CN106705870A - 基于超表面光学成像的高精度测量装置 - Google Patents

基于超表面光学成像的高精度测量装置 Download PDF

Info

Publication number
CN106705870A
CN106705870A CN201611041323.0A CN201611041323A CN106705870A CN 106705870 A CN106705870 A CN 106705870A CN 201611041323 A CN201611041323 A CN 201611041323A CN 106705870 A CN106705870 A CN 106705870A
Authority
CN
China
Prior art keywords
surface optical
optical eyeglass
light
imaging
surpass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611041323.0A
Other languages
English (en)
Other versions
CN106705870B (zh
Inventor
杜洋
申智春
方宝东
黄帆
江世臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Satellite Engineering
Original Assignee
Shanghai Institute of Satellite Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Satellite Engineering filed Critical Shanghai Institute of Satellite Engineering
Priority to CN201611041323.0A priority Critical patent/CN106705870B/zh
Publication of CN106705870A publication Critical patent/CN106705870A/zh
Application granted granted Critical
Publication of CN106705870B publication Critical patent/CN106705870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures

Abstract

本发明提供了一种基于超表面光学成像的高精度测量装置,其包括用于产生平行光,为后续成像提供光源的平行光源、用于对所述平行光源发出的平行光产生不同的偏折效果的第一超表面光学镜片、用于接收所述第一超表面光学镜片的不同区域透射的光,并进行二次折射,形成两个光斑的第二超表面光学镜片、用于对形成的两个光斑进行成像,并分别提取两个光斑的位置信息及大小信息的成像探测器。本发明可对各结构基准之间的相对位置进行高精度测量,以便后续的精确调节与控制,从而确保载荷主镜及后续光学镜片之间的相对位置符合设计要求,保证载荷及航天器的在轨功能。

