CN106685491A - Method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system - Google Patents
Method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system Download PDFInfo
- Publication number
- CN106685491A CN106685491A CN201610543539.0A CN201610543539A CN106685491A CN 106685491 A CN106685491 A CN 106685491A CN 201610543539 A CN201610543539 A CN 201610543539A CN 106685491 A CN106685491 A CN 106685491A
- Authority
- CN
- China
- Prior art keywords
- parameter
- value
- energy efficiency
- massive mimo
- base station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000005540 biological transmission Effects 0.000 claims abstract description 203
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 49
- 238000004364 calculation method Methods 0.000 claims description 55
- 230000001427 coherent effect Effects 0.000 claims description 26
- 238000010586 diagram Methods 0.000 description 12
- 238000005562 fading Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 5
- 238000010845 search algorithm Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及无线通信技术领域,特别涉及一种大规模多入多出系统能效数据的确定方法及装置。The invention relates to the technical field of wireless communication, in particular to a method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system.
背景技术Background technique
近年来,各种各样的多媒体业务不断涌现,智能手机、平板电脑、智能穿戴等智能设备日渐普及,无线网络流量相应地急剧增长。同时,为了应对日益增加的流量需求,越来越多的无线通信制式和无线通信节点被部署,导致无线网络功耗不断增长,相应的碳排放也逐年增加。下一代无线通信网络5G(5th-Generation,第五代移动通信技术)必须在极大地提升无线网络的整体传输速率的同时有效降低系统整体功耗,实现无线通信系统的绿色可持续发展。In recent years, a variety of multimedia services have emerged, and smart devices such as smartphones, tablets, and smart wearables have become increasingly popular, and wireless network traffic has increased dramatically accordingly. At the same time, in order to cope with the ever-increasing traffic demand, more and more wireless communication systems and wireless communication nodes are deployed, resulting in the continuous increase of wireless network power consumption, and the corresponding carbon emissions are also increasing year by year. The next-generation wireless communication network 5G (5th-Generation, fifth-generation mobile communication technology) must greatly improve the overall transmission rate of the wireless network while effectively reducing the overall power consumption of the system to achieve the green and sustainable development of the wireless communication system.
Massive MIMO(Massive Multiple-Input Multiple-Output,大规模多入多出)技术作为5G网络的核心关键技术,通过在基站端部署大量的天线,实现在同一频段、同一时隙对大量用户的同时数据传输,有效提升系统频谱效率的同时也极大地降低了传输单位数据所需要的设备射频功耗。但是随着天线数目的增加和接入用户数目的增加,基站端和用户端的收发链路能耗也相应急剧增加,同时天线数目和用户数目的增加也导致基站端进行信道估计和信号处理需要涉及更多的浮点运算,系统计算功耗也急剧增加。为此,现有技术通过建立Massive MIMO系统能效模型,选择合适的系统参数配置,得到所建立的能效模型的最优值。Massive MIMO (Massive Multiple-Input Multiple-Output, large-scale multiple-input multiple-output) technology is the core key technology of 5G networks. By deploying a large number of antennas at the base station, it is possible to simultaneously transmit data to a large number of users in the same frequency band and the same time slot. Transmission, while effectively improving the spectral efficiency of the system, it also greatly reduces the radio frequency power consumption of the equipment required to transmit a unit of data. However, with the increase in the number of antennas and the number of access users, the energy consumption of the transceiver link between the base station and the user end also increases sharply. At the same time, the increase in the number of antennas and the number of users also requires the base station to perform channel estimation and signal processing. With more floating-point operations, system computing power consumption also increases dramatically. For this reason, in the prior art, an energy efficiency model of a Massive MIMO system is established, and an appropriate system parameter configuration is selected to obtain an optimal value of the established energy efficiency model.
现有技术中所建立的Massive MIMO系统能效模型与实际系统存在差距,从而导致所选择的系统参数并不能得到系统能效的最优值。There is a gap between the energy efficiency model of the Massive MIMO system established in the prior art and the actual system, so that the selected system parameters cannot obtain the optimal value of the system energy efficiency.
