CN106735190A - 一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法 - Google Patents

一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法 Download PDF

Info

Publication number
CN106735190A
CN106735190A CN201611117964.XA CN201611117964A CN106735190A CN 106735190 A CN106735190 A CN 106735190A CN 201611117964 A CN201611117964 A CN 201611117964A CN 106735190 A CN106735190 A CN 106735190A
Authority
CN
China
Prior art keywords
metal capsule
pressing
colding pressing
sealing
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611117964.XA
Other languages
English (en)
Other versions
CN106735190B (zh
Inventor
魏少华
左涛
刘彦强
聂俊辉
马自力
樊建中
郝心想
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Youyan metal composite technology Co.,Ltd.
Original Assignee
Beijing General Research Institute for Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing General Research Institute for Non Ferrous Metals filed Critical Beijing General Research Institute for Non Ferrous Metals
Priority to CN201611117964.XA priority Critical patent/CN106735190B/zh
Publication of CN106735190A publication Critical patent/CN106735190A/zh
Application granted granted Critical
Publication of CN106735190B publication Critical patent/CN106735190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,属于金属基复合材料管材制备技术领域。该制备方法为将增强体颗粒与铝合金粉末按照一定比例进行均匀混合,所得混合粉末封装于冷等静压包套组件中进行冷等静压成型为管坯,冷压管坯经真空除气后进行热等静压致密化,制成完全致密的管材,最后经机加工得到复合材料管材。本发明所制备的大尺寸厚壁管材具有轻质高强、高模量等特点,而且质量稳定、成本低,可以广泛应用于航空航天、汽车、先进武器等领域高强轻质大尺寸管件。