Description

基于超表面光学成像的高精度测量装置
技术领域
本发明属于测量技术领域,具体地,涉及一种基于超表面光学成像的高精度测量装置。
背景技术
在航天领域,为实现更高分辨率,光学遥感航天器的载荷口径越来越大,航天器包络也越来越大。为同时满足载荷大口径(约Φ10m)需求和现有运载的包络约束(约为Φ4.5m),采用发射阶段载荷收拢和在轨条件下载荷展开的总体设计方式。
为保证载荷及航天器的在轨功能,需精确调控载荷主镜及其他光学镜片之间的相对位置,各镜片都有相应的结构基准,为此需要对各结构基准之间的相对位置进行高精度测量,以便后续调节与控制。
本发明中所涉及的基于超表面光学成像的高精度测距技术,可实现各结构基准相对位置的高精度测量。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种基于超表面光学成像的高精度测量装置,其利用超表面光学镜片的成像特性,将两个待测结构的相对位置偏差转化成两个光斑的相对变化量,从而解算出两个待测结构相对位置偏差,利用本发明,可对各结构基准之间的相对位置进行高精度测量,以便后续的精确调节与控制,从而确保载荷主镜及后续光学镜片之间的相对位置符合设计要求,保证载荷及航天器的在轨功能。
根据本发明的一个方面,提供一种基于超表面光学成像的高精度测量装置,其特征在于,其包括:
平行光源,用于产生平行光,为后续成像提供光源;
第一超表面光学镜片,位于所述平行光源的左侧,用于对所述平行光源发出的平行光产生不同的偏折效果;
第二超表面光学镜片,位于所述第一超表面光学镜片的左侧,用于接收所述第一超表面光学镜片的不同区域透射的光,并进行二次折射,形成两个光斑;
成像探测器,位于所述第二超表面光学镜片的左侧,用于对形成的两个光斑进行成像,并分别提取两个光斑的位置信息及大小信息。
优选地,所述第一超表面光学镜片、第二超表面光学镜片都基于超表面光学成像原理,表面微结构形式都包括纳米阵列结构、多台阶微纳结构、菲涅尔波带片结构、光子筛微小孔结构。
优选地,所述第一超表面光学镜片包括:
第一超表面光学镜片的微结构部分,位于第一超表面光学镜片的最外侧,用于对进入的平行光进行会聚;
第一超表面光学镜片的透光部分,位于第一超表面光学镜片的微结构部分的内侧,用于使进入的平行光直接穿过;
第一超表面光学镜片的不透光部分,位于第一超表面光学镜片的透光部分的内侧,用于阻挡平行光的进入。
优选地,所述第二超表面光学镜片包括:
第二超表面光学镜片的微结构部分,位于第二超表面光学镜片的最外侧,用于对进入的平行光进行会聚;
第二超表面光学镜片的透光部分,位于第二超表面光学镜片的微结构部分的内侧,用于使进入的光直接穿过。
优选地,所述第二超表面光学镜片的透光部分为通孔或透明材料。
与现有技术相比,本发明具有如下的有益效果:本发明可对各结构基准之间的相对位置进行高精度测量,以便后续的精确调节与控制,从而确保载荷主镜及后续光学镜片之间的相对位置符合设计要求,保证载荷及航天器的在轨功能。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明基于超表面光学成像的高精度测量装置的结构示意图。
图2为本发明的第一超表面光学镜片的结构示意图。
图3为本发明的第二超表面光学镜片的结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
如图1至图3所示,本发明基于超表面光学成像的高精度测量装置包括:
平行光源1,用于产生平行光,为后续成像提供光源;
第一超表面光学镜片2,位于所述平行光源1的左侧,用于对所述平行光源1发出的平行光产生不同的偏折效果;
第二超表面光学镜片3,位于所述第一超表面光学镜片2的左侧,用于接收所述第一超表面光学镜片2的不同区域透射的光,并进行二次折射,形成两个光斑;
成像探测器4,位于所述第二超表面光学镜片3的左侧,用于对形成的两个光斑进行成像,并分别提取两个光斑的位置信息及大小信息。
所述第一超表面光学镜片2、第二超表面光学镜片3都基于超表面光学成像原理,表面微结构形式都包括纳米阵列结构、多台阶微纳结构、菲涅尔波带片结构、光子筛微小孔结构,这样具有聚光功能从而具备成像的能力。
所述第一超表面光学镜片2包括:
第一超表面光学镜片的微结构部分21,位于第一超表面光学镜片2的最外侧,用于对进入的平行光进行会聚;
第一超表面光学镜片的透光部分22,位于第一超表面光学镜片的微结构部分21的内侧,用于使进入的平行光直接穿过;
第一超表面光学镜片的不透光部分23,位于第一超表面光学镜片的透光部分22的内侧,用于阻挡平行光的进入。
所述第二超表面光学镜片3包括:
第二超表面光学镜片的微结构部分31,位于第二超表面光学镜片3的最外侧,用于对进入的平行光进行会聚;
