CN106709564A - Neuron system parameter estimation technique - Google Patents

Neuron system parameter estimation technique Download PDF

Info

Publication number
CN106709564A
CN106709564A CN201510777013.4A CN201510777013A CN106709564A CN 106709564 A CN106709564 A CN 106709564A CN 201510777013 A CN201510777013 A CN 201510777013A CN 106709564 A CN106709564 A CN 106709564A
Authority
CN
China
Prior art keywords
neuron
parameter
centerdot
parameter estimation
ith
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510777013.4A
Other languages
Chinese (zh)
Inventor
廖芳
楼旭阳
赵丽萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201510777013.4A priority Critical patent/CN106709564A/en
Publication of CN106709564A publication Critical patent/CN106709564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种神经元系统参数估计技术。针对一类生物神经元系统,对其通式进行模型变换得到适用于递推最小二乘算法参数估计的标准形式,通过采集输入输出数据,构造递推最小二乘算法所需信息,最后在线估计系统参数。该发明技术具有在线估计、实现简单的优点,可作为估计一般生物神经元系统参数的重要手段。

The invention discloses a neuron system parameter estimation technique. For a class of biological neuron system, the model transformation of its general formula is obtained to obtain a standard form suitable for parameter estimation of the recursive least squares algorithm. By collecting input and output data, the information required by the recursive least squares algorithm is constructed, and finally estimated online System parameters. The inventive technology has the advantages of online estimation and simple realization, and can be used as an important means for estimating the parameters of general biological neuron systems.

Description

一种神经元系统参数估计技术A Parameter Estimation Technique for Neuron System

背景技术Background technique

目前,许多生物神经元系统的控制理论研究多数是建立在系统模型参数已知的情况下来进行分析,但实际中系统模型参数往往未必精确已知,所以神经元系统参数估计成为重要的研究课题之一。最小二乘算法是一种重要的参数估计手段,到目前为止,国内外学者针对不同需求或应用场合,提出并发展了不少最小二乘算法,其中递推最小二乘算法由于其分析简单、实现容易而受到广泛应用。At present, most of the control theory studies on biological neuron systems are based on the fact that the system model parameters are known, but in practice, the system model parameters are often not necessarily known accurately, so the parameter estimation of neuron systems has become one of the important research topics. one. The least squares algorithm is an important means of parameter estimation. So far, scholars at home and abroad have proposed and developed many least squares algorithms for different needs or applications. Among them, the recursive least squares algorithm is simple because of its analysis, Easy to implement and widely used.

研究表明,通过设置生物神经元系统的相关参数,系统会呈现出混沌状态,而混沌现象在化学、信息科学、保密通信等领域存在着潜在的应用价值,所以研究混沌生物神经元系统的参数估计具有重要意义。迄今为止,虽然存在一些混沌生物神经元系统的参数估计方法,如自适应同步算法等,但是这些算法较复杂、计算量大、需要利用同步控制来估计参数,存在一定局限性。本发明将提供一种可在线估计、简单方便的神经元系统参数估计技术。Studies have shown that by setting the relevant parameters of the biological neuron system, the system will show a chaotic state, and the chaotic phenomenon has potential application value in the fields of chemistry, information science, secure communication, etc., so the parameter estimation of the chaotic biological neuron system is studied is of great significance. So far, although there are some parameter estimation methods for chaotic biological neuron systems, such as adaptive synchronization algorithms, these algorithms are complex, computationally intensive, and need to use synchronous control to estimate parameters, which has certain limitations. The invention will provide a simple and convenient neuron system parameter estimation technique that can be estimated online.

发明内容Contents of the invention

本发明的目的在于克服现有神经元系统参数估计算法结构复杂、计算量大等缺点,利用递推最小二乘法可在线辨识、实现简单方便的优点,提出一种新型的神经元系统参数估计技术。The purpose of the present invention is to overcome the shortcomings of the existing neuron system parameter estimation algorithm, such as complex structure and large amount of calculation, and to propose a new type of neuron system parameter estimation technology by using the recursive least squares method, which can be identified online and realizes the advantages of simplicity and convenience. .

