量包括:状态变量:x=[PePc]T,罚函数:F(xss,τ),罚因子:τ,步长δ0,收缩因子α,τ初始值选取较大的合适值后可不再进行调整,因此罚函数变为F(x)即只针对状态变量x进行优化,模式搜索过程包括如下步骤:Figure 6 is a flow chart of the pattern search algorithm combined with the external penalty function, which realizes the solution to formula (23). Each iteration of the search process alternately performs axial movement and pattern movement. The purpose of axial movement is to decrease the value of the search function The favorable direction of the mode movement is to accelerate the movement along the favorable direction. The quantities appearing in the flow chart include: state variable: x=[P e P c ] T , penalty function: F(x ss ,τ), penalty factor : τ, step size δ 0 , contraction factor α, and the initial value of τ can no longer be adjusted after selecting a larger appropriate value, so the penalty function becomes F(x), that is, it is only optimized for the state variable x, and the pattern search process includes the following step:

步骤601:开始;Step 601: start;

步骤602:给定初始状态值,初始约束条件,随机选取蒸发压力和冷凝压力状态变量的初始点x0=(Pe0,Pc0),步长δ0=1,收缩因子α=0.75,罚因子τ=5000,允许误差ε>0,k=0,j=1;Step 602: Given the initial state value and initial constraint conditions, randomly select the initial point x 0 =(P e0 ,P c0 ) of the state variables of evaporation pressure and condensation pressure, step size δ 0 =1, shrinkage factor α=0.75, penalty Factor τ=5000, allowable error ε>0, k=0, j=1;

步骤604::赋值,将xk(k=1,2...)的值赋给y进行正轴向移动;Step 604: Assign a value, assign the value of x k (k=1, 2...) to y for positive axial movement;

步骤604::计算罚函数,计算罚函数F(y+δkej)和F(y);Step 604: Calculate penalty function, calculate penalty function F(y+δ k e j ) and F(y);

步骤605::罚函数比较,判断F(y+δkej)<F(y)成立与否;Step 605: compare the penalty function, and judge whether F(y+δ k e j )<F(y) is established or not;

步骤606::如果F(y+δkej)<F(y)成立,继续正向搜索;Step 606: If F(y+δ k e j )<F(y) holds true, continue forward search;

步骤607::如果F(y+δkej)<F(y)不成立,判断F(y-δkej)<F(y)成立与否,如果不成立直接判断是否搜索完毕;Step 607: If F(y+δ k e j )<F(y) is not established, judge whether F(y-δ k e j )<F(y) is true or not, if not, directly judge whether the search is completed;

步骤608::如果F(y-δkej)<F(y)成立,继续反向搜索;Step 608: If F(y-δ k e j )<F(y) holds true, continue the reverse search;

步骤609::判断是否轴向移动是否完毕;Step 609:: judge whether the axial movement is completed;

步骤6010::如果轴向移动未完毕,继续轴向移动;Step 6010:: If the axial movement is not completed, continue the axial movement;

步骤6011::如果轴向移动成功,进行模式搜索,模式搜索基点xk+1=y;Step 6011: If the axial movement is successful, perform a pattern search, and the pattern search base point x k+1 =y;

步骤6012::罚函数比较,判断F(xk+1)<F(xk)成立与否;Step 6012: compare the penalty function to determine whether F(x k+1 )<F(x k ) holds true;

步骤6013::如果F(xk+1)<F(xk)成立,模式移动,重复步骤31~步骤41;Step 6013: If F(x k+1 )<F(x k ) holds, the mode moves, repeating steps 31 to 41;

步骤6014::如果F(xk+1)<F(xk)不成立,判断δk<ε成立与否;Step 6014: If F(x k+1 )<F(x k ) does not hold, judge whether δ k <ε holds true or not;

步骤6015::如果δk<ε不成立,判断xk+1=xk成立与否;Step 6015: If δ k <ε is not established, judge whether x k+1 = x k is established or not;

步骤6016::如果xk+1=xk成立,改变步长重复步骤31~步骤43;Step 6016: If x k+1 = x k holds true, change the step size and repeat steps 31 to 43;

步骤6017::如果xk+1=xk不成立,步长不变,xk+1=xk,重复步骤31~步骤43;Step 6017: If x k+1 = x k does not hold, the step size remains unchanged, x k+1 = x k , repeat steps 31 to 43;

步骤6018::迭代结束,得到最优解;Step 6018:: the iteration ends, and the optimal solution is obtained;

步骤6019:结束。Step 6019: end.

