CN106696704A - 用于车辆的供电转换装置和供电转换方法 - Google Patents

用于车辆的供电转换装置和供电转换方法 Download PDF

Info

Publication number
CN106696704A
CN106696704A CN201510466348.4A CN201510466348A CN106696704A CN 106696704 A CN106696704 A CN 106696704A CN 201510466348 A CN201510466348 A CN 201510466348A CN 106696704 A CN106696704 A CN 106696704A
Authority
CN
China
Prior art keywords
voltage
battery pack
charge
vehicle
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510466348.4A
Other languages
English (en)
Inventor
邓林旺
倪琰
曾宇
滕景翠
王超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201510466348.4A priority Critical patent/CN106696704A/zh
Publication of CN106696704A publication Critical patent/CN106696704A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种用于车辆的供电转换装置和供电转换方法。该供电转换装置包括:多个动力电池转换器,并联连接到低压母线,所述多个动力电池转换器用于与所述车辆的动力电池包中的多个电池组一一对应连接,所述多个动力电池转换器中的每个动力电池转换器用于将所对应的电池组输出的直流电压转换为低压母线直流电压;以及所述低压母线,用于与所述车辆的车载低压电器连接,用于将所述多个动力电池转换器转换的多路所述低压母线直流电压接入所述车载低压电器,为所述车载低压电器供电。本发明的用于车辆的供电转换装置和供电转换方法能够降低为车载低压电器供电的装置及线路中发生击穿、短路的危险,增加电路的安全性。