本发明采用的技术方案包含如下步骤:The technical solution adopted in the present invention comprises the following steps:

步骤1:模型变换。一般生物神经元系统可描述为:Step 1: Model transformation. A general biological neuron system can be described as:

其中,x=[x1(t),…,xn(t)]T为系统的状态变量;ki(i=1,2,…,n)为系统给定输入;hi(x)(i=1,2,…,n)为第i个神经元系统的非线性函数;pij(i=1,2,…,n,j=1,2,…,n)为第i个神经元和第j个神经元之间的连接权系数;sij(x)(i=1,2,…,n,j=1,2,…,n)为第i个神经元和第j个神经元之间的激活函数;ωi(t)(i=1,2,…,n)为第i个神经元的外部噪声。Among them, x=[x 1 (t), ..., x n (t)] T is the state variable of the system; k i (i=1, 2, ..., n) is the given input of the system; h i (x) (i=1,2,...,n) is the nonlinear function of the i-th neuron system; p ij (i=1,2,...,n,j=1,2,...,n) is the i-th neuron system The connection weight coefficient between the neuron and the jth neuron; The activation function between neurons; ω i (t) (i=1, 2,..., n) is the external noise of the i-th neuron.

将上述生物神经元系统转化为如下估计标准形式:Transform the above biological neuron system into the following estimated standard form:

其中,in,

θ=[p11 p12 … p1n p21 p22 … p2n … pn1 pn2 … pnn]T θ=[p 11 p 12 ... p 1n p 21 p 22 ... p 2n ... p n1 p n2 ... p nn ] T

步骤2:参数估计。为了估计参数向量θ,采用下述递推最小二乘算法:Step 2: Parameter estimation. To estimate the parameter vector θ, the following recursive least squares algorithm is used:

(a)参数初始化。设参数估计值为取最大迭代次数为tmax,t=0,初始参数估计为协方差矩阵为P(0)=106I,其中1=[11…1]T,I为单位矩阵。(a) Parameter initialization. Let the parameter estimates be Take the maximum number of iterations as t max , t=0, and estimate the initial parameters as The covariance matrix is P(0)=10 6 I, where 1=[11...1] T , and I is the identity matrix.

(b)采集数据并构建输出序列Y(t)与可测信息量 (b) Collect data and construct output sequence Y(t) and measurable information

(c)按下述公式计算增益向量L(t)及协方差阵P(t):(c) Calculate the gain vector L(t) and covariance matrix P(t) according to the following formula:

(d)更新参数估计值 (d) Update parameter estimates

(e)令t:=t+1,若t<tmax,转步骤(b),继续进行递推计算;反之,转步骤3。(e) Let t:=t+1, if t<t max , go to step (b) and continue the recursive calculation; otherwise, go to step 3.

步骤3:停止计算,得到最终估计的参数值 Step 3: Stop the calculation and get the final estimated parameter values

本发明与已有估计算法相比具有以下优点:Compared with the existing estimation algorithm, the present invention has the following advantages:

1.本发明可在线估计参数、实现简单方便;1. The present invention can estimate parameters online, and the realization is simple and convenient;

2.在随机噪声干扰下,仍能准确估计神经元系统参数;2. Under the interference of random noise, the neuron system parameters can still be accurately estimated;

3.参数估计值能快速收敛到真实参数值。3. Parameter estimates can quickly converge to real parameter values.

附图说明Description of drawings

图1是基于本发明方案的参数估计技术流程图。Fig. 1 is a technical flowchart of parameter estimation based on the solution of the present invention.

图2是实施例中基于本发明方案的参数估计迭代过程曲线图。Fig. 2 is a curve diagram of the iterative process of parameter estimation based on the solution of the present invention in the embodiment.

具体实施方式detailed description

为了更好地理解本发明的技术方案,以下对实施方式作进一步的详细描述,并结合一个应用实例来说明具体实施方式,但不限于此。In order to better understand the technical solution of the present invention, the implementation manner will be further described in detail below, and an application example will be used to illustrate the specific implementation manner, but not limited thereto.

实施例:Hindmarsh-Rose神经元系统是一种重要的生物神经元系统,其数学模型方程如下:Embodiment: Hindmarsh-Rose neuron system is a kind of important biological neuron system, and its mathematical model equation is as follows:

其中,x1,x2,x3为状态变量;a,b,d,r均为系统参数;I为该神经元的外部刺激电流,该实施例中取I=4;ωi(t)(i=1,2,3)为零均值、方差为0.01的白噪声序列。当Hindmarsh-Rose神经元系统参数选取为a=1,b=3,d=5,r=0.006时,系统呈现混沌状态。本例目的在于辨识系统的4个参数a,b,d,r。Wherein, x 1 , x 2 , x 3 are state variables; a, b, d, r are system parameters; I is the external stimulation current of the neuron, and I=4 is taken in this embodiment; ω i (t) (i=1, 2, 3) is a white noise sequence with zero mean and variance of 0.01. When the Hindmarsh-Rose neuron system parameters are selected as a=1, b=3, d=5, r=0.006, the system appears chaotic state. The purpose of this example is to identify the 4 parameters a, b, d, r of the system.

本发明技术工作流程如图1所示,具体实施方式可以分为以下几步:The technical workflow of the present invention is as shown in Figure 1, and the specific implementation method can be divided into the following steps:

步骤1:模型变换。将Hindmarsh-Rose神经元模型转化为如下标准形式:Step 1: Model transformation. Transform the Hindmarsh-Rose neuron model into the following standard form:

其中,θ=[a b d r]Twhere, θ=[abdr] T ,

步骤2:参数估计。为了估计参数向量θ,采用下述递推最小二乘算法:Step 2: Parameter estimation. To estimate the parameter vector θ, the following recursive least squares algorithm is used:

(a)参数初始化。设参数估计值为取最大迭代次数为tmax=200,t=0,初始参数估计为协方差矩阵为P(0)=106I,其中1=[1 1 1 1]T,I为单位矩阵。(a) Parameter initialization. Let the parameter estimates be Take the maximum number of iterations as t max =200, t=0, and estimate the initial parameters as The covariance matrix is P(0)=10 6 I, where 1=[1 1 1 1] T , and I is the identity matrix.

(b)采集数据(这里采用四阶Runge-Kutta法求解神经元系统方程得到),构建输出序列Y(t)与可测信息量 (b) Collect data (here the fourth-order Runge-Kutta method is used to solve the neuron system equation), construct the output sequence Y(t) and the amount of measurable information

(c)按下述公式计算增益向量L(t)及协方差阵P(t):(c) Calculate the gain vector L(t) and covariance matrix P(t) according to the following formula:

(d)更新参数估计值 (d) Update parameter estimates

(e)令t:=t+1,若t<tmax,转步骤(b),继续进行递推计算;反之,转步骤3。(e) Let t:=t+1, if t<t max , go to step (b) and continue the recursive calculation; otherwise, go to step 3.

步骤3:停止计算,得到最终估计的参数值 Step 3: Stop the calculation and get the final estimated parameter values

图2显示了参数估计迭代过程曲线。由图可见,大约迭代100步后所有参数估计值就近似收敛于真实值。Figure 2 shows the parameter estimation iterative process curves. It can be seen from the figure that after about 100 iterations, all parameter estimates converge to the true values approximately.

Claims (1)

1. A neuron system parameter estimation technology is characterized by comprising the following steps:
step 1: and (5) model transformation. A general biological neuronal system can be described as:
x &CenterDot; 1 ( t ) = h 1 ( x ) + &Sigma; j = 1 m p 1 j s 1 j ( x ) + k 1 + &omega; 1 ( t ) x &CenterDot; 2 ( t ) = h 2 ( x ) + &Sigma; j = 1 m p 2 j s 2 j ( x ) + k 2 + &omega; 2 ( t ) &CenterDot; &CenterDot; &CenterDot; x &CenterDot; n ( t ) = h n ( x ) + &Sigma; j = 1 m p n j s n j ( x ) + k n + &omega; n ( t ) - - - ( 1 )
wherein x is [ x ]1(t),…,xn(t)]TIs a state variable of the system; k is a radical ofi(i ═ 1, 2, …, n) gives the system inputs; h isi(x) (i ═ 1, 2, …, n) is a nonlinear function of the ith neuronal system; p is a radical ofij(i ═ 1, 2, …, n, j ═ 1, 2, …, n) is the connection weight coefficient between the ith neuron and the jth neuron; sij(x) (i-1, 2, …, n, j-1, 2, …, n) is the activation function between the ith and jth neurons;ωi(t) (i ═ 1, 2, …, n) is the external noise of the ith neuron.
The above biological neuron system (1) was converted into the following estimation standard form:
wherein,
θ=[p11p12… p1np21p22… p2n… pn1pn2… pnn]T
step 2: and (6) parameter estimation. To estimate the parameter vector θ, the following recursive least squares algorithm is used:
(a) and initializing parameters. Setting the parameter estimation value asTaking the maximum iteration number as tmaxT is 0, and the initial parameter is estimated asCovariance matrix of P (0) 106I, wherein 1 ═ 11 … 1]TAnd I is an identity matrix.
(b) Collecting data and constructing output sequence Y (t) and measurable information quantity
(c) The gain vector l (t) and the covariance matrix p (t) are calculated according to the following equations:
(d) updating parameter estimates
(e) Let t: t +1, if t < tmaxTurning to the step (b), and continuing to perform recursive calculation; otherwise, go to step 3.
And step 3: stopping calculation to obtain the final estimated parameter value
CN201510777013.4A 2015-11-12 2015-11-12 Neuron system parameter estimation technique Pending CN106709564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510777013.4A CN106709564A (en) 2015-11-12 2015-11-12 Neuron system parameter estimation technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510777013.4A CN106709564A (en) 2015-11-12 2015-11-12 Neuron system parameter estimation technique