发明内容Contents of the invention
本发明实施例的目的在于提供一种大规模多入多出Massive MIMO系统能效数据的确定方法及装置,获得接近于实际系统的能效数据,得到最优的Massive MIMO系统能效值。The purpose of the embodiments of the present invention is to provide a method and device for determining energy efficiency data of a massive multiple-input multiple-output Massive MIMO system, to obtain energy efficiency data close to an actual system, and to obtain an optimal Massive MIMO system energy efficiency value.
为达到上述目的,本发明实施例公开了一种大规模多入多出Massive MIMO系统能效数据的确定方法,包括:In order to achieve the above purpose, the embodiment of the present invention discloses a method for determining energy efficiency data of a Massive MIMO system, including:
获取预先建立的具有Massive MIMO系统上行传输参数的Massive MIMO系统能效数据,其中,所述上行传输参数至少包括:导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数;Acquire pre-established Massive MIMO system energy efficiency data with Massive MIMO system uplink transmission parameters, wherein the uplink transmission parameters include at least: pilot sequence length parameters, target transmission signal-to-noise ratio parameters, base station antenna number parameters and access to the The number of users of the base station;
通过预设第一算法,分别得到满足第一预设条件的所述导频序列长度参数的第一数值、满足第二预设条件的所述目标传输信噪比参数的第二数值、满足第三预设条件的所述基站天线数量参数的第三数值及满足第四预设条件的所述接入所述基站的用户数量参数的第四数值;By presetting the first algorithm, the first value of the pilot sequence length parameter satisfying the first preset condition, the second value of the target transmission signal-to-noise ratio parameter satisfying the second preset condition, and the second value satisfying the first preset condition are respectively obtained. The third value of the parameter of the number of antennas of the base station according to the three preset conditions and the fourth value of the parameter of the number of users accessing the base station satisfying the fourth preset condition;
根据所述第一数值、所述第二数值、所述第三数值、所述第四数值及所述MassiveMIMO系统能效数据,确定所述Massive MIMO系统能效数据的数值为最优能效值。According to the first value, the second value, the third value, the fourth value and the Massive MIMO system energy efficiency data, determine that the value of the Massive MIMO system energy efficiency data is an optimal energy efficiency value.
为了达到上述目的,本发明实施例还公开了一种大规模多入多出Massive MIMO系统能效数据的确定装置,包括:In order to achieve the above purpose, the embodiment of the present invention also discloses a device for determining energy efficiency data of a Massive MIMO system, including:
系统能效数据获取模块,用于获取预先建立的具有Massive MIMO系统上行传输参数的Massive MIMO系统能效数据,其中,所述上行传输参数至少包括:导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数;A system energy efficiency data acquisition module, configured to acquire pre-established Massive MIMO system energy efficiency data with Massive MIMO system uplink transmission parameters, wherein the uplink transmission parameters at least include: pilot sequence length parameters, target transmission signal-to-noise ratio parameters, base station A parameter of the number of antennas and a parameter of the number of users accessing the base station;
上行传输参数确定模块,用于通过预设第一算法,分别得到满足第一预设条件的所述导频序列长度参数的第一数值、满足第二预设条件的所述目标传输信噪比参数的第二数值、满足第三预设条件的所述基站天线数量参数的第三数值及满足第四预设条件的所述接入所述基站的用户数量参数的第四数值;An uplink transmission parameter determination module, configured to obtain the first value of the pilot sequence length parameter satisfying the first preset condition and the target transmission signal-to-noise ratio satisfying the second preset condition respectively by preset the first algorithm The second value of the parameter, the third value of the parameter of the number of antennas of the base station meeting the third preset condition, and the fourth value of the parameter of the number of users accessing the base station meeting the fourth preset condition;
最优能效确定模块,用于根据所述第一数值、所述第二数值、所述第三数值、所述第四数值及所述Massive MIMO系统能效数据,确定所述Massive MIMO系统能效数据的数值为最优能效值。An optimal energy efficiency determination module, configured to determine the energy efficiency data of the Massive MIMO system according to the first value, the second value, the third value, the fourth value, and the energy efficiency data of the Massive MIMO system The value is the optimal energy efficiency value.