Description

用于车辆的供电转换装置和供电转换方法
技术领域
本发明涉及汽车电子领域,具体地,涉及一种用于车辆的供电转换装置和供电转换方法。
背景技术
在相关技术中,当电动汽车或混合动力汽车处于电动模式时,整车能量由动力电池包提供。动力电池包提供的一部分电能通过高压直流母线输送给驱动电机等主动力源,另一部分电能通过高压母线连接高压到低压的直流转换器(高压DC/DC转换器),将高压直流电(通常为几百伏)转换为低压直流电(通常为12V或24V),为车载低压电器供电。
图1是现有技术中动力电池包为车载低压电器供电的示意图。如图1所示,动力电池包通过高压母线、高压DC/DC转换器与车载低压电器连接。该高压母线上的电压为几百伏,这对相关电路中电子器件的电压耐受能力,以及电路绝缘处理的要求较高。在相关电路中的电子器件性能降低的情况下,有可能发生击穿、短路等危险。
发明内容
针对现有技术中的上述缺陷,本发明提供一种能够增加电路安全性的车辆的供电转换装置和供电转换方法。
为了实现上述目的,本发明提供一种用于车辆的供电转换装置。该装置包括:多个动力电池转换器,并联连接到低压母线,所述多个动力电池转换器用于与所述车辆的动力电池包中的多个电池组一一对应连接,所述多个动力电池转换器中的每个动力电池转换器用于将所对应的电池组输出的直流电压转换为低压母线直流电压;以及所述低压母线,用于与所述车辆的车载低压电器连接,用于将所述多个动力电池转换器转换的多路所述低压母线直流电压接入所述车载低压电器,为所述车载低压电器供电。
优选地,所述每个电池组包括相同数目的电池。
优选地,该装置还包括:充电转换器,用于与充电电源连接,所述充电转换器与所述低压母线连接,用于将所述充电电源输出的电压转换为所述低压母线直流电压,其中,所述每个动力电池转换器还用于根据所述低压母线直流电压对所对应的电池组充电。
优选地,该装置还包括:第一采集模块,分别与所述每个电池组连接,用于采集所述每个电池组的电压;以及第一控制器,与所述第一采集模块、所述充电转换器连接,并分别与所述每个动力电池转换器连接,用于在所述多个电池组的电压的总和大于一预定的最高电压阈值的情况下,控制所述充电转换器停止将所述充电电源输出的电压转换为所述低压母线直流电压;和/或在所述多个电池组的电压的总和小于或等于一预定的最低电压阈值的情况下,控制所述每个动力电池转换器停止将所对应的电池组输出的直流电压转换为所述低压母线直流电压。
优选地,该装置还包括:第二采集模块,用于与所述车辆的启动电池连接,用于采集所述启动电池的荷电状态;以及第二控制器,与所述第二采集模块连接,并分别与所述每个动力电池转换器连接,用于在所述启动电池的荷电状态大于或等于一预设的最大荷电阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以减小所述多个电池组输出的电流的总和;在所述启动电池的荷电状态小于或等于一预设的最小荷电阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以增大所述多个电池组输出的电流的总和。
优选地,该装置还包括:第三采集模块,用于与所述车辆的启动电池连接,用于采集所述启动电池的输入电流和输出电流;以及第三控制器,与所述第三采集模块连接,并分别与所述每个动力电池转换器连接,用于在所述启动电池的输入电流大于一预设的最大输入电流阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以减小所述多个电池组输出的电流的总和,并且在所述启动电池的输出电流大于一预设的最大输出电流阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以增大所述多个电池组输出的电流的总和。
优选地,该装置还包括:第四采集模块,分别与所述每个电池组连接,用于采集所述每个电池组的电压或荷电状态;以及第四控制器,与所述第四采集模块连接,并分别与所述每个动力电池转换器连接,用于在一电池组的电压大于所述多个电池组的电压的平均值,或荷电状态大于所述多个电池组的荷电状态的平均值的情况下,控制与所述电池组对应的动力电池转换器对所述电池组输出的直流电压的转换,以增大所述电池组的输出电流;在一电池组的电压小于所述多个电池组的电压的平均值,或荷电状态小于所述多个电池组的荷电状态的平均值的情况下,控制与所述电池组对应的动力电池转换器对所述电池组输出的直流电压的转换,以减小所述电池组的输出电流。
优选地,所述第四控制器还用于在一电池组的电压小于所述多个电池组的电压的平均值,并且所述电池组的电压与所述多个电池组的电压的平均值的差值大于一预定的电压差值阈值的情况下,或者,在一电池组的荷电状态小于所述多个电池组的荷电状态的平均值,并且所述电池组的荷电状态与所述多个电池组的荷电状态的平均值的差值大于一预定的荷电状态差值阈值的情况下,控制与所述电池组对应的动力电池转换器对所述低压母线直流电压进行转换,以对所述电池组充电。
本发明还提供一种用于车辆的供电转换方法。该方法包括:分别将所述车辆的动力电池包中的多个电池组中的每个电池组输出的直流电压转换为低压母线直流电压,得到多路所述低压母线直流电压;以及将多路所述低压母线直流电压接入所述车辆的车载低压电器,为所述车载低压电器供电。