第二超表面光学镜片的透光部分32,位于第二超表面光学镜片的微结构部分31的内侧,用于使进入的光直接穿过。
所述第二超表面光学镜片的透光部分32为通孔或透明材料,这样成本低。
第一超表面光学镜片、第二超表面光学镜片都通过在基底材料表面进行微结构加工,使得刻有微结构的区域具有聚光功能,从而具备成像能力。第一超表面光学镜片、第二超表面光学镜片分别安装于间距待测的两个结构上,当两个待测结构严格对准时,成像探测器上获取的两个光斑将严格重合,当两个待测结构相对位置存在偏差时,两个光斑的大小及相对位置便会产生变化;通过成像探测器获得光斑的相对变化量,进行解算后得到两个待测结构相对位置偏差;
第一超表面光学镜片的微结构部分对入射的平行光进行会聚,进入到第二超表面光学镜片的透光部分,形成的光斑位于成像探测器上;第一超表面光学镜片的透光部分对入射的平行光不产生影响,该区域对应的入射光进入到第二超表面光学镜片的微结构部分,经第二超表面光学镜片的微结构部分会聚,形成的光斑位于成像探测器上;
当两个待测结构无相对位置偏差时,成像探测器上获取的两个光斑的中心重合,且位于成像探测器的中央部位;
当两个待测结构存在倾斜时,两个光斑均会偏离成像探测器的中心位置;
当两个待测结构存在偏心时,由第一超表面光学镜片的透光部分和第二超表面光学镜片的微结构部分形成的光斑仍将保持在成像探测器的中心位置;由第一超表面光学镜片的微结构部分和第二超表面光学镜片的透光部分形成的光斑将偏离成像探测器的中心位置,且偏离方向与待测结构偏心方向相同;
当两个待测结构存在轴向偏差时,由第一超表面光学镜片的透光部分和第二超表面光学镜片的微结构部分形成的光斑仍将保持在成像探测器的中心位置,且光斑大小不变;由第一超表面光学镜片的微结构部分和第二超表面光学镜片的透光部分形成的光斑同样保持在成像探测器的中心位置,但光斑大小将发生变化。
综上所述,本发明利用超表面光学镜片的成像特性,将两个待测结构的相对位置偏差转化成两个光斑的相对变化量,从而解算出两个待测结构相对位置偏差,利用本发明,可对各结构基准之间的相对位置进行高精度测量,以便后续的精确调节与控制,从而确保载荷主镜及后续光学镜片之间的相对位置符合设计要求,保证载荷及航天器的在轨功能。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.一种基于超表面光学成像的高精度测量装置,其特征在于,其包括:
平行光源,用于产生平行光,为后续成像提供光源;
第一超表面光学镜片,位于所述平行光源的左侧,用于对所述平行光源发出的平行光产生不同的偏折效果;
第二超表面光学镜片,位于所述第一超表面光学镜片的左侧,用于接收所述第一超表面光学镜片的不同区域透射的光,并进行二次折射,形成两个光斑;
成像探测器,位于所述第二超表面光学镜片的左侧,用于对形成的两个光斑进行成像,并分别提取两个光斑的位置信息及大小信息。
2.根据权利要求1所述的基于超表面光学成像的高精度测量装置,其特征在于,所述第一超表面光学镜片、第二超表面光学镜片都基于超表面光学成像原理,表面微结构形式都包括纳米阵列结构、多台阶微纳结构、菲涅尔波带片结构、光子筛微小孔结构。
3.根据权利要求1所述的基于超表面光学成像的高精度测量装置,其特征在于,所述第一超表面光学镜片包括:
第一超表面光学镜片的微结构部分,位于第一超表面光学镜片的最外侧,用于对进入的平行光进行会聚;
第一超表面光学镜片的透光部分,位于第一超表面光学镜片的微结构部分的内侧,用于使进入的平行光直接穿过;
第一超表面光学镜片的不透光部分,位于第一超表面光学镜片的透光部分的内侧,用于阻挡平行光的进入。
4.根据权利要求1所述的基于超表面光学成像的高精度测量装置,其特征在于,所述第二超表面光学镜片包括:
第二超表面光学镜片的微结构部分,位于第二超表面光学镜片的最外侧,用于对进入的平行光进行会聚;
第二超表面光学镜片的透光部分,位于第二超表面光学镜片的微结构部分的内侧,用于使进入的光直接穿过。
5.根据权利要求4所述的基于超表面光学成像的高精度测量装置,其特征在于,所述第二超表面光学镜片的透光部分为通孔或透明材料。
CN201611041323.0A 2016-11-21 2016-11-21 基于超表面光学成像的高精度测量装置 Active CN106705870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611041323.0A CN106705870B (zh) 2016-11-21 2016-11-21 基于超表面光学成像的高精度测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611041323.0A CN106705870B (zh) 2016-11-21 2016-11-21 基于超表面光学成像的高精度测量装置