步骤507:在设定点最优控制器1中将求解的最小能耗下的状态值送入动态控制器14;Step 507: In the set point optimal controller 1, send the state value under the solved minimum energy consumption to the dynamic controller 14;

上述模式搜索求得的最小能耗下的状态值作为动态控制器14的参考输入,动态控制器14包括冷凝压力PID控制器4、蒸发压力PID控制器8、蒸发器过热度PID控制器12和冷冻水泵PID控制器13。The state value under the minimum energy consumption obtained by the above mode search is used as the reference input of the dynamic controller 14, and the dynamic controller 14 includes a condensing pressure PID controller 4, an evaporating pressure PID controller 8, an evaporator superheat PID controller 12 and Chilled water pump PID controller 13.

步骤508:所述动态控制器14的输出信号接入上述最小能耗优化控制装置中的压缩机变频器28、冷却水泵变频器29、冷冻水泵变频器30和电子膨胀阀7;Step 508: The output signal of the dynamic controller 14 is connected to the compressor frequency converter 28, the cooling water pump frequency converter 29, the chilled water pump frequency converter 30 and the electronic expansion valve 7 in the minimum energy consumption optimization control device;

步骤509:所述最小能耗优化控制装置根据所述动态控制器14输出信号控制制冷热泵系统中的压缩机3,电子膨胀阀7,冷却水泵26和冷冻水泵27,实现最小能耗优化控制。Step 509: The minimum energy consumption optimization control device controls the compressor 3, the electronic expansion valve 7, the cooling water pump 26 and the chilled water pump 27 in the refrigeration heat pump system according to the output signal of the dynamic controller 14, so as to realize the minimum energy consumption optimization control.

步骤5010:结束。Step 5010: end.

图7中黑色线条标注部分设定点最优控制器1完成图3中自适应层16、优化层17的功能,实现最小能耗模型的建立、最小能耗值和最小能耗下状态量的求解,并输出最小能耗控制信号到回路控制器,黑色线条标注部分制冷负荷控制器2输出信号到压缩机变频器28控制压缩机3、冷凝压力控制器4输出信号到冷却水泵变频器29控制冷却水泵26和冷凝器6、蒸发压力控制器8输出信号到冷冻水泵变频器30控制冷冻水泵27和蒸发器9,蒸发器过热度控制器12输出信号控制电子膨胀阀7,黑色标注部分结合了外层设定点优化和内层动态控制,制冷负荷测量10确定负荷需求,末端负荷11测定末端负荷,冷却塔5采用定频控制,本最小能耗优化控制方法结合所述制冷热泵优化控制装置可实现对制冷热泵系统的最小能耗优化控制,实现节约能耗的目的。In Fig. 7, the black line marks part of the set point optimal controller 1 to complete the functions of the adaptive layer 16 and the optimization layer 17 in Fig. 3, and realize the establishment of the minimum energy consumption model, the minimum energy consumption value and the state quantity under the minimum energy consumption. Solve, and output the minimum energy consumption control signal to the loop controller, the black line marks part of the cooling load controller 2 output signal to the compressor inverter 28 to control the compressor 3, the condensing pressure controller 4 output signal to the cooling water pump inverter 29 control The cooling water pump 26, condenser 6, and evaporating pressure controller 8 output signals to the chilled water pump inverter 30 to control the chilled water pump 27 and the evaporator 9, and the evaporator superheat controller 12 outputs signals to control the electronic expansion valve 7. The black marked part combines Outer layer set point optimization and inner layer dynamic control, cooling load measurement 10 to determine load demand, end load 11 to determine end load, cooling tower 5 adopts constant frequency control, this minimum energy consumption optimization control method is combined with the refrigeration heat pump optimization control device It can realize the optimal control of the minimum energy consumption of the refrigeration heat pump system, and realize the purpose of saving energy consumption.

