CN106753602B - 一种低碳清洁燃料及其制备方法 - Google Patents

一种低碳清洁燃料及其制备方法 Download PDF

Info

Publication number
CN106753602B
CN106753602B CN201611101004.4A CN201611101004A CN106753602B CN 106753602 B CN106753602 B CN 106753602B CN 201611101004 A CN201611101004 A CN 201611101004A CN 106753602 B CN106753602 B CN 106753602B
Authority
CN
China
Prior art keywords
parts
mixture
fuel
float
diesel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611101004.4A
Other languages
English (en)
Other versions
CN106753602A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU CHENRI ENVIRONMENTAL PROTECTION TECHNOLOGY CO., LTD.
Original Assignee
Jiangsu Chenri Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Chenri Environmental Protection Technology Co Ltd filed Critical Jiangsu Chenri Environmental Protection Technology Co Ltd
Priority to CN201611101004.4A priority Critical patent/CN106753602B/zh
Publication of CN106753602A publication Critical patent/CN106753602A/zh
Application granted granted Critical
Publication of CN106753602B publication Critical patent/CN106753602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/30Organic compounds compounds not mentioned before (complexes)
    • C10L1/305Organic compounds compounds not mentioned before (complexes) organo-metallic compounds (containing a metal to carbon bond)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

本发明公开了一种低碳清洁燃料及其制备方法,该燃料由以下按照重量份的原料组成:甲醇37‑45份、柴油28‑36份、鱼漂胶3‑7份、水合乙酰丙酮化铈9‑13份、纳米氧化锌2‑4份。将柴油、鱼漂胶与水合乙酰丙酮化铈混合密封加热搅拌制得混合物A;将甲醇与纳米氧化锌混合加热搅拌制得混合物B;将混合物A与混合物B混合,加热、超声处理制得燃料。本发明具有优良的抗凝特性,铜片腐蚀指标为1。油品中含有充分的氧,使燃料充分燃烧也可有效降低积碳的产生,烟度值为0.3,净化率为75%,具有更优良的环保性能。本发明的基础原材料来源广泛,采用原料少,生产工艺简单,操作简便,生产成本低,经济效益和社会效益显著。