Publications (2)

Publication Number Publication Date
CN106705870A true CN106705870A (zh) 2017-05-24
CN106705870B CN106705870B (zh) 2019-01-18

Family

ID=58933726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611041323.0A Active CN106705870B (zh) 2016-11-21 2016-11-21 基于超表面光学成像的高精度测量装置

Country Status (1)

Country Link
CN (1) CN106705870B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238363A (zh) * 2018-11-28 2020-06-05 中国科学院光电技术研究所 一种基于菲涅尔波带片的多波径向剪切干涉仪
CN112326031A (zh) * 2020-10-15 2021-02-05 湖南大学 一种广义哈德曼传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266142A (zh) * 2007-03-14 2008-09-17 鸿富锦精密工业(深圳)有限公司 同心度检测设备及其方法
CN101339013A (zh) * 2008-08-27 2009-01-07 中国科学院光电技术研究所 可见与红外复合光路光轴平行度检测仪的装调和标定
US20150219806A1 (en) * 2014-02-04 2015-08-06 California Institute Of Technology Controllable planar optical focusing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266142A (zh) * 2007-03-14 2008-09-17 鸿富锦精密工业(深圳)有限公司 同心度检测设备及其方法
CN101339013A (zh) * 2008-08-27 2009-01-07 中国科学院光电技术研究所 可见与红外复合光路光轴平行度检测仪的装调和标定
US20150219806A1 (en) * 2014-02-04 2015-08-06 California Institute Of Technology Controllable planar optical focusing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵思聪: "人工超材料光传输特性的研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238363A (zh) * 2018-11-28 2020-06-05 中国科学院光电技术研究所 一种基于菲涅尔波带片的多波径向剪切干涉仪
CN111238363B (zh) * 2018-11-28 2021-09-07 中国科学院光电技术研究所 一种基于菲涅尔波带片的多波径向剪切干涉仪
CN112326031A (zh) * 2020-10-15 2021-02-05 湖南大学 一种广义哈德曼传感器

Also Published As

Publication number Publication date
CN106705870B (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN103267743B (zh) 一种折射率测量装置及方法
CN105066910B (zh) 电光晶体z轴偏离角测量装置及测量方法
CN105829971A (zh) 用于通过无接触式光学法定位光刻掩模的装置和方法
CN106705870A (zh) 基于超表面光学成像的高精度测量装置
CN105890875A (zh) 一种基于掩模板的投影物镜性能测试装置以及方法
CN104034517A (zh) 一种亚波长光子筛聚焦性能检测方法
CN107449590A (zh) 一种激光器光束指向稳定性测量装置
Nekrylov et al. Modern approaches for a design and development of optoelectronic measuring systems
CN205750080U (zh) 一种物像双倾斜的成像光学系统
Ren et al. Parallel beam generation method for a high-precision roll angle measurement with a long working distance
CN103926797B (zh) 一种用于光刻装置的双面套刻系统及方法
Huang et al. An optical glass plane angle measuring system with photoelectric autocollimator
CN106323198B (zh) 一种高精度、宽范围和大工作距激光自准直装置与方法
CN205482840U (zh) 一种基于Mach-Zehnder的双光束元件表面粗糙度测量装置
CN105334704B (zh) 在蚀刻材料中制造结构的方法
CN104536148B (zh) 一种实现镜面定位仪光束快速对准装置及对准方法
RU2519512C1 (ru) Устройство измерения угловых и линейных координат объекта
CN206193312U (zh) 一种基于表面反射像的微米级光电定心装置
CN205374850U (zh) 透射式光电定心仪
US9939734B2 (en) Photolithography apparatus comprising projection system for control of image size
CN107122694A (zh) 一种图像扫描设备的补光照准装置及图像扫描设备
CN107830823A (zh) 一种用于检测透镜中心偏离的装置
KR102008253B1 (ko) 간섭계 기반의 다채널 광 계측기
Bitou et al. High-lateral-resolution scanning deflectometric profiler using a commercially available autocollimator
CN103697822B (zh) 光学三角测头的光路系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant