CN106704103A - 一种基于叶片参数自学习的风电机组功率曲线获取方法 - Google Patents

一种基于叶片参数自学习的风电机组功率曲线获取方法 Download PDF

Info

Publication number
CN106704103A
CN106704103A CN201710006787.6A CN201710006787A CN106704103A CN 106704103 A CN106704103 A CN 106704103A CN 201710006787 A CN201710006787 A CN 201710006787A CN 106704103 A CN106704103 A CN 106704103A
Authority
CN
China
Prior art keywords
wind
model
power
power curve
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710006787.6A
Other languages
English (en)
Other versions
CN106704103B (zh
Inventor
邓英
田德
庞辉庆
杨志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201710006787.6A priority Critical patent/CN106704103B/zh
Publication of CN106704103A publication Critical patent/CN106704103A/zh
Application granted granted Critical
Publication of CN106704103B publication Critical patent/CN106704103B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/045Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with model-based controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Wind Motors (AREA)

Abstract

本发明公布了一种基于叶片参数自学习的风电机组功率曲线获取方法。该方法是利用实际风电机组叶片输出特性的响应参数、场址风湍流和空气密度,建立了3维功率单元模型‑1(如图1),风电机组叶片参数决定机组捕获功率的能力,当机组的型号确定后,其基本的功率曲线就确定了,方法采用现场自学习叶片参数和风场的风湍流模型,当测得现场的密度参数后,根据IEC61400‑12标准规定的方法,设计的功率曲线计算程序,获取现场风电机组的功率曲线。

Description

一种基于叶片参数自学习的风电机组功率曲线获取方法
技术领域:
本发明涉及到清洁能源风能管控领域,主要涉及风力发电机功率曲线获取方式。
发明背景:
大型风电机组的发电功率特性受到机组的型号、安装厂址风况、密度等物理参数的影响,使得风电机组输出的功率曲线偏离机组测定标准功率曲线很多,造成业主运维管理得不到参照的标准功率曲线,无法确定标准的发电量考核数据;特别是机组出现了不明原因或管理不当的发电量下降,从监控管理上找不到发电量下降的原因。因此,我们发明了一种切实可行之有效的功率曲线获取方法。
发明内容:
利用实际风电机组叶片输出特性的响应参数、场址风湍流和空气密度,建立了3维功率单元模型-1(如图1所示),表示为Pi=(Θ,Ξ,ρ),其中:Θ-叶片参数,它决定风电机组捕获功率的能力,当机组的型号确定后,其基本的功率曲线就确定了;Ξ-风速湍流,它由单机安装场地的风况条件决定;ρ-空气密度,它由风电场地理位置和环境条件决定。功率单元模型—1由三个部分组成如图1所示,他们是叶片参数自学习模型-2、风湍流模型—3和空气密度模型—4;单机标准功率曲线-5由功率单元模型Pi=(Θ,Ξ,ρ)及现场自学习得到的数据、功率数据和风速处理方法,进行计算确定功率曲线上的散点,使散点连线组成。
1、叶片参数(Cp-λ等)自学习模型-2计算功率的方法,它是基于现场机组运行的风轮输出的数据,采用时间推移模型自学习的方法,推断拟合得到叶片参数模型。其中Cp是风能转换效率,λ是风轮转速与风速的比值也叫尖速比。
2、自学习风湍流模型-3计算功率偏差的方法(如图2),它是根据现场风电机组运行数据和控制算法自学习获取。根据现场测风数据的bin区间里,采用偏差-修正正态随机分布方法,计算确定现场的各风速bin区间的实际湍流强度,在上述1得到的单元功率模型的基础上,确定实际风速的湍流强度,自学习得到风湍流模型-3。
3、空气密度模型-4的功率修正方法(如图3所示),密度通常与气压、温度、湿度有密切关系,它与功率的关系是经过现场获取数据计算获取。现场的空气密度由下图公式计算得出,在上述2得到的功率曲线基础上根据现场实际空气密度对功率曲线进行修正,如图3所示。
4、根据上述1、2、3,获得加权后的bin风速下的功率值,在功率-风速坐标系中进行数据点连线,得到标定的功率曲线,实现方法如图4所示。
附图说明:
图1:风电机组功率曲线标定模型。
图2:叶片参数自学习模型-2和湍流自学习模型实现方法。
图3:空气密度模型-4的功率修正方法。
图4:现场功率曲线获取方法。
图5:不同厂址的湍流强度所对应的功率曲线及标定功率曲线。
图6:根据叶片参数自学习方法得到的功率曲线。
图7:根据现场空气密度修正得到的功率曲线。
具体实施案例:
根据如图5所示的不同厂址的湍流强度所对应的功率曲线,采用时间推移模型自学习的方法,推断拟合得到叶片参数模型(结果如图6所示),在此基础上根据图2方法确定实际风速的湍流强度,自学习得到风湍流模型,进而根据图3方法得到功率修正曲线(结果如图7所示),最后根据上述结果,获得加权后的bin风速下的功率值,在功率-风速坐标系中进行数据点连线,得到标定的功率曲线(结果如图5所示)。

Claims (3)

1.叶片参数(Cp-λ等)自学习模型-2计算功率的方法,它是基于现场机组运行的风轮输出的数据,采用时间推移模型自学习的方法,推断拟合得到叶片参数模型;其中Cp是风能转换效率,λ是风轮转速与风速的比值也叫尖速比。
2.自学习风湍流模型-3计算功率偏差的方法(如图2),它是根据现场风电机组运行数据和控制算法自学习获取。根据现场测风数据的bin区间里,采用偏差-修正正态随机分布方法,计算确定现场的各风速bin区间的实际湍流强度,在权利要求1得到的单元功率模型的基础上,确定实际风速的湍流强度,根据图2获取自学习风湍流模型-3。
3.空气密度模型-4的功率修正方法,密度通常与气压、温度、湿度有密切关系,它与功率的关系是经过现场数据鸦片和湍流自学习获取的数据修正得到;现场的空气密度由下图公式计算得出,在权利要求2得到的功率曲线基础上根据现场实际空气密度对功率曲线进行修正,如图3所示。
CN201710006787.6A 2017-01-05 2017-01-05 一种基于叶片参数自学习的风电机组功率曲线获取方法 Expired - Fee Related CN106704103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710006787.6A CN106704103B (zh) 2017-01-05 2017-01-05 一种基于叶片参数自学习的风电机组功率曲线获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710006787.6A CN106704103B (zh) 2017-01-05 2017-01-05 一种基于叶片参数自学习的风电机组功率曲线获取方法

Publications (2)

Publication Number Publication Date
CN106704103A true CN106704103A (zh) 2017-05-24
CN106704103B CN106704103B (zh) 2019-12-17

Family

ID=58907845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710006787.6A Expired - Fee Related CN106704103B (zh) 2017-01-05 2017-01-05 一种基于叶片参数自学习的风电机组功率曲线获取方法

Country Status (1)