由上述的技术方案可见,本发明实施例的Massive MIMO系统能效具有导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数,较之现有技术获取了更接近于实际系统的能效数据,Massive MIMO系统能效包括实际系统中上行导频序列长度,一方面得到了更为精确的实际系统用户平均上行传输速率,从而获取了更合理的能效数据,另一方面,通过导频序列长度优化,均衡信道估计和导频开销,进一步提升系统整体能效。本发明实施例提出的能效参数计算方法具有快速收敛性,且性能优越,得到的系统上行传输参数可以使得Massive MIMO系统能效达到最优值。当然,实施本发明的任一产品或方法必不一定需要同时达到以上所述的所有优点。It can be seen from the above technical solution that the energy efficiency of the Massive MIMO system in the embodiment of the present invention has a pilot sequence length parameter, a target transmission signal-to-noise ratio parameter, a parameter of the number of base station antennas and a parameter of the number of users accessing the base station, compared with the prior art The energy efficiency data closer to the actual system is obtained. The energy efficiency of the Massive MIMO system includes the length of the uplink pilot sequence in the actual system. On the one hand, a more accurate average uplink transmission rate of the actual system users is obtained, thereby obtaining more reasonable energy efficiency data. On the other hand, by optimizing the length of the pilot sequence, channel estimation and pilot overhead are balanced to further improve the overall energy efficiency of the system. The energy efficiency parameter calculation method proposed by the embodiment of the present invention has fast convergence and superior performance, and the obtained system uplink transmission parameters can make the energy efficiency of the Massive MIMO system reach an optimal value. Of course, implementing any product or method of the present invention does not necessarily need to achieve all the above-mentioned advantages at the same time.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明实施例的大规模多入多出Massive MIMO系统能效数据的确定方法的流程示意图;FIG. 1 is a schematic flowchart of a method for determining energy efficiency data of a Massive MIMO system according to an embodiment of the present invention;
图2为本发明实施例的获取Massive MIMO系统能效数据的流程示意图;FIG. 2 is a schematic flow diagram of obtaining energy efficiency data of a Massive MIMO system according to an embodiment of the present invention;
图3为本发明实施例的确定上行传输参数的方法流程示意图;FIG. 3 is a schematic flowchart of a method for determining uplink transmission parameters according to an embodiment of the present invention;
图4为本发明实施例的大规模多入多出Massive MIMO系统能效数据的确定装置的结构示意图;4 is a schematic structural diagram of a device for determining energy efficiency data of a Massive MIMO system according to an embodiment of the present invention;
图5为本发明实施例的大规模多入多出Massive MIMO系统上行传输示意图;FIG. 5 is a schematic diagram of uplink transmission of a massive multiple-input multiple-output Massive MIMO system according to an embodiment of the present invention;
图6为本发明实施例的交替迭代与黄金分割算法的仿真示意图;Fig. 6 is the simulation schematic diagram of alternate iteration and golden section algorithm of the embodiment of the present invention;
图7为本发明实施例的交替迭代与黄金分割算法和穷搜算法的性能对比示意图;Fig. 7 is a schematic diagram of the performance comparison between the alternate iteration and the golden section algorithm and the exhaustive search algorithm of the embodiment of the present invention;
图8为本发明实施例的能效数据确定方法与现有技术能效参数优化方法的系统能效对比示意图。FIG. 8 is a schematic diagram of system energy efficiency comparison between the method for determining energy efficiency data according to the embodiment of the present invention and the method for optimizing energy efficiency parameters in the prior art.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
图1为本发明实施例的大规模多入多出Massive MIMO系统能效数据的确定方法的流程示意图,方法包括:Fig. 1 is a schematic flow chart of a method for determining energy efficiency data of a massive multiple-input multiple-output Massive MIMO system according to an embodiment of the present invention, the method comprising:
步骤101,获取预先建立的具有Massive MIMO系统上行传输参数的Massive MIMO系统能效数据。Step 101, acquiring pre-established Massive MIMO system energy efficiency data with Massive MIMO system uplink transmission parameters.
优选的,所述上行传输参数至少包括:导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数。Preferably, the uplink transmission parameters at least include: a pilot sequence length parameter, a target transmission signal-to-noise ratio parameter, a parameter of the number of base station antennas, and a parameter of the number of users accessing the base station.