Description

一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法
技术领域
本发明属于金属基复合材料管材制备技术领域,具体涉及一种颗粒增强铝基复合材料大尺寸厚壁管材的制造方法。
背景技术
颗粒增强铝基复合材料是近年来发展起来的一种先进结构材料,该材料具有高比强度和比刚度、耐磨、耐疲劳和低密度等优异的性能。从上世纪80年代初开始,世界各国竞相对这类材料进行了许多基础性研究,取得了显著成绩。目前,在美国和欧洲等发达国家,颗粒增强铝基复合材料已经在一系列重要场合获得了应用,比如:DWA公司用6092/SiC/17.5p复合材料代替原有的2214铝合金蒙皮,用于F-16战斗机的腹鳍,使刚度提高50%,寿命由原来的数百小时延长到至少6000h飞行时间。
颗粒增强铝基复合材料属于轻质高强、高模量材料,该材料制成的大尺寸薄壁管材可以应用于水下航行器壳体,解决铝合金刚度低、钢密度大等问题。经对现有技术文献的检索发现,中国专利公开报道有关颗粒增强铝基复合材料大尺寸薄壁管材的制造方法旋压为主,其旋压用大尺寸厚壁管材的制造方法为铸造或粉末冶金坯锭+反挤压,该方法工艺路线长、成本高,需要大型挤压机。
发明内容
本发明针对现有大尺寸厚壁管材的制造方法的不足,提供了一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,所述管材尺寸为:外径200~1000mm、壁厚20~150mm、长度200~1500mm,其特征是,采用粉末冶金和热等静压技术制备,该方法包括下述步骤:
(1)将增强体颗粒与铝合金粉末按照比例加入到混料机中,加入钢球后进行均匀混合,制成混合粉末;
(2)将混合粉末封装于冷等静压包套组件中进行冷等静压成型;
(3)去除管坯外面的冷等静压包套组件,得到带有冷压定形芯模的管坯;
(4)将带有冷压定形芯模的管坯封装入金属包套组件中进行高温真空除气处理;
(5)将经高温真空除气处理的管坯进行热等静压致密化处理;
(6)经致密化处理后的管坯通过机加工去掉金属包套和冷压定形芯模,得到颗粒增强铝基复合材料管材。
步骤(1)中,所述增强体颗粒为Al2O3、SiC、B4C、TiC、Si3N4、AlN中的一种,平均粒度为2~20μm,增强体颗粒在混合粉末中体积百分含量为5%~15%;所述铝合金粉末为2×××和6×××中的任意一种合金,平均粒度为5~75μm,铝合金粉末在混合粉末中的体积百分含量为95%~85%。
步骤(1)中,所述混合用钢球材质为轴承不锈钢,规格为Φ10~Φ20mm,球料重量比为(5~15):1,混料机转速为30~60r/min,混合时间为24~48小时。
步骤(2)中,所述冷等静压的压力为100~200MPa,保压时间为10~30min。
步骤(2)中,所述冷等静压包套组件由冷压橡胶包套、冷压第一密封塞子、冷压第一密封卡箍、冷压第二密封塞子、冷压第二密封卡箍、冷压密封芯模、冷压定形芯模组成;封装顺序为:首先用冷压第一密封卡箍将冷压橡胶包套的一端、冷压第一密封塞子和冷压密封芯模的一端装配密封,然后把冷压定形芯模装配到冷压密封芯模内部,将复合材料混合粉末填充到冷压橡胶包套和冷压定形芯模之间,最后用冷压第二密封卡箍将冷压橡胶包套的另一端、冷压第二密封塞子和冷压密封芯模的另一端装配密封。
所述冷压密封芯模与冷压定形芯模之间的间隙为0.5±0.2mm。
所述冷压定形芯模材质为不锈钢,壁厚5~10mm,外径比最终管材内径小4~10mm;所述冷压密封芯模材质为优质碳素结构用钢或低碳钢,壁厚10~20mm。
步骤(4)中,所述高温除气温度为530~590℃,升温速度为10~50℃/h,封口前真空度≤1×10-2Pa。
步骤(4)中,所述金属包套材质为纯铝,包套厚度为2~5mm;所述金属包套组件由金属包套外筒、金属包套内筒、金属包套第一密封盖、金属包套第二密封盖、金属包套抽气管组成;封装顺序为:首先将金属包套外筒和金属包套内筒分别与金属包套第一密封盖装配焊接密封,形成金属包套第一焊缝和金属包套第二焊缝;然后把带有冷压定形芯模的管坯置于金属包套外筒和金属包套内筒之间;再将金属包套外筒和金属包套内筒分别与金属包套第二密封盖装配焊接密封,形成金属包套第三焊缝和金属包套第四焊缝;最后将金属包套抽气管与金属包套第二密封盖焊接相连,金属包套抽气管与管坯相通。
步骤(5)中,所述热等静压温度为530~590℃,压力为90~130MPa,保压时间为2~5小时,热等静压温度和高温除气的温度相同。