Claims (6)

1.一种制冷热泵系统最小能耗优化控制装置,该装置与制冷热泵系统相连接,其特征是:该装置包括压缩机变频器(28)、冷却水泵变频器(29)、冷冻水泵变频器(30)、设定点最优控制器(1),所述压缩机变频器(28)输出端连接制冷热泵系统的压缩机(3)、冷却水泵变频器(29)输出端连接制冷热泵系统的冷却水泵(26)、冷冻水泵变频器(30)输出端连接制冷热泵系统的冷冻水泵(27);所述设定点最优控制器(1)包括硬件模块KMD5831楼宇控制器和控制软件WinControl,设定点最优控制器(1)接收制冷热泵系统工作状态信号,经WinControl编程计算得到控制信号,控制信号输出到所述压缩机变频器(28),形成制冷热泵系统最小能耗优化控制装置。1. A minimum energy consumption optimization control device for a refrigeration heat pump system, the device is connected to the refrigeration heat pump system, and is characterized in that: the device includes a compressor frequency converter (28), a cooling water pump frequency converter (29), a chilled water pump frequency converter (30), set point optimal controller (1), the output end of the compressor inverter (28) is connected to the compressor (3) of the refrigeration heat pump system, and the output end of the cooling water pump inverter (29) is connected to the refrigeration heat pump system The cooling water pump (26), chilled water pump inverter (30) output end is connected to the chilled water pump (27) of the refrigeration heat pump system; the set point optimal controller (1) includes hardware module KMD5831 building controller and control software WinControl , the set point optimal controller (1) receives the working state signal of the refrigeration heat pump system, and obtains the control signal through WinControl programming calculation, and the control signal is output to the compressor frequency converter (28), forming the optimal control of the minimum energy consumption of the refrigeration heat pump system device. 2.一种利用制冷热泵系统最小能耗优化控制装置的控制方法,该控制方法是通过WinControl软件采用分层优化控制,所述分层优化控制包括自适应层(16)、优化层(17)和动态控制层(18),通过制冷热泵系统最小能耗优化控制装置实现制冷热泵系统最小能耗控制,包括以下步骤:2. A control method that utilizes the minimum energy consumption optimization control device of the refrigeration heat pump system, the control method adopts layered optimization control by WinControl software, and the layered optimization control includes an adaptive layer (16), an optimization layer (17) and the dynamic control layer (18), realize the minimum energy consumption control of the refrigeration heat pump system through the optimization control device for the minimum energy consumption of the refrigeration heat pump system, including the following steps: 1)在设定点最优控制器(1)中通过WinControl软件编程建立制冷热泵系统压缩机能耗模型:1) Establish the compressor energy consumption model of the refrigeration heat pump system through WinControl software programming in the set point optimal controller (1): WW kk == QQ ee hh cc ii (( PP ee ,, PP cc )) -- hh ee oo (( pp ee )) hh ee oo (( PP ee )) -- hh cc oo (( pp cc )) -- -- -- (( 11 )) 式中,Wk—压缩机能耗(kW) Qe—蒸发器制冷量(kW)In the formula, W k —compressor energy consumption (kW) Q e —evaporator cooling capacity (kW) hci—冷凝器入口焓值(kJ/kg) hco—冷凝器出口焓值(kJ/kg)h ci —enthalpy value of condenser inlet (kJ/kg) h co —enthalpy value of condenser outlet (kJ/kg) heo—蒸发器出口焓值(kJ/kg) Pe—蒸发压力(kPa)h eo —Evaporator outlet enthalpy (kJ/kg) P e —Evaporation pressure (kPa) Pc—冷凝压力(kPa)P c —condensing pressure (kPa) 冷却水泵能耗模型:Cooling water pump energy consumption model: QQ ee hh ee oo (( PP ee )) -- hh cc oo (( pp cc )) &lsqb;&lsqb; hh cc ii (( PP ee ,, PP cc )) -- hh cc oo (( PP cc )) &rsqb;&rsqb; == mm cc ll ww cc pp ,, ww (( TT cc ll ww oo -- QQ cc ll ww 11 ++ aa 22 (( mm cc ll ww mm aa )) aa 33 aa 11 mm aa aa 33 -- TT aa mm bb )) -- -- -- (( 22 )) 式中,mclw—冷却水质量流量(kg/s) ma—冷却塔空气质量流量(kg/s)In the formula, m clw —cooling water mass flow rate (kg/s) m a —cooling tower air mass flow rate (kg/s) cp,w—冷却水比热容(kJ/kg·℃) Tclwo—冷却水出口温度(℃)c p,w — specific heat