通过上述技术方案,将动力电池包分成多个电池组,分别将每个电池组输出的直流电压转换为低压母线直流电压,由多路低压母线直流电压为车载低压电器供电。这样就避免了通过车辆中的高压母线为车载低压电器供电,减少了高压母线上连接的器件,从而减小了为车载低压电器供电的装置及线路上的电压应力。因此,本发明的用于车辆的供电转换装置和供电转换方法能够降低为车载低压电器供电的装置及线路中发生击穿、短路的危险,增加电路的安全性。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是现有技术中动力电池包为车载低压电器供电的示意图;
图2是一示例性实施方式提供的用于车辆的供电转换装置的示意图;
图3是一示例性实施方式提供的动力电池转换器的结构示意图;
图4是另一示例性实施方式提供的用于车辆的供电转换装置的示意图;
图5是又一示例性实施方式提供的用于车辆的供电转换装置的示意图;
图6是又一示例性实施方式提供的用于车辆的供电转换装置的示意图;
图7是又一示例性实施方式提供的用于车辆的供电转换装置的示意图;
图8是又一示例性实施方式提供的用于车辆的供电转换装置的示意图;
图9是一示例性实施方式提供的用于车辆的供电转换方法的流程图;
图10是另一示例性实施方式提供的用于车辆的供电转换方法的流程图;
图11是又一示例性实施方式提供的用于车辆的供电转换方法的流程图;
图12是又一示例性实施方式提供的用于车辆的供电转换方法的流程图;
图13是又一示例性实施方式提供的用于车辆的供电转换方法的流程图;
图14是又一示例性实施方式提供的用于车辆的供电转换方法的流程图;以及
图15是又一示例性实施方式提供的用于车辆的供电转换方法的流程图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
图2是一示例性实施方式提供的用于车辆的供电转换装置的示意图。如图2所示,该装置10可以包括多个动力电池转换器1011-101n和低压母线102。其中,多个动力电池转换器1011-101n并联连接到低压母线102,多个动力电池转换器1011-101n用于与车辆的动力电池包20中的多个电池组2011-201n一一对应连接。多个动力电池转换器1011-101n中的每个动力电池转换器用于将所对应的电池组输出的直流电压转换为低压母线直流电压。低压母线102用于与车辆的车载低压电器30连接,用于将多个动力电池转换器1011-101n转换的多路低压母线直流电压接入车载低压电器30,为车载低压电器30供电。
也就是,将现有技术中动力电池包20中的全部电池串联后输出的高压直流电向车载低压电器30供电(通过DC/DC高压转换器)转换为:将动力电池包20中的电池分为多个电池组2011-201n(每个电池组中可以包括一节电池,也可以包括多节串联的电池),每个电池组输出的电压经对应的动力电池转换器转换成较低电压(即,低压母线直流电压),将该较低电压并联连接在低压母线102上,由该低压母线102根据该较低电压向车载低压电器30供电。供电时,仍然是动力电池包20中的全部电池共同供电,也就是,动力电池包20向车载低压电器30供电的电压为低压母线直流电压,供电的电流为每个电池组输出的电流之和。
其中,低压母线直流电压可以根据车载低压电器30的具体情况设置为12V或24V。并且,优选情况下,每个电池组可以包括相同数目的(例如,八个)电池。
通过上述技术方案,避免了通过车辆中的高压母线为车载低压电器供电,减少了高压母线上连接的器件,从而减小了为车载低压电器30供电的装置及线路上的电压应力。同时,各个车载低压电器30都接入相对稳定的低压母线102,这种并联的方式能够满足不同车型的需求,易于车载低压电器30的扩展和各个车型之间的兼容。另外,由于各个电池组之间采用并联供电的方式,使得少量电池或动力电池转换器的损坏不会影响车载低压电器30的供电,从而提高了为车载低压电器30供电的可靠性。
图3是一示例性实施方式提供的动力电池转换器的结构示意图。本发明的每个动力电池转换器例如可以采用图3所示的反激式转换器。可以理解的是,任何能够实现将所对应的电池组输出的直流电压转换为低压母线直流电压的转换器都可以被本发明所用,都包括在本发明所述的动力电池转换器中。
图4是另一示例性实施方式提供的用于车辆的供电转换装置的示意图。如图4所示,在图2所示的实施方式的基础上,该装置10还包括充电转换器103。该充电转换器103用于与充电电源(未示出,例如,包括市电电网、太阳能电池板等)连接,充电转换器103与低压母线102连接,用于将充电电源输出的电压转换为低压母线直流电压。其中,每个动力电池转换器还用于根据低压母线直流电压对所对应的电池组充电。
在该实施方式中,本发明的供电转换装置10还能够通过充电转换器103将充电电源输出的电压转换成较低电压(低压母线直流电压),然后分别通过每个动力电池转换器对所对应的电池组充电。也就是,多个动力电池转换器1021-102n还能够通过低压母线102接收充电电源输出的电压,分别对多个电池组进行充电。也就是,低压母线102上分出多路电流,分别通过多个动力电池转换器1011-101n给多个电池组2011-201n充电。这样能够避免充电电源与高压母线的连接,从而减小了充电电源中的器件或线路中的电压应力,提高了电路安全性。
图5是又一示例性实施方式提供的用于车辆的供电转换装置的示意图。如图5所示,在图4所示的实施方式的基础上,该装置10还包括第一采集模块104和第一控制器105。其中,第一采集模块104分别与每个电池组连接,用于采集每个电池组的电压。第一控制器105与第一采集模块104、充电转换器103连接,并分别与每个动力电池转换器连接,用于在多个电池组的电压的总和大于一预定的最高电压阈值的情况下,控制充电转换器103停止将充电电源输出的电压转换为低压母线直流电压;和/或在多个电池组的电压的总和小于或等于一预定的最低电压阈值的情况下,控制每个动力电池转换器停止将所对应的电池组输出的直流电压转换为低压母线直流电压。