本发明的优点在于:
1、采用粉末冶金+热等静压技术,通过优化工艺参数制备的复合材料完全致密、无孔洞等缺陷,强度高;材料具有较高的延伸率、较好的塑性,非常有利于开展后续热加工变形。
2、在冷等静压包套组件中使用了冷压定形芯模,该冷压定形芯模既可保证管材内径均匀、尺寸偏差小,又能减少加工余量,节约材料,降低成本。
3、采用热等静压工艺进行最终致密化成形,在热等静压处理过程中,惰性气体介质压力通过包套均匀作用于管坯,管坯收缩均匀、形状规则、机加工量小。
4、选用超细粉末直接混合制成混合粉末,使各组元粉末在微米尺度上均匀混合,避免了增强体颗粒的偏聚;所制得的复合材料管材的组织细小均匀、完全致密;增强体颗粒弥散分布于铝基体中,具有较高的延伸率和较好的热加工性能。
附图说明
图1是制备颗粒增强铝基复合材料管材的工艺流程图;
图2是颗粒增强铝基复合材料冷等静压包套组件结构示意图;
图3是颗粒增强铝基复合材料金属包套组件结构示意图。
具体实施方式
本发明提供了一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,下面通过具体实施方法和附图对本发明做进一步说明,但不意味着对本发明保护范围的限制。
图2是颗粒增强铝基复合材料冷等静压包套组件结构示意图,其中,包括冷压橡胶包套101,冷压第一密封塞子102,冷压第一密封卡箍103,冷压第二密封塞子104,冷压第二密封卡箍105,冷压密封芯模106,冷压定形芯模107,复合材料混合粉末108。
图3是颗粒增强铝基复合材料金属包套组件结构示意图,其中,金属包套外筒201,金属包套内筒202,金属包套第一密封盖203,金属包套第二密封盖204,复合材料冷等静压管坯205,冷压定形芯模206,金属包套第一焊缝207,金属包套第二焊缝208,金属包套第三焊缝209,金属包套第四焊缝210,金属包套抽气管211。
实施例1
本实施例所制备的复合材料管材成分为15vol.%SiCp/2009Al,管材尺寸为外径1000mm、壁厚150mm、长度800mm。
按照图1所示的制备方法:(1)将碳化硅粉末与2009Al合金粉末按照体积比15:75均匀混合,碳化硅粉末平均粒度d0.5为5.5μm,2009Al粉末平均粒度d0.5为10μm;混合用钢球材质为轴承不锈钢,规格为Φ20mm,球料重量比为5:1,混料机转速为30r/min,混合48小时;(2)将各个冷等静压包套组件顺序组装,冷压定形芯模材质选用不锈钢,外径690mm、壁厚10mm、长度820mm;冷压密封芯模材质材质选用45号钢,外径669mm,壁厚20mm;(3)将混合粉末封装于冷等静压包套组件中,封装顺序为:首先用冷压第一密封卡箍103将冷压橡胶包套101的一端、冷压第一密封塞子102和冷压密封芯模106的一端装配密封,然后把冷压定形芯模107装配到冷压密封芯模106内部,将复合材料混合粉末108填充到冷压橡胶包套101和冷压定形芯模107之间,最后用冷压第二密封卡箍105将冷压橡胶包套101的另一端、冷压第二密封塞子104和冷压密封芯模106的另一端装配密封;封装完成后进行冷等静压成型,冷等静压压力为200MPa,冷等静压保压时间为20min;(4)去除管坯外面的冷等静压包套101组件,得到带有冷压定形芯模的管坯;(5)将带有冷压定形芯模的管坯封装入纯铝包套组件中进行高温真空除气处理,封装顺序为:首先将金属包套外筒201和金属包套内筒202分别与金属包套第一密封盖203装配焊接密封,形成金属包套第一焊缝207和金属包套第二焊缝208;然后把带有冷压定形芯模的管坯置于金属包套外筒201和金属包套内筒202之间;再将金属包套外筒201和金属包套内筒202分别与金属包套第二密封盖204装配焊接密封,形成金属包套第三焊缝209和金属包套第四焊缝210;最后将金属包套抽气管211与金属包套第二密封盖204焊接相连,金属包套抽气管211与管坯相通;其中,包套厚度为5mm,除气温度590℃,除气升温速度为10℃/h,封口前真空度为1×10-2Pa;(6)将经高温真空除气处理的管坯进行热等静压致密化,热等静压温度为590℃,压力为90MPa,在此温度压力下保持5小时;(7)机加工去掉金属包套和冷压定形芯模,得到复合材料管材。
实施例2
本实施例所制备的复合材料管材成分为5vol.%Al2O3/2024Al,管材尺寸为外径500mm、壁厚80mm、长度500mm。