Publications (1)

Publication Number Publication Date
CN106709564A true CN106709564A (en) 2017-05-24

Family

ID=58931395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510777013.4A Pending CN106709564A (en) 2015-11-12 2015-11-12 Neuron system parameter estimation technique

Country Status (1)

Country Link
CN (1) CN106709564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116776941A (en) * 2023-06-19 2023-09-19 浙江大学 Parameter estimation method and device for neuron coding model based on two-photon calcium imaging data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116776941A (en) * 2023-06-19 2023-09-19 浙江大学 Parameter estimation method and device for neuron coding model based on two-photon calcium imaging data
CN116776941B (en) * 2023-06-19 2024-04-26 浙江大学 Neuron coding model parameter estimation method and device based on two-photon calcium imaging data

Similar Documents

Publication Publication Date Title
Anitescu et al. Artificial neural network methods for the solution of second order boundary value problems
Xu Application of the Newton iteration algorithm to the parameter estimation for dynamical systems
CN103413174B (en) Based on the short-term wind speed multistep forecasting method of degree of depth learning method
CN105354363A (en) Fluctuation wind speed prediction method based on extreme learning machine
CN105129109A (en) Method for evaluating health of aircraft aileron actuator system based on multi-fractal theory and self-organizing map (SOM) network
CN110286586A (en) A Hybrid Modeling Method for Magnetorheological Damper
CN107729706A (en) A kind of kinetic model construction method of Nonlinear Mechanical Systems
CN104317195B (en) Improved extreme learning machine-based nonlinear inverse model control method
CN104101344A (en) MEMS (micro electro mechanical system) gyroscope random error compensation method based on particle swarm wavelet network
CN107181474A (en) A kind of kernel adaptive algorithm filter based on functional expansion
CN105354860A (en) Box particle filtering based extension target CBMeMBer tracking method
CN106599427A (en) Ocean wave information prediction method based on Bayesian theory and hovercraft attitude information
Zhou et al. A New Adaptive Square‐Root Unscented Kalman Filter for Nonlinear Systems with Additive Noise
CN104992008A (en) Hilbert space multi-kernel function multiplication based wind speed prediction method
CN107368928B (en) A combined prediction method and system for settlement of ancient buildings
CN102708684A (en) Short-term traffic flow Volterra-DFP self-adaption prediction method
CN103559340B (en) Irrelevant multisource frequency domain load identification method based on COMI-PSO (comprehensive improved particle swarm optimization) algorithm
Wang et al. An innovative modulating functions method for pseudo-state estimation of fractional order systems
CN106709564A (en) Neuron system parameter estimation technique
CN103761567A (en) Wavelet neural network weight initialization method based on Bayes estimation
CN105044531A (en) Dynamic signal parameter identification method based on EKF and FSA
CN106709569A (en) Parameter estimation method for FitzHugh-Nagumo neuron system
CN106599541A (en) Online structure and parameter identification method for dynamic power load model
CN102055694B (en) Non-linear system identification method based on particle swarm
CN104202019A (en) Kalman filtering method with unknown process noise covariance matrix recursive estimation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170524

WD01 Invention patent application deemed withdrawn after publication