其中,多个电池组的电压的总和大于一预定的最高电压阈值的情况可以认为动力电池包20处于过压状态,也就是,对动力电池包20的充电处于过充状态。此时,可以控制充电转换器103停止将充电电源输出的电压转换为低压母线直流电压,也就是控制停止向动力电池包20充电。
多个电池组的电压的总和小于一预定的最低电压阈值的情况可以认为动力电池包20处于欠压状态,也就是,对动力电池包20的电力不足。此时,可以控制每个动力电池转换器停止将所对应的电池组输出的直流电压转换为低压母线直流电压,也就是控制动力电池包20停止向车载低压电器30供电。这样,能够将动力电池包20的电量保持在合理的范围中,有利于延长动力电池包20的使用寿命。
图6是又一示例性实施方式提供的用于车辆的供电转换装置的示意图。如图6所示,在图2所示的实施方式的基础上,该装置10还包括第二采集模块106和第二控制器107。第二采集模块106用于与车辆的启动电池40连接,用于采集启动电池40的荷电状态。第二控制器107与第二采集模块连接,并分别与每个动力电池转换器连接,用于在启动电池40的荷电状态大于或等于一预设的最大荷电阈值的情况下,控制每个动力电池转换器对所对应的电池组输出的直流电压的转换,以减小多个电池组输出的电流的总和;在启动电池40的荷电状态小于或等于一预设的最小荷电阈值的情况下,控制每个动力电池转换器对所对应的电池组输出的直流电压的转换,以增大多个电池组输出的电流的总和。
在该实施方式中,可以认为启动电池40的荷电状态大于或等于最大荷电阈值的状态为启动电池40处于过压状态,此时可以控制减小每个电池组输出的电流,使得动力电池包20不对启动电池40进行充电。并且,可以认为启动电池40的荷电状态小于或等于最小荷电阈值的状态为启动电池40处于欠压状态,此时可以控制增大每个电池组输出的电流,使得动力电池包20在对车载低压电器30供电的同时,对启动电池40进行充电。这样,能够将启动电池40的荷电状态控制在合理的范围中,有利于延长启动电池40的使用寿命。
例如,可以将车载低压电器30的用电电流作为多个动力电池转换器1011-101n输出的总电流(每个动力电池转换器输出的电流之和)的目标值。在此目标值的基础上,根据上述条件考虑减小或增大多个动力电池转换器输出的电流之和,也就是减小或增大多个电池组输出的电流的总和。
图7是又一示例性实施方式提供的用于车辆的供电转换装置的示意图。如图7所示,在图2所示的实施方式的基础上,该装置10还包括第三采集模块108和第三控制器109。其中,第三采集模块108用于与车辆的启动电池40连接,用于采集启动电池40的输入电流和输出电流。第三控制器109与第三采集模块108连接,并分别与每个动力电池转换器连接,用于在启动电池40的输入电流大于一预设的最大输入电流阈值的情况下,控制每个动力电池转换器对所对应的电池组输出的直流电压的转换,以减小多个电池组输出的电流的总和,并且在启动电池40的输出电流大于一预设的最大输出电流阈值的情况下,控制每个动力电池转换器对所对应的电池组输出的直流电压的转换,以增大多个电池组输出的电流的总和。
在该实施方式中,通过控制每个动力电池转换器对所对应的电池组输出的直流电压的转换,来增大和减小启动电池40的输入电流和输出电流,使启动电池40的输入电流和输出电流不超过各自的上限值,这样能够避免电流过大,从而对启动电池40起到保护作用,以延长启动电池40的使用寿命。
图8是又一示例性实施方式提供的用于车辆的供电转换装置的示意图。如图8所示,在图2所示的实施方式的基础上,该装置10还包括第四采集模块110和第四控制器111。其中,第四采集模块110分别与每个电池组连接,用于采集每个电池组的电压或荷电状态。第四控制器111与第四采集模块110连接,并分别与每个动力电池转换器连接,用于在一电池组的电压大于多个电池组的电压的平均值,或荷电状态大于多个电池组的荷电状态的平均值的情况下,控制与该电池组对应的动力电池转换器对该电池组输出的直流电压的转换,以增大该电池组的输出电流;在一电池组的电压小于多个电池组的电压的平均值,或荷电状态小于多个电池组的荷电状态的平均值的情况下,控制与该电池组对应的动力电池转换器对该电池组输出的直流电压的转换,以减小该电池组的输出电流。
该实施方式中,以一电池组的电压或荷电状态与多个电池组的平均值的比较结果为依据,在各个电池组工作的过程中,通过控制每个动力电池转换器对其所对应的电池组的电压转换,来增大或减小电池组的输出电流,从而实现对每个电池组的动态均衡。在每个电池组仅包括一节电池的情况下,该实施方式能够对动力电池包中的每一节电池进行动态均衡。
上述实施方式中,能够通过增大和减小电池组的输出电流来实现电池组的均衡。本发明的又一实施方式中,还能够在由一部分电量较多的电池组通过对应的动力电池转换器对车载低压电器30进行供电的同时,另一部分电量较少的电池组由对应的动力电池转换器根据低压母线102中的低压母线直流电压进行电压转换后进行充电,从而实现电池组的均衡。
具体地,第四控制器111还可以用于在一电池组的电压小于多个电池组2011-201n的电压的平均值,并且该电池组的电压与多个电池组2011-201n的电压的平均值的差值大于一预定的电压差值阈值的情况下,或者,在一电池组的荷电状态小于多个电池组2011-201n的荷电状态的平均值,并且该电池组的荷电状态与多个电池组2011-201n的荷电状态的平均值的差值大于一预定的荷电状态差值阈值的情况下,控制与该电池组对应的动力电池转换器对低压母线直流电压进行转换,以对该电池组充电。