按照图1所示的制备方法:(1)将Al2O3粉末与2024Al合金粉末按照体积比5:95均匀混合,Al2O3粉末平均粒度d0.5为2μm,2024Al粉末平均粒度d0.5为5μm;混合用钢球材质为轴承不锈钢,规格为Φ10mm,球料重量比为8:1,混料机转速为40r/min,混合48小时;(2)将各个冷等静压包套组件顺序组装,冷压定形芯模材质选用不锈钢,外径330mm、壁厚6mm、长度520mm;冷压密封芯模材质材质选用45号钢,外径317mm,壁厚16mm;(3)将混合粉末封装于冷等静压包套组件中,封装顺序为:首先用冷压第一密封卡箍103将冷压橡胶包套101的一端、冷压第一密封塞子102和冷压密封芯模106的一端装配密封,然后把冷压定形芯模107装配到冷压密封芯模106内部,将复合材料混合粉末108填充到冷压橡胶包套101和冷压定形芯模107之间,最后用冷压第二密封卡箍105将冷压橡胶包套101的另一端、冷压第二密封塞子104和冷压密封芯模106的另一端装配密封;封装完成后进行冷等静压成型,冷等静压压力为100MPa,冷等静压保压时间为30min;(4)去除管坯外面的冷等静压包套组件,得到带有冷压定形芯模的管坯;(5)将带有冷压定形芯模的管坯封装入纯铝包套组件中进行高温真空除气处理,封装顺序为:首先将金属包套外筒201和金属包套内筒202分别与金属包套第一密封盖203装配焊接密封,形成金属包套第一焊缝207和金属包套第二焊缝208;然后把带有冷压定形芯模的管坯置于金属包套外筒201和金属包套内筒202之间;再将金属包套外筒201和金属包套内筒202分别与金属包套第二密封盖204装配焊接密封,形成金属包套第三焊缝209和金属包套第四焊缝210;最后将金属包套抽气管211与金属包套第二密封盖204焊接相连,金属包套抽气管211与管坯相通;其中,包套厚度为2mm,除气温度560℃,除气升温速度为50℃/h,封口前真空度为1×10-2Pa;(6)将经高温真空除气处理的管坯进行热等静压致密化,热等静压温度为560℃,压力为130MPa,在此温度压力下保持3小时;(7)机加工去掉金属包套和冷压定形芯模,得到复合材料管材。
实施例3
本实施例所制备的复合材料管材成分为10vol.%B4C/6061Al,管材尺寸为外径200mm、壁厚20mm、长度1500mm。
按照图1所示的制备方法:(1)将B4C粉末与6061Al合金粉末按照体积比10:90均匀混合,B4C粉末平均粒度d0.5为20μm,6061Al粉末平均粒度d0.5为75μm;混合用钢球材质为轴承不锈钢,规格为Φ15mm,球料重量比为15:1,混料机转速为60r/min,混合24小时;(2)将各个冷等静压包套组件顺序组装,冷压定形芯模材质选用不锈钢,外径156mm、壁厚4mm、长度1520mm;冷压密封芯模材质材质选用45号钢,外径147mm,壁厚10mm;(3)将混合粉末封装于冷等静压包套组件中,封装顺序为:首先用冷压第一密封卡箍103将冷压橡胶包套101的一端、冷压第一密封塞子102和冷压密封芯模106的一端装配密封,然后把冷压定形芯模107装配到冷压密封芯模106内部,将复合材料混合粉末108填充到冷压橡胶包套101和冷压定形芯模107之间,最后用冷压第二密封卡箍105将冷压橡胶包套101的另一端、冷压第二密封塞子104和冷压密封芯模106的另一端装配密封;封装完成后进行冷等静压成型,冷等静压压力为180MPa,冷等静压保压时间为24min;(4)去除管坯外面的冷等静压包套组件,得到带有冷压定形芯模的管坯;(5)将带有冷压定形芯模的管坯封装入纯铝包套组件中进行高温真空除气处理,封装顺序为:首先将金属包套外筒201和金属包套内筒202分别与金属包套第一密封盖203装配焊接密封,形成金属包套第一焊缝207和金属包套第二焊缝208;然后把带有冷压定形芯模的管坯置于金属包套外筒201和金属包套内筒202之间;再将金属包套外筒201和金属包套内筒202分别与金属包套第二密封盖204装配焊接密封,形成金属包套第三焊缝209和金属包套第四焊缝210;最后将金属包套抽气管211与金属包套第二密封盖204焊接相连,金属包套抽气管211与管坯相通;其中,包套厚度为3.5mm,除气温度530℃,除气升温速度为20℃/h,封口前真空度为1×10-2Pa;(6)将经高温真空除气处理的管坯进行热等静压致密化,热等静压温度为530℃,压力为100MPa,在此温度压力下保持1小时;(7)机加工去掉金属包套和冷压定形芯模,得到复合材料管材。