导频序列长度参数及目标传输信噪比参数作为基站端进行下行预编码传输时必须提前获取的参数,这两个参数的优化直接影响着Massive MIMO系统的能效,因此,建立的Massive MIMO系统能效具有上述参数。The pilot sequence length parameter and the target transmission SNR parameter are parameters that must be obtained in advance when the base station performs downlink precoding transmission. The optimization of these two parameters directly affects the energy efficiency of the Massive MIMO system. Therefore, the energy efficiency of the established Massive MIMO system with the above parameters.
步骤102,通过预设第一算法,分别得到满足第一预设条件的所述导频序列长度参数的第一数值、满足第二预设条件的所述目标传输信噪比参数的第二数值、满足第三预设条件的所述基站天线数量参数的第三数值及满足第四预设条件的所述接入所述基站的用户数量参数的第四数值。Step 102, by presetting the first algorithm, obtain the first value of the pilot sequence length parameter satisfying the first preset condition and the second value of the target transmission signal-to-noise ratio parameter satisfying the second preset condition respectively , a third value of the parameter of the number of antennas of the base station meeting a third preset condition, and a fourth value of the parameter of the number of users accessing the base station meeting a fourth preset condition.
本发明实施例,利用交替迭代与黄金分割算法得到能够使系统能效最优的上行传输参数,根据所述第一预设条件、所述第二预设条件、所述第三预设条件、及所述第四预设条件,所述上行传输参数收敛。In the embodiment of the present invention, the uplink transmission parameters that can optimize the energy efficiency of the system are obtained by using the alternate iteration and golden section algorithm, according to the first preset condition, the second preset condition, the third preset condition, and The fourth preset condition is that the uplink transmission parameters converge.
步骤103,根据所述第一数值、所述第二数值、所述第三数值、所述第四数值及所述Massive MIMO系统能效数据,确定所述Massive MIMO系统能效数据的数值为最优能效值。Step 103, according to the first value, the second value, the third value, the fourth value and the Massive MIMO system energy efficiency data, determine that the value of the Massive MIMO system energy efficiency data is the optimal energy efficiency value.
应用本发明实施例,由于Massive MIMO系统能效具有导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数,较之现有技术获取了更接近于实际系统的能效数据,Massive MIMO系统能效包括实际系统中上行导频序列长度,一方面得到了更为精确的实际系统用户平均上行传输速率,从而获取了更合理的能效数据,另一方面,通过导频序列长度优化,均衡信道估计和导频开销,进一步提升系统整体能效。Applying the embodiment of the present invention, since the energy efficiency of the Massive MIMO system has the parameters of the length of the pilot sequence, the parameter of the target transmission signal-to-noise ratio, the parameter of the number of base station antennas and the number of users accessing the base station, compared with the prior art, it is closer to The energy efficiency data of the actual system. The energy efficiency of the Massive MIMO system includes the length of the uplink pilot sequence in the actual system. On the one hand, a more accurate average uplink transmission rate of the actual system users is obtained, thereby obtaining more reasonable energy efficiency data. The length of the pilot sequence is optimized to balance channel estimation and pilot overhead, further improving the overall energy efficiency of the system.
图2为本发明实施例的获取Massive MIMO系统能效数据的流程示意图,包括:FIG. 2 is a schematic flow diagram of obtaining energy efficiency data of a Massive MIMO system according to an embodiment of the present invention, including:
步骤201,根据所述上行传输参数,确定接入基站的每个用户平均上行传输速率。Step 201: Determine the average uplink transmission rate of each user accessing the base station according to the uplink transmission parameters.