其中,电压差值阈值、荷电状态差值阈值、以及对电量较小的电池组充电时输入多大的电流,可以根据对均衡速度的要求来设定。该实施方式能够使得一部分电量较大的电池组放电的同时,电量较小的电池组充电,从而加快了均衡的速度。
通过上述技术方案,将动力电池包20分成多个电池组2011-201n,分别将每个电池组输出的直流电压转换为低压母线直流电压,为车载低压电器30供电。这样就避免了通过车辆中的高压母线为车载低压电器30供电,减少了高压母线上连接的器件,从而减小了为车载低压电器30供电的装置及线路上的电压应力。因此,本发明的用于车辆的供电转换装置10能够降低为车载低压电器30供电的装置及线路中发生击穿、短路的危险,增加电路的安全性。
图9是一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图9所示,该方法包括以下步骤。
在步骤S11中,分别将车辆的动力电池包中的多个电池组中的每个电池组输出的直流电压转换为低压母线直流电压,得到多路低压母线直流电压。
在步骤S12中,将多路低压母线直流电压接入车辆的车载低压电器,为车载低压电器供电。
优选情况下,每个电池组包括相同数目的电池。
图10是另一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图10所示,在图8所示的实施方式的基础上,该方法还包括以下步骤。
在步骤S13中,将充电电源输出的电压转换为低压母线直流电压。
在步骤S14中,根据低压母线直流电压分别对每个电池组充电。
图11是又一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图11所示,在图10所示的实施方式的基础上,该方法还包括以下步骤。
在步骤S15中,采集每个电池组的电压。
在步骤S16中,在多个电池组的电压的总和大于一预定的最高电压阈值的情况下,控制停止将充电电源输出的电压转换为低压母线直流电压;和/或在多个电池组的电压的总和小于或等于一预定的最低电压阈值的情况下,控制停止将每个电池组输出的直流电压转换为低压母线直流电压。
图12是又一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图12所示,在图9所示的实施方式的基础上,该方法还包括以下步骤。
在步骤S17中,采集车辆的启动电池的荷电状态。
在步骤S18中,在启动电池的荷电状态大于或等于一预设的最大荷电阈值的情况下,控制对每个电池组输出的直流电压的转换,以减小多个电池组输出的电流的总和;在启动电池的荷电状态小于或等于一预设的最小荷电阈值的情况下,控制对每个电池组输出的直流电压的转换,以增大多个电池组输出的电流的总和。
图13是又一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图13所示,在图9所示的实施方式的基础上,该方法还包括以下步骤。
在步骤S19中,采集车辆的启动电池的输入电流和输出电流。
在步骤S20中,在启动电池的输入电流大于一预设的最大输入电流阈值的情况下,控制对每个电池组输出的直流电压的转换,以减小多个电池组输出的电流的总和,并且在启动电池的输出电流大于一预设的最大输出电流阈值的情况下,控制对每个电池组输出的直流电压的转换,以增大多个电池组输出的电流的总和。
图14是又一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图14所示,在图9所示的实施方式的基础上,该方法还包括以下步骤。
在步骤S21中,采集每个电池组的电压或荷电状态。
在步骤S22中,在一电池组的电压大于多个电池组的电压的平均值,或荷电状态大于多个电池组的荷电状态的平均值的情况下,控制对该电池组输出的直流电压的转换,以增大该电池组的输出电流;在一电池组的电压小于多个电池组的电压的平均值,或荷电状态小于多个电池组的荷电状态的平均值的情况下,控制对该电池组输出的直流电压的转换,以减小该电池组的输出电流。
图15是又一示例性实施方式提供的用于车辆的供电转换方法的流程图。如图15所示,在图14所示的实施方式的基础上,该方法还包括步骤S23。
在步骤S23中,在一电池组的电压小于多个电池组的电压的平均值,并且该电池组的电压与多个电池组的电压的平均值的差值大于一预定的电压差值阈值的情况下,或者,在一电池组的荷电状态小于多个电池组的荷电状态的平均值,并且该电池组的荷电状态与多个电池组的荷电状态的平均值的差值大于一预定的荷电状态差值阈值的情况下,控制对低压母线直流电压进行转换,以对该电池组充电。
关于上述实施方式中的方法,其中各个步骤执行操作的具体方式已经在有关该装置的实施方式中进行了详细描述,此处将不做详细阐述说明。
通过上述技术方案,将动力电池包20分成多个电池组2011-201n,分别将每个电池组输出的直流电压转换为低压母线直流电压,由多路低压母线直流电压为车载低压电器30供电。这样就避免了通过车辆中的高压母线为车载低压电器30供电,减少了高压母线上连接的器件,从而减小了为车载低压电器30供电的装置及线路上的电压应力。因此,本发明的用于车辆的供电转换方法能够降低为车载低压电器30供电的装置及线路中发生击穿、短路的危险,增加电路的安全性。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (16)