Claims (10)

1.一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,所述管材尺寸为:外径200~1000mm、壁厚20~150mm、长度200~1500mm,其特征在于,采用粉末冶金和热等静压技术制备,该方法包括下述步骤:
(1)将增强体颗粒与铝合金粉末按照比例加入到混料机中,加入钢球后进行均匀混合,制成混合粉末;
(2)将混合粉末封装于冷等静压包套组件中进行冷等静压成型;
(3)去除管坯外面的冷等静压包套组件,得到带有冷压定形芯模的管坯;
(4)将带有冷压定形芯模的管坯封装入金属包套组件中进行高温真空除气处理;
(5)将经高温真空除气处理的管坯进行热等静压致密化处理;
(6)经致密化处理后的管坯通过机加工去掉金属包套和冷压定形芯模,得到颗粒增强铝基复合材料管材。
2.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(1)中,所述增强体颗粒为Al2O3、SiC、B4C、TiC、Si3N4、AlN中的一种,平均粒度为2~20μm,增强体颗粒在混合粉末中体积百分含量为5%~15%;所述铝合金粉末为2×××和6×××中的任意一种合金,平均粒度为5~75μm,铝合金粉末在混合粉末中的体积百分含量为95%~85%。
3.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(1)中,所述混合用钢球材质为轴承不锈钢,规格为Φ10~Φ20mm,球料重量比为(5~15):1,混料机转速为30~60r/min,混合时间为24~48小时。
4.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(2)中,所述冷等静压的压力为100~200MPa,保压时间为10~30min。
5.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(2)中,所述冷等静压包套组件由冷压橡胶包套、冷压第一密封塞子、冷压第一密封卡箍、冷压第二密封塞子、冷压第二密封卡箍、冷压密封芯模、冷压定形芯模组成;封装顺序为:首先用冷压第一密封卡箍将冷压橡胶包套的一端、冷压第一密封塞子和冷压密封芯模的一端装配密封,然后把冷压定形芯模装配到冷压密封芯模内部,将复合材料混合粉末填充到冷压橡胶包套和冷压定形芯模之间,最后用冷压第二密封卡箍将冷压橡胶包套的另一端、冷压第二密封塞子和冷压密封芯模的另一端装配密封。
6.根据权利要求5所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:所述冷压密封芯模与冷压定形芯模之间的间隙为0.5±0.2mm。
7.根据权利要求5所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:所述冷压定形芯模材质为不锈钢,壁厚5~10mm,外径比最终管材内径小4~10mm;所述冷压密封芯模材质为优质碳素结构用钢或低碳钢,壁厚10~20mm。
8.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(4)中,所述高温除气温度为530~590℃,升温速度为10~50℃/h,封口前真空度≤1×10-2Pa。
9.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(4)中,所述金属包套材质为纯铝,包套厚度为2~5mm;所述金属包套组件由金属包套外筒、金属包套内筒、金属包套第一密封盖、金属包套第二密封盖、金属包套抽气管组成;封装顺序为:首先将金属包套外筒和金属包套内筒分别与金属包套第一密封盖装配焊接密封,形成金属包套第一焊缝和金属包套第二焊缝;然后把带有冷压定形芯模的管坯置于金属包套外筒和金属包套内筒之间;再将金属包套外筒和金属包套内筒分别与金属包套第二密封盖装配焊接密封,形成金属包套第三焊缝和金属包套第四焊缝;最后将金属包套抽气管与金属包套第二密封盖焊接相连,金属包套抽气管与管坯相通。
10.根据权利要求1所述的一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法,其特征是:步骤(5)中,所述热等静压温度为530~590℃,压力为90~130MPa,保压时间为2~5小时。
CN201611117964.XA 2016-12-07 2016-12-07 一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法 Active CN106735190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611117964.XA CN106735190B (zh) 2016-12-07 2016-12-07 一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611117964.XA CN106735190B (zh) 2016-12-07 2016-12-07 一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法