capacity of cooling water (kJ/kg·℃) T clwo — outlet temperature of cooling water (℃) Tamb—室外空气温度(℃) Qclw—冷却塔负荷(kW)T amb —outdoor air temperature (℃) Q clw —cooling tower load (kW) a1、a2、a3—与冷却塔结构有关的拟合系数a 1 , a 2 , a 3 —fitting coefficients related to cooling tower structure 冷冻水泵能耗模型:Chilled water pump energy consumption model: QQ ee == (( kk 22 ,, cc hh ww ff cc hh ww ++ kk 22 ,, cc hh oo )) cc pp ,, ww (( TT ee ++ (( TT cc hh ww ii -- TT ee )) expexp (( -- &alpha;&alpha; ee (( kk 22 ,, cc hh ww ff cc hh ww ++ kk 22 ,, cc hh oo )) mm ee (( kk 22 ,, cc hh ww ff cc hh ww ++ kk 22 ,, cc hh oo )) cc pp ,, ww )) -- TT cc hh ww ii )) -- -- -- (( 33 )) 式中,k2,chw,k2,cho—冷冻水质量流量与频率的关系系数In the formula, k 2,chw , k 2,cho —the relationship coefficient between chilled water mass flow rate and frequency Te—蒸发器制冷剂温度(℃) Tchwi—冷冻水回水温度(℃)T e —refrigerant temperature of evaporator (°C) T chwi —refrigerant temperature of chilled water (°C) αe—制冷剂与冷冻水热交换系数 me—换热指数α e — heat transfer coefficient between refrigerant and chilled water m e — heat transfer index fchw—冷冻水泵频率(Hz)f chw — Chilled water pump frequency (Hz) 组合构建制冷热泵系统整体能耗模型;Combined construction of the overall energy consumption model of the refrigeration heat pump system; 2)依据所述整体能耗模型和自适应层(16)的最小能耗评价(20),在设定点最优控制器(1)中通过WinControl软件编程建立最小能耗模型及确定约束条件实现;2) According to the minimum energy consumption evaluation (20) of the overall energy consumption model and the adaptive layer (16), set up the minimum energy consumption model and determine the constraints in the set point optimal controller (1) by WinControl software programming accomplish; 最小能耗模型:Minimum energy consumption model: minmin xx sthe s sthe s (( WW kk ++ WW cc hh ww ++ WW cc ll ww )) -- -- -- (( 44 )) 式中,Wk—压缩机能耗(kW)Wchw—冷冻水泵能耗(kW)In the formula, W k —compressor energy consumption (kW) W chw —chilled water pump energy consumption (kW) Wclw—冷却水泵能耗(kW)W clw —cooling water pump energy consumption (kW) 约束条件为:状态变量限制:Exss+bx≤0The constraints are: state variable limit: Ex ss +b x ≤ 0 控制信号限制:Fuss(xss,vss)+bu≤0Control signal limit: Fu ss (x ss ,v ss )+b u ≤0 制冷量限制:Qe=Qe,o Cooling capacity limitation: Q e = Q e,o 过热度限制:Tsh=Tsh,min(Qe)Superheat limitation: T sh = T sh,min (Q e ) 其中,xss=[Pe Pc Tsh]T是状态变量,Tsh是过热度,Among them, x ss =[P e P c T sh ] T is the state variable, T sh is the degree of superheat, bx=[-Pc,max Pe,min 0]T,Pc,max是冷凝压力最大值,Pe,min是蒸发压力最小值,uss=[fk fclwfchw]T,fk是压缩机频率,fclw是冷却水水泵频率,fchw是冷冻水泵频率,是系统扰动,bu=[0 -fclw,max 0 -fchw,max 0 -fk,max]T,fclw,max是冷却水泵工作频率最大值,fchw,max是冷冻水泵工作频率最大值,fk,max是压缩机工作频率最大值,Qe,o是制冷需求,Tsh,min(Qe)是最小过热度,b x =[-P c,max P e,min 0] T , P c,max is the maximum value of condensing pressure, P e,min is the minimum value of evaporation pressure, u ss =[f k f clw f chw ] T , f k is the compressor frequency, f clw is the cooling water pump frequency, f chw is the chilled water pump frequency, is the system disturbance, b u =[0 -f clw,max 0 -f chw,max 0 -f k,max ] T , f clw,max is the maximum operating frequency of the cooling water pump, f chw,max is the operating frequency of the chilled water pump The maximum value, f k,max is the maximum operating frequency of the compressor, Q e,o is the cooling demand, T sh,min (Q e ) is the minimum superheat, EE. == 11 00 00 -- 11 -- 11 11 Ff == -- 11 00 00 11 00 00 00 -- 11 00 00 11 00 00 00 -- 11 00 00 11 3)依据自适应层(16)的模型自适应控制(21),在设定点最优控制器(1)中通过WinControl软件编程完成所述最小能耗模型的参数自适应控制;3) According to the model adaptive control (21) of the adaptive layer (16), in the set point optimal controller (1), complete the parameter adaptive control of the minimum energy consumption model by WinControl