优选的,所述确定接入基站的每个用户平均上行传输速率,包括:Preferably, said determining the average uplink transmission rate of each user accessing the base station includes:
获取所述Massive MIMO系统的系统基本参数,其中,所述系统基本参数至少包括:整体带宽参数、相干资源块中传输符号数目参数;Obtaining basic system parameters of the Massive MIMO system, wherein the basic system parameters include at least: an overall bandwidth parameter, and a parameter of the number of symbols transmitted in a coherent resource block;
根据所述上行传输参数、所述系统基本参数及公式According to the uplink transmission parameters, the basic system parameters and the formula
确定接入基站的每个用户平均上行传输速率;Determine the average uplink transmission rate of each user accessing the base station;
其中,所述Rk为所述接入基站的每个用户平均上行传输速率,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述B为整体带宽参数,所述M为基站天线数量参数,所述K为接入所述基站的用户数量参数,所述ρ为目标传输信噪比参数。Wherein, the R k is the average uplink transmission rate of each user accessing the base station, the τ is the pilot sequence length parameter, the T is the number of symbols transmitted in the coherent resource block, and the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the B is the overall bandwidth parameter, the M is the number of base station antennas, the K is the number of users accessing the base station, the ρ is the target transmission signal-to-noise ratio parameter.
步骤202,根据所述每个用户平均上行传输速率,得到所述Massive MIMO系统的总上行传输速率。Step 202: Obtain the total uplink transmission rate of the Massive MIMO system according to the average uplink transmission rate of each user.
优选的,所述得到所述Massive MIMO系统的总上行传输速率,所利用的公式为:Preferably, the formula used to obtain the total uplink transmission rate of the Massive MIMO system is:
其中,所述Rtot为所述Massive MIMO系统的总上行传输速率,所述Rk为所述接入基站的每个用户平均上行传输速率,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述K为接入所述基站的用户数量参数,所述B为整体带宽参数,所述M为基站天线数量参数,所述ρ为目标传输信噪比参数。Wherein, the R tot is the total uplink transmission rate of the Massive MIMO system, the R k is the average uplink transmission rate of each user accessing the base station, the τ is a pilot sequence length parameter, and the T is the number of symbols transmitted in coherent resource blocks, the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the K is the number of users accessing the base station, the B is the overall bandwidth parameter, and the M is the number of base station antennas. ρ is the target transmission signal-to-noise ratio parameter.
步骤203,获取所述Massive MIMO系统的系统总功耗;Step 203, obtaining the total system power consumption of the Massive MIMO system;
优选的,所述获取所述Massive MIMO系统的系统总功耗,包括:Preferably, the obtaining the total system power consumption of the Massive MIMO system includes:
获取所述Massive MIMO系统的系统功耗参数,其中,所述系统功耗参数至少包括:系统功放功耗系数参数、系统电路功耗用户相关系数参数、系统电路功耗用户天线联合相关系数参数、系统电路功耗速率相关系数参数;Obtain system power consumption parameters of the Massive MIMO system, wherein the system power consumption parameters at least include: system power amplifier power consumption coefficient parameters, system circuit power consumption user correlation coefficient parameters, system circuit power consumption user antenna joint correlation coefficient parameters, System circuit power consumption rate correlation coefficient parameters;
根据所述系统功耗参数及公式According to the system power consumption parameters and formula
得到所述Massive MIMO系统的系统总功耗;Obtain the total system power consumption of the Massive MIMO system;
其中,所述Ptot为所述Massive MIMO系统的系统总功耗,所述δ为系统功放功耗系数,所述K为接入所述基站的用户数量参数,所述ρ为目标传输信噪比参数,所述δKρ为用户端功率放大器的功耗,所述为系统电路功耗用户相关系数参数,所述M为基站天线数量参数,所述为系统电路功耗用户天线联合相关系数参数,所述为系统电路功耗速率相关系数参数,所述Rtot为系统总上行传输速率,所述为电路功耗。Wherein, the P tot is the total system power consumption of the Massive MIMO system, the δ is the system power amplifier power consumption coefficient, the K is the number of users accessing the base station parameter, and the ρ is the target transmission signal-to-noise ratio parameter, the δKρ is the power consumption of the power amplifier at the user end, and the is the system circuit power consumption user correlation coefficient parameter, and the M is the number parameter of the base station antenna, and the is the system circuit power consumption user antenna joint correlation coefficient parameter, the is the system circuit power consumption rate correlation coefficient parameter, the R tot is the total uplink transmission rate of the system, and the is the power consumption of the circuit.