Publications (2)

Publication Number Publication Date
CN106735190A true CN106735190A (zh) 2017-05-31
CN106735190B CN106735190B (zh) 2019-03-22

Family

ID=58877117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611117964.XA Active CN106735190B (zh) 2016-12-07 2016-12-07 一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法

Country Status (1)

Country Link
CN (1) CN106735190B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906316A (zh) * 2020-08-12 2020-11-10 山东威尔斯通钨业有限公司 大型环形粉末冶金材料生坯的制造方法及压制模具
CN114030217A (zh) * 2021-11-29 2022-02-11 航天特种材料及工艺技术研究所 一种筒形纳米隔热材料及其制备方法
CN115138842A (zh) * 2022-06-23 2022-10-04 洛阳科威钨钼有限公司 一种耐高温氧化的高温空气直接点火稳燃器外壳的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472354A (zh) * 2002-07-31 2004-02-04 ������ɫ�����о���Ժ 颗粒增强铝基复合材料及其零部件和零部件的近净成形工艺
CN102114719A (zh) * 2009-12-30 2011-07-06 北京有色金属研究总院 一种包铝颗粒增强铝基复合材料及其制备方法
CN102114541A (zh) * 2009-12-30 2011-07-06 北京有色金属研究总院 一种高体积分数硅颗粒增强铝基复合材料的制备工艺
CN102560204A (zh) * 2010-12-23 2012-07-11 北京有色金属研究总院 硅铝双连续复合材料及其制备方法
CN105803293A (zh) * 2014-12-31 2016-07-27 北京有色金属研究总院 一种碳化硅和硅颗粒增强的铝铜基复合材料及其制备方法
US20160273081A1 (en) * 2015-03-17 2016-09-22 Materion Corporation Lightweight, robust, wear resistant components comprising an aluminum matrix composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472354A (zh) * 2002-07-31 2004-02-04 ������ɫ�����о���Ժ 颗粒增强铝基复合材料及其零部件和零部件的近净成形工艺
CN102114719A (zh) * 2009-12-30 2011-07-06 北京有色金属研究总院 一种包铝颗粒增强铝基复合材料及其制备方法
CN102114541A (zh) * 2009-12-30 2011-07-06 北京有色金属研究总院 一种高体积分数硅颗粒增强铝基复合材料的制备工艺
CN102560204A (zh) * 2010-12-23 2012-07-11 北京有色金属研究总院 硅铝双连续复合材料及其制备方法
CN105803293A (zh) * 2014-12-31 2016-07-27 北京有色金属研究总院 一种碳化硅和硅颗粒增强的铝铜基复合材料及其制备方法
US20160273081A1 (en) * 2015-03-17 2016-09-22 Materion Corporation Lightweight, robust, wear resistant components comprising an aluminum matrix composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111906316A (zh) * 2020-08-12 2020-11-10 山东威尔斯通钨业有限公司 大型环形粉末冶金材料生坯的制造方法及压制模具
CN114030217A (zh) * 2021-11-29 2022-02-11 航天特种材料及工艺技术研究所 一种筒形纳米隔热材料及其制备方法
CN114030217B (zh) * 2021-11-29 2023-06-20 航天特种材料及工艺技术研究所 一种筒形纳米隔热材料及其制备方法
CN115138842A (zh) * 2022-06-23 2022-10-04 洛阳科威钨钼有限公司 一种耐高温氧化的高温空气直接点火稳燃器外壳的制备方法
CN115138842B (zh) * 2022-06-23 2023-10-20 洛阳科威钨钼有限公司 一种耐高温氧化的高温空气直接点火稳燃器外壳的制备方法