1.一种用于车辆的供电转换装置,该装置包括:
多个动力电池转换器,并联连接到低压母线,所述多个动力电池转换器用于与所述车辆的动力电池包中的多个电池组一一对应连接,所述多个动力电池转换器中的每个动力电池转换器用于将所对应的电池组输出的直流电压转换为低压母线直流电压;以及
所述低压母线,用于与所述车辆的车载低压电器连接,用于将所述多个动力电池转换器转换的多路所述低压母线直流电压接入所述车载低压电器,为所述车载低压电器供电。
2.根据权利要求1所述的装置,其特征在于,所述每个电池组包括相同数目的电池。
3.根据权利要求1所述的装置,其特征在于,该装置还包括:
充电转换器,用于与充电电源连接,所述充电转换器与所述低压母线连接,用于将所述充电电源输出的电压转换为所述低压母线直流电压,
其中,所述每个动力电池转换器还用于根据所述低压母线直流电压对所对应的电池组充电。
4.根据权利要求3所述的装置,其特征在于,该装置还包括:
第一采集模块,分别与所述每个电池组连接,用于采集所述每个电池组的电压;以及
第一控制器,与所述第一采集模块、所述充电转换器连接,并分别与所述每个动力电池转换器连接,用于在所述多个电池组的电压的总和大于一预定的最高电压阈值的情况下,控制所述充电转换器停止将所述充电电源输出的电压转换为所述低压母线直流电压;和/或在所述多个电池组的电压的总和小于或等于一预定的最低电压阈值的情况下,控制所述每个动力电池转换器停止将所对应的电池组输出的直流电压转换为所述低压母线直流电压。
5.根据权利要求1所述的装置,其特征在于,该装置还包括:
第二采集模块,用于与所述车辆的启动电池连接,用于采集所述启动电池的荷电状态;以及
第二控制器,与所述第二采集模块连接,并分别与所述每个动力电池转换器连接,用于在所述启动电池的荷电状态大于或等于一预设的最大荷电阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以减小所述多个电池组输出的电流的总和;在所述启动电池的荷电状态小于或等于一预设的最小荷电阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以增大所述多个电池组输出的电流的总和。
6.根据权利要求1所述的装置,其特征在于,该装置还包括:
第三采集模块,用于与所述车辆的启动电池连接,用于采集所述启动电池的输入电流和输出电流;以及
第三控制器,与所述第三采集模块连接,并分别与所述每个动力电池转换器连接,用于在所述启动电池的输入电流大于一预设的最大输入电流阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以减小所述多个电池组输出的电流的总和,并且在所述启动电池的输出电流大于一预设的最大输出电流阈值的情况下,控制所述每个动力电池转换器对所对应的电池组输出的直流电压的转换,以增大所述多个电池组输出的电流的总和。
7.根据权利要求1所述的装置,其特征在于,该装置还包括:
第四采集模块,分别与所述每个电池组连接,用于采集所述每个电池组的电压或荷电状态;以及
第四控制器,与所述第四采集模块连接,并分别与所述每个动力电池转换器连接,用于在一电池组的电压大于所述多个电池组的电压的平均值,或荷电状态大于所述多个电池组的荷电状态的平均值的情况下,控制与所述电池组对应的动力电池转换器对所述电池组输出的直流电压的转换,以增大所述电池组的输出电流;在一电池组的电压小于所述多个电池组的电压的平均值,或荷电状态小于所述多个电池组的荷电状态的平均值的情况下,控制与所述电池组对应的动力电池转换器对所述电池组输出的直流电压的转换,以减小所述电池组的输出电流。
8.根据权利要求7所述的装置,其特征在于,所述第四控制器还用于在一电池组的电压小于所述多个电池组的电压的平均值,并且所述电池组的电压与所述多个电池组的电压的平均值的差值大于一预定的电压差值阈值的情况下,或者,在一电池组的荷电状态小于所述多个电池组的荷电状态的平均值,并且所述电池组的荷电状态与所述多个电池组的荷电状态的平均值的差值大于一预定的荷电状态差值阈值的情况下,控制与所述电池组对应的动力电池转换器对所述低压母线直流电压进行转换,以对所述电池组充电。