Description

一种低碳清洁燃料及其制备方法
技术领域
本发明涉及燃料技术领域,具体是一种低碳清洁燃料及其制备方法。
背景技术
随着国民经济的快速发展,燃油消耗量急剧上升,而全球的石油资源储蓄十分有限。柴油作为一种大功率内燃机的主要燃料,很大程度影响着工业、农业以及渔业的发展。与汽油相比,柴油机具有热效率高、燃油经济性好、爆发压力较高、输出扭矩比较大,CO和HC排放量低等优点。但是,柴油机排放尾气中颗粒物、氮氧化物和碳氢化合物的含量很高,这些微粒粒径小、质量浓度约是汽油机的30~80倍。污染环境严重损害人体健康。醇类燃料被世界公认为是清洁可再生替代燃料,其中甲醇与汽油和柴油的比较接近。但有些技术难题还有待攻克,如甲醇热值低有一定的腐蚀性、车用柴油闪点低、及对发动机缸体磨损、积碳的产生,车用柴油低温启动难、稳定性差等。
发明内容
本发明的目的在于提供一种耐腐蚀、耐磨损的低碳清洁燃料及其制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种低碳清洁燃料,由以下按照重量份的原料组成:甲醇37-45份、柴油28-36份、鱼漂胶3-7份、水合乙酰丙酮化铈9-13份、纳米氧化锌2-4份。
作为本发明进一步的方案:所述低碳清洁燃料,由以下按照重量份的原料组成:甲醇39-43份、柴油30-34份、鱼漂胶4-6份、水合乙酰丙酮化铈10-12份、纳米氧化锌2.5-3.5份。
作为本发明进一步的方案:所述低碳清洁燃料,由以下按照重量份的原料组成:甲醇41份、柴油32份、鱼漂胶5份、水合乙酰丙酮化铈11份、纳米氧化锌3份。
一种低碳清洁燃料的制备方法,由以下步骤组成:
1)将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A;
2)将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.3-1.4h,制得混合物B;
3)将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
与现有技术相比,本发明的有益效果是:
本发明采用鱼漂胶与水合乙酰丙酮化铈对柴油进行预处理,再与其它原料混合作用制得的燃料,具有优良的抗凝特性,油品身具有-45号的抗凝效果,铜片腐蚀指标为1,在使用中不会对油箱、输油管、油泵、喷油嘴、发动机燃烧室产生高于车用柴油的腐蚀现象。油品中含有充分的氧(氧含量,12.0%(m/m)),使燃料充分燃烧也可有效降低积碳的产生,自由加速烟度排放检测结果“烟度值”为:0.3,净化率为75%,具有更优良的环保性能。本发明的基础原材料来源广泛,采用原料少,生产工艺简单,操作简便,生产成本低,清洁环保节能,长期使用不产生积碳,无腐蚀性,无机械磨损,经济效益和社会效益显著。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明实施例中,一种低碳清洁燃料,由以下按照重量份的原料组成:甲醇37份、柴油28份、鱼漂胶3份、水合乙酰丙酮化铈9份、纳米氧化锌2份。
将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A。将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.3h,制得混合物B。将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
实施例2
本发明实施例中,一种低碳清洁燃料,由以下按照重量份的原料组成:甲醇45份、柴油36份、鱼漂胶7份、水合乙酰丙酮化铈13份、纳米氧化锌4份。
将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A。将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.4h,制得混合物B。将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
实施例3
本发明实施例中,一种低碳清洁燃料,由以下按照重量份的原料组成:甲醇39份、柴油30份、鱼漂胶4份、水合乙酰丙酮化铈10份、纳米氧化锌2.5份。
将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A。将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.35h,制得混合物B。将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
实施例4
本发明实施例中,一种低碳清洁燃料,由以下按照重量份的原料组成:甲醇43份、柴油34份、鱼漂胶6份、水合乙酰丙酮化铈12份、纳米氧化锌3.5份。
将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A。将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.35h,制得混合物B。将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
实施例5
本发明实施例中,一种低碳清洁燃料,由以下按照重量份的原料组成:甲醇41份、柴油32份、鱼漂胶5份、水合乙酰丙酮化铈11份、纳米氧化锌3份。
将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A。将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.35h,制得混合物B。将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
对比例1
除不含有鱼漂胶外,其原料含量及制备过程与实施例5一致。
对比例2
除不含有水合乙酰丙酮化铈外,其原料含量及制备过程与实施例5一致。
对比例3
除不含有鱼漂胶以及水合乙酰丙酮化铈外,其原料含量及制备过程与实施例5一致。
实施例6
实施例5产品的性能指标经某省质量监督检测研究院与GB252-2000国家标准车用柴油对比检测数据详见表1。
表1
将实施例5的燃料进行机动车排气检测:
检测依据:GB 3847-2005《车用压燃式发动机和压燃式发动机汽车排气烟度排放限值及测量方法》
在同一台捷达FV7190GDF轿车上先使用“0#柴油”进行排气检测,然后再用“实施例5”样品进行对比排气检测,检测结果见表2。可知,经该轿车分别用“0#柴油”和实施例5进行自由加速工况下的实车对比试验,本发明样品的滤纸烟度净化率为75%。
表2
0号柴油 实施例5 净化率(%)
烟度值(Rb) 1.2 0.3 75
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (3)

1.一种低碳清洁燃料,其特征在于,由以下按照重量份的原料组成:甲醇37-45份、柴油28-36份、鱼漂胶3-7份、水合乙酰丙酮化铈9-13份、纳米氧化锌2-4份;
所述燃料制备由以下步骤组成:
1)将柴油、鱼漂胶与水合乙酰丙酮化铈混合,并在79℃的温度下密封搅拌处理57min,制得混合物A;
2)将甲醇与纳米氧化锌混合,并在68℃的温度下搅拌处理1.3-1.4h,制得混合物B;
3)将混合物A与混合物B混合,加热至62℃搅拌22min,然后在该温度下超声处理1.3h,超声功率为900W,制得燃料。
2.根据权利要求1所述的低碳清洁燃料,其特征在于,由以下按照重量份的原料组成:甲醇39-43份、柴油30-34份、鱼漂胶4-6份、水合乙酰丙酮化铈10-12份、纳米氧化锌2.5-3.5份。
3.根据权利要求1所述的低碳清洁燃料,其特征在于,由以下按照重量份的原料组成:甲醇41份、柴油32份、鱼漂胶5份、水合乙酰丙酮化铈11份、纳米氧化锌3份。
CN201611101004.4A 2016-12-05 2016-12-05 一种低碳清洁燃料及其制备方法 Active CN106753602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611101004.4A CN106753602B (zh) 2016-12-05 2016-12-05 一种低碳清洁燃料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611101004.4A CN106753602B (zh) 2016-12-05 2016-12-05 一种低碳清洁燃料及其制备方法