Also Published As

Publication number Publication date
CN106735190B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN106735186B (zh) 一种3d打印-冷等静压制备钛合金多级齿轮的方法
CN106735190B (zh) 一种颗粒增强铝基复合材料大尺寸厚壁管材的制备方法
EP0202735B1 (en) Process for making a composite powder metallurgical billet
CN1660540A (zh) 含有金属间钛铝合金构件或半成品的制造方法及相应构件
CN108588500A (zh) 一种中子吸收材料快速半固态温区成型方法
CN110230012A (zh) 一种纤维增强铝基复合材料的真空气压浸渗成形方法
BR102015004077A2 (pt) métodos para fabricar uma peça
CN112410598A (zh) 颗粒增强铝基复合材料大尺寸坯锭的粉末冶金制备方法
CN106670467A (zh) 一种快速凝固粉末冶金高硅铝合金脱皮热挤压的制备方法
CN110216277A (zh) 一种难熔金属复合管材的制备方法
CN107088657A (zh) 一种基于快速凝固粉末冶金高硅铝合金的超宽幅铝合金薄板的制备方法
CN104174848A (zh) 一种钛合金汽车连轴杆的粉末热等静压成型方法
CN106735189A (zh) 一种颗粒增强金属基复合材料的熔融金属包覆热等静压制备方法
CN110899703A (zh) 一种高空隙率金属膜的制备方法
CN110947958A (zh) 一种金属粉末旋压成型装置及其成型方法
CN112024896B (zh) 一种高C含量CNTs-ZA27锌铝基复合棒材的制备方法
CN113684391B (zh) 一种高性能铝合金及其复合材料的制备方法
CN106086500B (zh) 一种制备原位三维连续增强Al基复合材料的方法
CN109954884A (zh) 一种粉末冶金高强度难变形铝合金粉末的装料成型方法
CN111014679B (zh) 一种高阻尼铝合金增强铁基复合材料及其制备方法
CN105525119A (zh) 一种制备纳米晶镁合金粉末固结成型的方法
CN1239284C (zh) 由元素粉末直接制备TiNi形状记忆合金管接头的方法
CN102226257B (zh) 铌或铌合金长丝增强钛铝合金铸件的制备方法
JPH042703A (ja) Al基複合材料の製造方法
JPH0438829B2 (zh)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wei Shaohua

Inventor after: Zhang Shaoming

Inventor after: Zuo Tao

Inventor after: Liu Yanqiang

Inventor after: Nie Junhui

Inventor after: Ma Zili

Inventor after: Fan Jianzhong

Inventor after: Hao Xinxiang

Inventor before: Wei Shaohua

Inventor before: Zuo Tao

Inventor before: Liu Yanqiang

Inventor before: Nie Junhui

Inventor before: Ma Zili

Inventor before: Fan Jianzhong

Inventor before: Hao Xinxiang

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190904

Address after: 101407 Beijing city Huairou District Yanqi Economic Development Zone Branch Hing Street No. 11

Patentee after: Research Institute of engineering and Technology Co., Ltd.

Address before: 100088 Beijing city Xicheng District Xinjiekou Avenue No. 2

Patentee before: General Research Institute for Nonferrous Metals

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210826

Address after: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee after: Youyan metal composite technology Co.,Ltd.

Address before: 101407 No. 11 Xingke East Street, Yanqi Economic Development Zone, Huairou District, Beijing

Patentee before: YOUYAN ENGINEERING TECHNOLOGY RESEARCH INSTITUTE Co.,Ltd.