步骤204,根据所述总上行传输速率与所述系统总功耗的比值,建立所述MassiveMIMO系统能效数据。Step 204: Establish the energy efficiency data of the MassiveMIMO system according to the ratio of the total uplink transmission rate to the total power consumption of the system.
优选的,所述Massive MIMO系统能效数据的形式为:Preferably, the form of the Massive MIMO system energy efficiency data is:
其中,所述EE为所述Massive MIMO系统能效数据,所述Rtot为所述系统的总上行传输速率,所述Ptot为所述系统的总功耗,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述K为接入所述基站的用户数量参数,所述B为整体带宽参数,所述M为基站天线数量参数,所述ρ为目标传输信噪比参数,所述δ为系统功放功耗系数,所述δKρ为用户端功率放大器的功耗,所述为系统电路功耗用户相关系数参数,所述为系统电路功耗用户天线联合相关系数参数,所述为系统电路功耗速率相关系数参数,所述为电路功耗。Wherein, the EE is the energy efficiency data of the Massive MIMO system, the R tot is the total uplink transmission rate of the system, the P tot is the total power consumption of the system, and the τ is a pilot sequence length parameter , the T is a parameter of the number of symbols transmitted in the coherent resource block, and the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the K is the number of users accessing the base station, the B is the overall bandwidth parameter, and the M is the number of base station antennas. ρ is the target transmission signal-to-noise ratio parameter, the δ is the power consumption coefficient of the system power amplifier, the δKρ is the power consumption of the user end power amplifier, and the is the user correlation coefficient parameter for system circuit power consumption, the is the system circuit power consumption user antenna joint correlation coefficient parameter, the is the system circuit power consumption rate correlation coefficient parameter, the is the power consumption of the circuit.
应用本发明实施例,获得了更为实际合理的能效参数优化模型,由于获得的Massive MIMO系统上行传输参数中包括上行导频序列长度,则获得的系统能效数据较之现有技术更为合理且更优。此外,应用本发明实施例,得到的系统上行传输参数可以使得Massive MIMO系统能效达到最优值,并且计算方法具有快速收敛性。By applying the embodiment of the present invention, a more practical and reasonable energy efficiency parameter optimization model is obtained. Since the obtained uplink transmission parameters of the Massive MIMO system include the length of the uplink pilot sequence, the obtained system energy efficiency data is more reasonable and better. In addition, by applying the embodiment of the present invention, the obtained uplink transmission parameters of the system can make the energy efficiency of the Massive MIMO system reach an optimal value, and the calculation method has fast convergence.
图3为本发明实施例的确定上行传输参数的方法流程示意图,包括:Fig. 3 is a schematic flowchart of a method for determining uplink transmission parameters according to an embodiment of the present invention, including:
步骤301,分别分配所述上行传输参数中的除第一参数外的其他参数的数值为第一预设常量,对应得到第一参数计算公式。Step 301, respectively assigning values of other parameters in the uplink transmission parameters except the first parameter as first preset constants, correspondingly obtaining the first parameter calculation formula.
优选的,所述第一参数为所述导频序列长度参数、所述目标传输信噪比参数、所述基站天线数量参数及所述接入所述基站的用户数量参数中的任一个。Preferably, the first parameter is any one of the pilot sequence length parameter, the target transmission signal-to-noise ratio parameter, the number of base station antennas parameter, and the number of users accessing the base station parameter.
步骤302,根据所述第一参数计算公式及第二预设算法,得到当前时刻所述上行传输参数中的第一参数的数值。Step 302: Obtain the value of the first parameter among the uplink transmission parameters at the current moment according to the first parameter calculation formula and the second preset algorithm.