Country Link
CN (1) CN106704103B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108509705A (zh) * 2018-03-26 2018-09-07 北京鉴衡认证中心有限公司 计算特定场址风力发电机组功率曲线的方法及装置
CN108760773A (zh) * 2018-08-21 2018-11-06 上海东易电气有限公司 在线碳氢化合物含水率及纯油密度分析撬座系统
CN109751195A (zh) * 2017-11-01 2019-05-14 中国船舶重工集团海装风电股份有限公司 一种风力发电机功率曲线的获取方法及装置
CN111601969A (zh) * 2018-01-15 2020-08-28 乌本产权有限公司 风能设备和用于控制风能设备的方法
CN111911352A (zh) * 2020-05-11 2020-11-10 宁波大学 一种气流发生风力发电方法
EP3862561B1 (en) 2020-02-07 2023-04-19 General Electric Company Systems and methods for continuous machine learning based control of wind turbines
US11761425B2 (en) * 2020-02-03 2023-09-19 General Electric Renovables Espana, S.L. Turbulence intensity estimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096942A (zh) * 2006-06-30 2008-01-02 通用电气公司 风能系统及其操作方法
CN101858311A (zh) * 2010-05-10 2010-10-13 三一电气有限责任公司 获得风电设备功率曲线以及风电设备控制的方法和装置
WO2011101475A3 (en) * 2010-02-19 2012-03-22 Vestas Wind Systems A/S A method of operating a wind turbine to provide a corrected power curve
WO2012164075A2 (de) * 2011-06-03 2012-12-06 Siemens Aktiengesellschaft Verfahren zur rechnergestützten generierung eines datengetriebenen modells eines technischen systems, insbesondere einer gasturbine oder windturbine
CN103927695A (zh) * 2014-04-22 2014-07-16 国家电网公司 基于自学习复合数据源的风电功率超短期预测方法
CN104747367A (zh) * 2013-12-31 2015-07-01 华能新能源股份有限公司 风力发电机组功率曲线特性检测系统
CN105275742A (zh) * 2015-11-09 2016-01-27 国家电网公司 一种风电机组自适应环境的控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096942A (zh) * 2006-06-30 2008-01-02 通用电气公司 风能系统及其操作方法
WO2011101475A3 (en) * 2010-02-19 2012-03-22 Vestas Wind Systems A/S A method of operating a wind turbine to provide a corrected power curve
CN101858311A (zh) * 2010-05-10 2010-10-13 三一电气有限责任公司 获得风电设备功率曲线以及风电设备控制的方法和装置
WO2012164075A2 (de) * 2011-06-03 2012-12-06 Siemens Aktiengesellschaft Verfahren zur rechnergestützten generierung eines datengetriebenen modells eines technischen systems, insbesondere einer gasturbine oder windturbine
CN104747367A (zh) * 2013-12-31 2015-07-01 华能新能源股份有限公司 风力发电机组功率曲线特性检测系统
CN103927695A (zh) * 2014-04-22 2014-07-16 国家电网公司 基于自学习复合数据源的风电功率超短期预测方法
CN105275742A (zh) * 2015-11-09 2016-01-27 国家电网公司 一种风电机组自适应环境的控制方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109751195A (zh) * 2017-11-01 2019-05-14 中国船舶重工集团海装风电股份有限公司 一种风力发电机功率曲线的获取方法及装置
CN109751195B (zh) * 2017-11-01 2020-05-15 中国船舶重工集团海装风电股份有限公司 一种风力发电机功率曲线的获取方法及装置
CN111601969A (zh) * 2018-01-15 2020-08-28 乌本产权有限公司 风能设备和用于控制风能设备的方法
CN108509705A (zh) * 2018-03-26 2018-09-07 北京鉴衡认证中心有限公司 计算特定场址风力发电机组功率曲线的方法及装置
CN108509705B (zh) * 2018-03-26 2022-03-04 北京鉴衡认证中心有限公司 计算特定场址风力发电机组功率曲线的方法及装置
CN108760773A (zh) * 2018-08-21 2018-11-06 上海东易电气有限公司 在线碳氢化合物含水率及纯油密度分析撬座系统
CN108760773B (zh) * 2018-08-21 2024-01-19 上海东易电气有限公司 在线碳氢化合物含水率及纯油密度分析撬座系统
US11761425B2 (en) * 2020-02-03 2023-09-19 General Electric Renovables Espana, S.L. Turbulence intensity estimation
EP3862561B1 (en) 2020-02-07 2023-04-19 General Electric Company Systems and methods for continuous machine learning based control of wind turbines
CN111911352A (zh) * 2020-05-11 2020-11-10 宁波大学 一种气流发生风力发电方法
CN111911352B (zh) * 2020-05-11 2023-02-28 宁波大学 一种气流发生风力发电方法

Also Published As

Publication number Publication date
CN106704103B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
CN106704103A (zh) 一种基于叶片参数自学习的风电机组功率曲线获取方法
US11242842B2 (en) System and method for forecasting power output of a wind farm
CA2912336C (en) Systems and methods for optimizing operation of a wind farm
Astolfi et al. Fault prevention and diagnosis through SCADA temperature data analysis of an onshore wind farm
CN104066978B (zh) 具有实时风速测量的风场
EP2940296A1 (en) Systems and methods for optimizing operation of a wind farm
CN107607579B (zh) 一种湿式冷却塔的热力性能在线监测系统及其方法
CN109063276A (zh) 适用于长时域风速波动的风电场动态等值建模方法
CN107061158A (zh) 一种低风速下风力发电机的预测与跟踪控制方法
CN107869420B (zh) 风力涡轮机发电场的风力涡轮机偏航控制方法及系统
CN108062722A (zh) 基于风速变异系数的山地风电场模型风机机械功率计算方法
Japar et al. Estimating the wake losses in large wind farms: A machine learning approach
Liew et al. Wind characterization by three blade savonius wind turbine using iot
CN103996072B (zh) 一种风电场和风电区域的风电功率预测方法及系统
CN114033617B (zh) 一种控制参量自适应调整的可控风力发电方法及系统
CN109190841A (zh) 基于风机概率随机劣化模型的海上风电预测性维护方法
Karlsson Wind turbine performance monitoring using artificial neural networks with a multi-dimensional data filtering approach
Mitiku et al. Modeling of wind energy harvesting system: A systematic review
Ayar et al. Harvesting the Wind: A Study on the Feasibility and Advancements of Wind Energy in Turkey
DK201670502A1 (en) Wind turbine and a method of operating a wind turbine
Bruno et al. An empirical estimation of power output of a miniaturized wind turbine cluster
Liu et al. Relative health index of wind turbines based on kernel density estimation
Gado et al. Manage Wind Turbine Power Based on an Artificial Neural Network Model for Predicting Turbine Output Power
Deepalakshmi et al. An assessment of potential windmills using image processing and artificial intelligence (AI) based wind speed estimation
Walter Automatised detection of sources for power curve deviations of horizontal axis wind turbines

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191217

Termination date: 20210105