software programming; 4)依据优化层(17)的优化控制器(19),在设定点最优控制器(1)中通过WinControl软件编程建立所述最小能耗模型的外罚函数完成最小能耗从有约束优化到无约束优化的转换,并依据模式搜索算法求解最小能耗值和最小能耗下的状态量值;4) According to the optimization controller (19) of the optimization layer (17), the external penalty function of the minimum energy consumption model is established by WinControl software programming in the set point optimal controller (1) to complete the minimum energy consumption from the constraint Convert from optimization to unconstrained optimization, and solve the minimum energy consumption value and the state value under the minimum energy consumption according to the pattern search algorithm; 5)依据动态控制层(18),所述最小能耗下的状态量值作为动态控制层(18)动态控制器(14)的输入;5) According to the dynamic control layer (18), the state value under the minimum energy consumption is used as the input of the dynamic control layer (18) dynamic controller (14); 6)所述动态控制器(14)的输出信号接入上述最小能耗优化控制装置中的压缩机变频器(28)、冷却水泵变频器(29)、冷冻水泵变频器(30)和电子膨胀阀(7);6) The output signal of the dynamic controller (14) is connected to the compressor frequency converter (28), the cooling water pump frequency converter (29), the chilled water pump frequency converter (30) and the electronic expansion valve (7); 7)所述最小能耗优化控制装置输出信号到制冷机组(15),从而完成最小能耗优化控制。7) The minimum energy consumption optimization control device outputs signals to the refrigeration unit (15), thereby completing the minimum energy consumption optimization control. 3.根据权利要求2所述的制冷热泵系统最小能耗优化控制方法,其特征是:当所述制冷热泵系统工况变化时,模型参数自适应(21)将自适应调整最小能耗函数评价(20)的系数。3. The optimal control method for the minimum energy consumption of the refrigeration heat pump system according to claim 2, characterized in that: when the operating conditions of the refrigeration heat pump system change, the model parameter self-adaptation (21) will adaptively adjust the minimum energy consumption function evaluation Coefficient of (20). 4.根据权利要求2所述的制冷热泵系统最小能耗优化控制方法,其特征是:所述最小能耗函数评价(20)构建的最小能耗函数模型与制冷热泵系统状态量相关。The minimum energy consumption optimization control method of the refrigeration heat pump system according to claim 2, characterized in that: the minimum energy consumption function model constructed by the minimum energy consumption function evaluation (20) is related to the state quantity of the refrigeration heat pump system. 5.根据权利要求2所述的制冷热泵系统最小能耗优化控制方法,其特征是:所述优化层(17)的优化控制器(19)是采用结合外罚函数的模式搜索算法。5. The optimal control method for minimum energy consumption of a refrigeration heat pump system according to claim 2, characterized in that: the optimization controller (19) of the optimization layer (17) adopts a pattern search algorithm combined with an external penalty function. 6.根据权利要求2所述的制冷热泵系统最小能耗优化控制方法,其特征是:所述的最小能耗模型是基于机理的最小能耗模型,分别采用压缩机能量守恒方程、冷却水系统能量守恒方程、冷冻水系统能量守恒方程推导出压缩机能耗模型、冷却水泵能耗模型及冷冻水泵能耗模型。6. The optimal control method for minimum energy consumption of refrigeration heat pump system according to claim 2, characterized in that: said minimum energy consumption model is a mechanism-based minimum energy consumption model, using compressor energy conservation equation and cooling water system respectively The energy conservation equation and the energy conservation equation of the chilled water system deduce the energy consumption model of the compressor, the energy consumption model of the cooling water pump and the energy consumption model of the chilled water pump.
CN201710148833.6A 2016-11-28 2017-03-14 Refrigeration heat pump system least energy consumption optimal control device and control method Pending CN106766450A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016110616381 2016-11-28
CN201611061638 2016-11-28

Publications (1)

Publication Number Publication Date
CN106766450A true CN106766450A (en) 2017-05-31

Family

ID=58962651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710148833.6A Pending CN106766450A (en) 2016-11-28 2017-03-14 Refrigeration heat pump system least energy consumption optimal control device and control method

Country Status (1)

Country Link
CN (1) CN106766450A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490319A (en) * 2017-07-06 2017-12-19 扬州大学 Cooling tower half adjusts the annual determination method for becoming angle and optimizing operating scheme of blower fan
CN107906760A (en) * 2017-10-27 2018-04-13 顺德职业技术学院 Frequency conversion heat pump water heater compressor frequency dynamic optimization method
CN108089440A (en) * 2017-12-06 2018-05-29 北京百度网讯科技有限公司 Energy-saving control method and device
CN109916090A (en) * 2018-11-29 2019-06-21 青岛经济技术开发区海尔热水器有限公司 Heat pump water heater control method and heat pump water heater
CN110388706A (en) * 2019-07-22 2019-10-29 上海电力大学 Refrigerating pump operation optimization configuration method of central air-conditioning chilled water secondary pump system
CN110793240A (en) * 2019-10-10 2020-02-14 青岛新欧亚能源有限公司 Large-scale air source heat pump low-energy consumption operation system and control method
CN113032935A (en) * 2021-03-12 2021-06-25 西南石油大学 Large parallel natural gas pipe network optimization operation model and solving method
CN115013943A (en) * 2022-01-12 2022-09-06 武汉舒适易佰科技有限公司 An intelligent air conditioning control system
CN117930659A (en) * 2024-01-24 2024-04-26 无锡混沌能源技术有限公司 Efficient machine room global optimizing control method
CN118168109A (en) * 2024-04-02 2024-06-11 广州施杰节能科技有限公司 Efficient operation control method and system for chiller

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816021A1 (en) * 1998-04-09 1999-10-14 Deutsch Zentr Luft & Raumfahrt Cooling system improved for optimal energy consumption
CN101251291A (en) * 2008-04-03 2008-08-27 上海交通大学 Model-based global optimization energy-saving control method and device for central air-conditioning system
CN101363653A (en) * 2008-08-22 2009-02-11 日滔贸易(上海)有限公司 Energy consumption control method and device of central air-conditioning refrigeration system
CN101603751A (en) * 2009-07-15 2009-12-16 北京科技大学 A frequency conversion energy-saving control method for a refrigeration system
WO2012048443A1 (en) * 2010-10-13 2012-04-19 日滔贸易(上海)有限公司 Energy-saving optimized control system and method for refrigeration plant room
CN103453623A (en) * 2013-09-13 2013-12-18 天津大学建筑设计研究院 Water source heat pump air-conditioning system operating parameter optimization control method
CN104019520A (en) * 2014-05-20 2014-09-03 天津大学 Data drive control method for minimum energy consumption of refrigerating system on basis of SPSA

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816021A1 (en) * 1998-04-09 1999-10-14 Deutsch Zentr Luft & Raumfahrt Cooling system improved for optimal energy consumption
CN101251291A (en) * 2008-04-03 2008-08-27 上海交通大学 Model-based global optimization energy-saving control method and device for central air-conditioning system
CN101363653A (en) * 2008-08-22 2009-02-11 日滔贸易(上海)有限公司 Energy consumption control method and device of central air-conditioning refrigeration system
CN101603751A (en) * 2009-07-15 2009-12-16 北京科技大学 A frequency conversion energy-saving control method for a refrigeration system
WO2012048443A1 (en) * 2010-10-13 2012-04-19 日滔贸易(上海)有限公司 Energy-saving optimized control system and method for refrigeration plant room
CN103453623A (en) * 2013-09-13 2013-12-18 天津大学建筑设计研究院 Water source heat pump air-conditioning system operating parameter optimization control method
CN104019520A (en) * 2014-05-20 2014-09-03 天津大学 Data drive control method for minimum energy consumption of refrigerating system on basis of SPSA