优选的,所述第二预设算法为黄金分割算法,所述黄金分割算法,包括:Preferably, the second preset algorithm is the golden section algorithm, and the golden section algorithm includes:
第一步,获取所述上行传输参数中的每个参数的参数范围,并根据所述参数范围,确定所述每个参数对应的原始上限值、原始下限值及参数计算公式;The first step is to obtain the parameter range of each parameter in the uplink transmission parameters, and determine the original upper limit value, original lower limit value and parameter calculation formula corresponding to each parameter according to the parameter range;
第二步,比较所述原始上限值及所述原始下限值的差值、与预设迭代容忍误差,在所述差值大于所述预设迭代容忍误差时,得到公式:u1=ulow+0.382×(uup-ulow)及u2=ulow+0.618×(uup-ulow);The second step is to compare the difference between the original upper limit value and the original lower limit value with the preset iteration tolerance error, and when the difference is greater than the preset iteration tolerance error, the formula is obtained: u 1 = u low +0.382×(u up −u low ) and u 2 =u low +0.618×(u up −u low );
第三步,分别代入所述u1及所述u2至所述参数计算公式内,对应得到第一计算结果及第二计算结果;In the third step, respectively substituting the u 1 and the u 2 into the parameter calculation formula to obtain the first calculation result and the second calculation result correspondingly;
第四步,在所述第一计算结果大于或等于所述第二计算结果时,将所述u2替换所述原始上限值;In the fourth step, when the first calculation result is greater than or equal to the second calculation result, the u2 is replaced with the original upper limit;
第五步,在所述第一计算结果小于所述第二计算结果时,将所述u1替换所述原始下限值;In the fifth step, when the first calculation result is less than the second calculation result, the u 1 is replaced with the original lower limit value;
第六步,根据公式u*=(uup+ulow)/2,得到所述上行传输参数中的每个参数的数值;The sixth step is to obtain the value of each parameter in the uplink transmission parameters according to the formula u * =(u up +u low )/2;
其中,ulow为所述上行传输参数中的每个参数的下限值,uup为所述上行传输参数中的每个参数的上限值,u1为通过黄金分割公式得到的新的下限值,u2为通过黄金分割公式得到的新的上限值。Wherein, u low is the lower limit value of each parameter in the uplink transmission parameters, u up is the upper limit value of each parameter in the uplink transmission parameters, and u 1 is a new lower limit value obtained by the golden section formula Limit value, u 2 is the new upper limit value obtained by the golden section formula.
步骤303,重新分别分配所述上行传输参数中的除第二参数及所述第一参数外的其他参数的数值为第二预设常量,并根据所述第一参数的数值,对应得到第二参数计算公式。Step 303, respectively reassigning the values of other parameters in the uplink transmission parameters except the second parameter and the first parameter as the second preset constant, and according to the value of the first parameter, correspondingly obtain the second Parameter calculation formula.
优选的,所述第二参数为所述导频序列长度参数、所述目标传输信噪比参数、所述基站天线数量参数及所述接入所述基站的用户数量参数中的除所述第一参数外的任一个。Preferably, the second parameter is the parameter of the length of the pilot sequence, the parameter of the target transmission signal-to-noise ratio, the parameter of the number of antennas of the base station, and the parameter of the number of users accessing the base station, except for the second parameter. Any one other than one parameter.
步骤304,根据所述第二参数计算公式及第二预设算法,得到当前时刻所述上行传输参数中的第二参数的数值。Step 304: Obtain the value of the second parameter among the uplink transmission parameters at the current moment according to the second parameter calculation formula and the second preset algorithm.
步骤305,重新分配所述上行传输参数中的第四参数的数值为第三预设常量,根据所述第一参数的数值、所述第二参数的数值,对应得到第三参数计算公式。Step 305, reallocating the value of the fourth parameter among the uplink transmission parameters as a third preset constant, and correspondingly obtaining a third parameter calculation formula according to the value of the first parameter and the value of the second parameter.
优选的,所述第三参数为所述导频序列长度参数、所述目标传输信噪比参数、所述基站天线数量参数及所述接入所述基站的用户数量参数中的除所述第一参数、所述第二参数外的任一个。Preferably, the third parameter is the parameter of the length of the pilot sequence, the parameter of the target transmission signal-to-noise ratio, the parameter of the number of antennas of the base station, and the parameter of the number of users accessing the base station, except for the second parameter. One parameter, any one other than the second parameter.
步骤306,根据所述第三参数计算公式及第二预设算法,得到当前时刻所述上行传输参数中的第三参数的数值。Step 306: Obtain the value of the third parameter among the uplink transmission parameters at the current moment according to the calculation formula of the third parameter and the second preset algorithm.