9.一种用于车辆的供电转换方法,该方法包括:
分别将所述车辆的动力电池包中的多个电池组中的每个电池组输出的直流电压转换为低压母线直流电压,得到多路所述低压母线直流电压;以及
将多路所述低压母线直流电压接入所述车辆的车载低压电器,为所述车载低压电器供电。
10.根据权利要求9所述的方法,其特征在于,所述每个电池组包括相同数目的电池。
11.根据权利要求9所述的方法,其特征在于,该方法还包括:
将充电电源输出的电压转换为所述低压母线直流电压;以及
根据所述低压母线直流电压分别对所述每个电池组充电。
12.根据权利要求11所述的方法,其特征在于,该方法还包括:
采集所述每个电池组的电压;以及
在所述多个电池组的电压的总和大于一预定的最高电压阈值的情况下,控制停止将所述充电电源输出的电压转换为所述低压母线直流电压;和/或在所述多个电池组的电压的总和小于或等于一预定的最低电压阈值的情况下,控制停止将所述每个电池组输出的直流电压转换为所述低压母线直流电压。
13.根据权利要求9所述的方法,其特征在于,该方法还包括:
采集所述车辆的启动电池的荷电状态;以及
在所述启动电池的荷电状态大于或等于一预设的最大荷电阈值的情况下,控制对所述每个电池组输出的直流电压的转换,以减小所述多个电池组输出的电流的总和;在所述启动电池的荷电状态小于或等于一预设的最小荷电阈值的情况下,控制对所述每个电池组输出的直流电压的转换,以增大所述多个电池组输出的电流的总和。
14.根据权利要求9所述的方法,其特征在于,该方法还包括:
采集所述车辆的启动电池的输入电流和输出电流;以及
在所述启动电池的输入电流大于一预设的最大输入电流阈值的情况下,控制对所述每个电池组输出的直流电压的转换,以减小所述多个电池组输出的电流的总和,并且在所述启动电池的输出电流大于一预设的最大输出电流阈值的情况下,控制对所述每个电池组输出的直流电压的转换,以增大所述多个电池组输出的电流的总和。
15.根据权利要求9所述的方法,其特征在于,该方法还包括:
采集所述每个电池组的电压或荷电状态;以及
在一电池组的电压大于所述多个电池组的电压的平均值,或荷电状态大于所述多个电池组的荷电状态的平均值的情况下,控制对所述电池组输出的直流电压的转换,以增大所述电池组的输出电流;在一电池组的电压小于所述多个电池组的电压的平均值,或荷电状态小于所述多个电池组的荷电状态的平均值的情况下,控制对所述电池组输出的直流电压的转换,以减小所述电池组的输出电流。
16.根据权利要求15所述的方法,其特征在于,该方法还包括:
在一电池组的电压小于所述多个电池组的电压的平均值,并且所述电池组的电压与所述多个电池组的电压的平均值的差值大于一预定的电压差值阈值的情况下,或者,在一电池组的荷电状态小于所述多个电池组的荷电状态的平均值,并且所述电池组的荷电状态与所述多个电池组的荷电状态的平均值的差值大于一预定的荷电状态差值阈值的情况下,控制对所述低压母线直流电压进行转换,以对所述电池组充电。
CN201510466348.4A 2015-07-31 2015-07-31 用于车辆的供电转换装置和供电转换方法 Pending CN106696704A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510466348.4A CN106696704A (zh) 2015-07-31 2015-07-31 用于车辆的供电转换装置和供电转换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510466348.4A CN106696704A (zh) 2015-07-31 2015-07-31 用于车辆的供电转换装置和供电转换方法