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周晓青: "分布式制冷控制系统节能优化控制问题的研究", 《中国优秀硕士学位论文全文数据库,工程科技II辑》 *
翟文鹏: "基于负荷预测和设定点优化的制冷系统模型预测控制方法研究", 《中国博士学位论文全文数据库,信息科技辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490319A (en) * 2017-07-06 2017-12-19 扬州大学 Cooling tower half adjusts the annual determination method for becoming angle and optimizing operating scheme of blower fan
CN107906760A (en) * 2017-10-27 2018-04-13 顺德职业技术学院 Frequency conversion heat pump water heater compressor frequency dynamic optimization method
CN108089440A (en) * 2017-12-06 2018-05-29 北京百度网讯科技有限公司 Energy-saving control method and device
CN109916090B (en) * 2018-11-29 2022-10-18 青岛经济技术开发区海尔热水器有限公司 Heat pump water heater control method and heat pump water heater
CN109916090A (en) * 2018-11-29 2019-06-21 青岛经济技术开发区海尔热水器有限公司 Heat pump water heater control method and heat pump water heater
CN110388706A (en) * 2019-07-22 2019-10-29 上海电力大学 Refrigerating pump operation optimization configuration method of central air-conditioning chilled water secondary pump system
CN110793240A (en) * 2019-10-10 2020-02-14 青岛新欧亚能源有限公司 Large-scale air source heat pump low-energy consumption operation system and control method
CN113032935A (en) * 2021-03-12 2021-06-25 西南石油大学 Large parallel natural gas pipe network optimization operation model and solving method
CN115013943A (en) * 2022-01-12 2022-09-06 武汉舒适易佰科技有限公司 An intelligent air conditioning control system
CN117930659A (en) * 2024-01-24 2024-04-26 无锡混沌能源技术有限公司 Efficient machine room global optimizing control method
CN117930659B (en) * 2024-01-24 2024-11-22 无锡混沌能源技术有限公司 An efficient global optimization control method for computer room
CN118168109A (en) * 2024-04-02 2024-06-11 广州施杰节能科技有限公司 Efficient operation control method and system for chiller
CN118168109B (en) * 2024-04-02 2024-07-23 广州施杰节能科技有限公司 Efficient operation control method and system for chiller

Similar Documents

Publication Publication Date Title
CN106766450A (en) Refrigeration heat pump system least energy consumption optimal control device and control method
CN105757888B (en) A control method and device for linkage between internal and external units of a precision air conditioner
CN103020481B (en) A kind of method based on energy-conservation determination air source heat pump floor heating optimal operating condition
CN101782261B (en) Nonlinear self-adapting energy-saving control method for heating ventilation air-conditioning system
CN103064285B (en) A kind of heat pump heating multiobjective optimization control method based on model
CN103486693B (en) Energy-saving control method for chilled water system of central air conditioner
CN106979641B (en) Based on the refrigeration system data driving energy-saving control system and method for improving MFAC
CN109063255B (en) Energy-saving control method, electronic equipment, storage medium, device and system
CN114330000A (en) A thermodynamic model calculation method and equipment for multi-equipment operation of a cold source system
CN109323475A (en) A Transcritical Carbon Dioxide System and Its Optimal Coupling Method
CN114636322A (en) System and method for controlling free cooling and integrated free cooling
CN102278795A (en) Central air-conditioning air supply system adopting double cooling coils
CN117190406A (en) Optimal scheduling method for air conditioning system based on human body thermal comfort
Liu et al. Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference
Tian et al. Experimental investigation on cooling performance and optimal superheat of water source gas engine-driven heat pump system
Xu et al. On-off cycling model featured with pattern recognition of air-to-water heat pumps
CN105605748B (en) Air-water joint adjustment control method and system for air conditioning system
Yang et al. Performance study of a heat pump fresh air unit based on desiccant coated heat exchangers under different operation strategies
CN113719929B (en) Method and system for optimizing and controlling integrity of lithium bromide air conditioning system
CN109270843B (en) A Waterway Fuzzy PID Control Method for Transcritical Carbon Dioxide System
CN110688740A (en) Modelica combined simulation optimization-based cold water machine room model calibration method
Han et al. Feasibility study on novel room air conditioner with natural cooling capability
CN118107346A (en) Multi-actuator cooperative control method for whole electric automobile thermal management system
WO2024012545A1 (en) Air conditioning system and method for determining energy efficiency ratio thereof
Li et al. Proposal and preliminary experimental investigation on a novel efficient integrated system of combined refrigeration, heating, and hot water supply

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531