Publications (2)

Publication Number Publication Date
CN106753602A CN106753602A (zh) 2017-05-31
CN106753602B true CN106753602B (zh) 2019-06-07

Family

ID=58883335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611101004.4A Active CN106753602B (zh) 2016-12-05 2016-12-05 一种低碳清洁燃料及其制备方法

Country Status (1)

Country Link
CN (1) CN106753602B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050090565A1 (en) * 2003-10-28 2005-04-28 Sprague Barry N. Heavy oil emulsion stabilizers containing saccharide based emulsion stabilizer
US20090000186A1 (en) * 2007-06-28 2009-01-01 James Kenneth Sanders Nano-sized metal and metal oxide particles for more complete fuel combustion
DK2396390T3 (en) * 2009-02-11 2017-01-16 Agowa Ip Aps Use of a preparation as a lamp fuel

Also Published As

Publication number Publication date
CN106753602A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Ghanbari et al. Effect of alumina nanoparticles as additive with diesel–biodiesel blends on performance and emission characteristic of a six-cylinder diesel engine using response surface methodology (RSM)
Fangsuwannarak et al. IMPROVEMENTS OF PALM BIODIESEL PROPERTIES BY USING NANO-TIO 2 ADDITIVE, EXHAUST EMISSION AND ENGINE PERFORMANCE.
Gundoshmian et al. Evaluation of performance and emission characteristics of a CI engine using functional multi-walled carbon nanotubes (MWCNTs-COOH) additives in biodiesel-diesel blends
Yaqoob et al. Energy, exergy, sustainability and economic analysis of waste tire pyrolysis oil blends with different nanoparticle additives in spark ignition engine
US20120174472A1 (en) Fuel Additive and Method for Use for Combustion Enhancement and Emission Reduction
Khalid et al. Performance and emissions characteristics of crude jatropha oil biodiesel blends in a diesel engine
Wu et al. Production of waste tyre pyrolysis oil as the replacement for fossil fuel for diesel engines with constant hydrogen injection via air intake manifold
Bhurat et al. Experimental study on performance and emissions characteristics of single cylinder diesel engine with ethanol and biodiesel blended fuels with diesel
Arunprasad et al. Performance and emission characteristics of engine using Naviculla Sp. algae oil methyl ester with MgO nanoparticles
D’Silva et al. Effect of TiO2 nanoparticle concentration in Pongamia Pinnata methyl ester on performance and emission characteristics of CI engine
CN106753602B (zh) 一种低碳清洁燃料及其制备方法
CN106753601B (zh) 一种低碳高清洁燃料及其制备方法
Jagadish et al. Performance and emission characteristics of diesel engine run on biofuels based on experimental and semi analytical methods
Kim et al. The characteristics of biodiesel and oxygenated additives in a compression ignition engine
Bedar et al. Effect of exhaust gas recirculation (EGR) on diesel engine using Simarouba glauca biodiesel blends
CN108219869B (zh) 一种低碳高清洁柴油车用燃料及其制备方法
CN106635187A (zh) 一种低碳清洁燃料的制备方法
Bourgoin et al. Acidic condensation in HP EGR systems cooled at low temperature using diesel and biodiesel fuels
Selvanayagam et al. Experimental Investigation in Performance Evaluation of Nano Additives Diesel Blend using Diesel Engine.
Sayed et al. Review on NOx emissions from using biodiesel blends in diesel engines
CN106753606A (zh) 一种低碳高清洁燃料
Elipey et al. Dispersion effect of Al2O3 nanoparticles in diesel and hemp biodiesel blend on the engine parameters of a diesel engine
Aalam et al. Reduction of emissions from CRDI diesel engine using metal oxide nanoparticles blended diesel fuel
Saraswat et al. Bio diesel: A future fuel in internal combustion engines
Khan et al. Performance and emission analysis of a modern small DI diesel engine using biodiesel–diesel blends and additives with EGR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190515

Address after: 226600 Development Avenue 188, Haian County Development Zone, Nantong City, Jiangsu Province

Applicant after: JIANGSU CHENRI ENVIRONMENTAL PROTECTION TECHNOLOGY CO., LTD.

Address before: 450000 Henan Zhengzhou high tech Industrial Development Zone 6 Cui Zhu street 4 4 1 floor with No. 05

Applicant before: Zhengzhou Li Life Technology Co. Ltd.

GR01 Patent grant
GR01 Patent grant