Publications (1)

Publication Number Publication Date
CN106696704A true CN106696704A (zh) 2017-05-24

Family

ID=58923315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510466348.4A Pending CN106696704A (zh) 2015-07-31 2015-07-31 用于车辆的供电转换装置和供电转换方法

Country Status (1)

Country Link
CN (1) CN106696704A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655294A (zh) * 2015-07-31 2017-05-10 比亚迪股份有限公司 用于车辆的充电转换装置和充电转换方法
CN107634278A (zh) * 2017-10-10 2018-01-26 中车株洲电力机车有限公司 一种蓄电池的低压方法、装置及其使用的低压保护设备
CN110406379A (zh) * 2019-08-16 2019-11-05 珠海广通汽车有限公司 供电控制方法及车辆控制系统
CN112793429A (zh) * 2019-11-14 2021-05-14 现代自动车株式会社 电力供应装置、具有该电力供应装置的车辆及其控制方法
CN113904409A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113895382A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113895381A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113922447A (zh) * 2021-10-09 2022-01-11 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088197A (zh) * 2009-12-04 2011-06-08 现代自动车株式会社 用于控制混合动力车用12v辅助电池的充电电压的方法
CN102611173A (zh) * 2012-03-06 2012-07-25 华中科技大学 一种两级充放电系统
CN102648564A (zh) * 2009-12-03 2012-08-22 松下电器产业株式会社 电源系统以及蓄电池的充电控制方法
CN102653263A (zh) * 2011-03-03 2012-09-05 北汽福田汽车股份有限公司 电动汽车动力电池管理系统及方法
CN103036268A (zh) * 2011-09-30 2013-04-10 三洋电机株式会社 电源装置
DE102012003309A1 (de) * 2012-02-18 2013-08-22 Volkswagen Aktiengesellschaft Elektrisches Energiesystem in einem Kraftfahrzeug und Verfahren zum Betreiben eines Energiesystems
CN104333052A (zh) * 2013-07-22 2015-02-04 光宝电子(广州)有限公司 电池模块、电池模块供电管理方法及其装置
WO2015110405A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Bordnetz und verfahren zum betrieb eines bordnetzes
US20150280487A1 (en) * 2012-11-16 2015-10-01 Panasonic Intellectual Property Management Co., Ltd. Vehicle-mounted power source device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648564A (zh) * 2009-12-03 2012-08-22 松下电器产业株式会社 电源系统以及蓄电池的充电控制方法
CN102088197A (zh) * 2009-12-04 2011-06-08 现代自动车株式会社 用于控制混合动力车用12v辅助电池的充电电压的方法
CN102653263A (zh) * 2011-03-03 2012-09-05 北汽福田汽车股份有限公司 电动汽车动力电池管理系统及方法
CN103036268A (zh) * 2011-09-30 2013-04-10 三洋电机株式会社 电源装置
DE102012003309A1 (de) * 2012-02-18 2013-08-22 Volkswagen Aktiengesellschaft Elektrisches Energiesystem in einem Kraftfahrzeug und Verfahren zum Betreiben eines Energiesystems
CN102611173A (zh) * 2012-03-06 2012-07-25 华中科技大学 一种两级充放电系统
US20150280487A1 (en) * 2012-11-16 2015-10-01 Panasonic Intellectual Property Management Co., Ltd. Vehicle-mounted power source device
CN104333052A (zh) * 2013-07-22 2015-02-04 光宝电子(广州)有限公司 电池模块、电池模块供电管理方法及其装置
WO2015110405A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Bordnetz und verfahren zum betrieb eines bordnetzes

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655294A (zh) * 2015-07-31 2017-05-10 比亚迪股份有限公司 用于车辆的充电转换装置和充电转换方法
CN107634278A (zh) * 2017-10-10 2018-01-26 中车株洲电力机车有限公司 一种蓄电池的低压方法、装置及其使用的低压保护设备
CN110406379A (zh) * 2019-08-16 2019-11-05 珠海广通汽车有限公司 供电控制方法及车辆控制系统
CN110406379B (zh) * 2019-08-16 2024-06-11 珠海广通汽车有限公司 供电控制方法及车辆控制系统
CN112793429A (zh) * 2019-11-14 2021-05-14 现代自动车株式会社 电力供应装置、具有该电力供应装置的车辆及其控制方法
CN112793429B (zh) * 2019-11-14 2024-03-15 现代自动车株式会社 电力供应装置、具有该电力供应装置的车辆及其控制方法
CN113904409A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113895382A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113895381A (zh) * 2021-10-09 2022-01-07 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113922447A (zh) * 2021-10-09 2022-01-11 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113895382B (zh) * 2021-10-09 2023-08-15 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车
CN113922447B (zh) * 2021-10-09 2024-03-08 浙江吉利控股集团有限公司 车辆供电电路、设备及汽车

Similar Documents

Publication Publication Date Title
CN106696704A (zh) 用于车辆的供电转换装置和供电转换方法
CN103490460B (zh) 用于传递来自能源的能量的系统和制造其的方法
EP2284037B1 (en) System for multiple energy storage and management and method of making same
CN104079052B (zh) 电动汽车直流充电系统
CN102148525B (zh) 车辆用电源设备
CN102310781B (zh) 一种车辆
CN101227099A (zh) 混合动力电动车辆中使用插入式充电器的电池均衡
CN104590045B (zh) 一种纯电动车并行充电供电系统
CN107054091A (zh) 用于选择性地使能源耦合于负载的系统及其制造方法
CN202696229U (zh) 蓄电池组合工作装置
CN109742459B (zh) 一种无人机快速充电的锂电池管理系统
CN113459888A (zh) 车辆供电系统、方法和车辆
CN104638291A (zh) 一种混合编组的电池组及一种电池组的混合编组方法
CN105186630B (zh) 一种电能转移方法及一种电能总线
CN209454579U (zh) 一种燃料电池汽车动力系统
CN112550072A (zh) 用于电驱动车辆的能量系统
CN209426574U (zh) 一种纯电动汽车高压配电装置
CN106740247A (zh) 一种电动车充电与驱动一体化设备
CN103072488A (zh) 一种复合电源
CN103972971A (zh) 一种使用超级电容的组合式电动机供电装置
US20170365875A1 (en) Mixed battery group and battery grouping method
CN203157751U (zh) 复合电源
CN206313500U (zh) 一种电池单元总电压可调的充放电系统
CN205385295U (zh) 一种电能总线
CN106655294A (zh) 用于车辆的充电转换装置和充电转换方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524

RJ01 Rejection of invention patent application after publication