步骤307,根据所述第一参数的数值、所述第二参数的数值及所述第三参数的数值,对应得到第四参数计算公式。Step 307, according to the value of the first parameter, the value of the second parameter, and the value of the third parameter, correspondingly obtain a fourth parameter calculation formula.
优选的,所述第一参数、所述第二参数、所述第三参数与所述第四参数为不同参数。Preferably, the first parameter, the second parameter, the third parameter and the fourth parameter are different parameters.
步骤308,根据所述第四参数计算公式及第二预设算法,得到当前时刻所述上行传输参数中的第四参数的数值。Step 308: Obtain the value of the fourth parameter among the uplink transmission parameters at the current moment according to the calculation formula of the fourth parameter and the second preset algorithm.
步骤309,重复步骤301至步骤308,直至分别得到满足第一预设条件的所述导频序列长度参数的第一数值、满足第二预设条件的所述目标传输信噪比参数的第二数值、满足第三预设条件的所述基站天线数量参数的第三数值、及满足所述第四预设条件的所述接入所述基站的用户数量参数的第四数值。Step 309, repeating steps 301 to 308 until the first value of the pilot sequence length parameter satisfying the first preset condition and the second value of the target transmission signal-to-noise ratio parameter satisfying the second preset condition are respectively obtained. A numerical value, a third numerical value of the parameter of the number of antennas of the base station meeting the third preset condition, and a fourth numerical value of the parameter of the number of users accessing the base station meeting the fourth preset condition.
优选的,所述第一预设条件为当前时刻的所述第一数值与上一时刻的所述第一数值之差的绝对值小于预设第一门限值,所述第二预设条件为当前时刻的所述第二数值与上一时刻的所述第二数值之差的绝对值小于预设第二门限值,所述第三预设条件为当前时刻的所述第三数值与上一时刻的所述第三数值之差的绝对值小于预设第三门限值,所述第四预设条件为当前时刻的所述第四数值与上一时刻的所述第四数值之差的绝对值小于预设第四门限值。Preferably, the first preset condition is that the absolute value of the difference between the first value at the current moment and the first value at the previous moment is less than a preset first threshold value, and the second preset condition The absolute value of the difference between the second value at the current moment and the second value at the previous moment is less than a preset second threshold value, and the third preset condition is that the third value at the current moment and The absolute value of the difference between the third numerical value at the previous moment is smaller than the preset third threshold value, and the fourth preset condition is the difference between the fourth numerical value at the current moment and the fourth numerical value at the previous moment. The absolute value of the difference is smaller than the preset fourth threshold value.
应用本发明实施例,得到所述导频序列长度参数的第一数值、所述目标传输信噪比参数的第二数值、所述基站天线数量参数的第三数值、及所述接入所述基站的用户数量参数的第四数值,通过所述参数能够得到Massive MIMO系统的能效最优值。并且通过本实施例可以得到,所述参数具有较高的快速收敛性。By applying the embodiment of the present invention, the first value of the pilot sequence length parameter, the second value of the target transmission signal-to-noise ratio parameter, the third value of the base station antenna number parameter, and the access to the The fourth value of the parameter of the number of users of the base station, through which the optimal value of energy efficiency of the Massive MIMO system can be obtained. And it can be obtained through this embodiment that the parameters have a relatively high fast convergence.
图4为本发明实施例的大规模多入多出Massive MIMO系统能效数据的确定装置的结构示意图,包括:FIG. 4 is a schematic structural diagram of a device for determining energy efficiency data of a Massive MIMO system according to an embodiment of the present invention, including:
系统能效数据获取模块401,用于获取预先建立的具有Massive MIMO系统上行传输参数的Massive MIMO系统能效数据,其中,所述上行传输参数至少包括:导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数。The system energy efficiency data acquisition module 401 is configured to acquire the pre-established Massive MIMO system energy efficiency data with Massive MIMO system uplink transmission parameters, wherein the uplink transmission parameters include at least: pilot sequence length parameters, target transmission signal-to-noise ratio parameters, A parameter of the number of base station antennas and a parameter of the number of users accessing the base station.
上行传输参数确定模块402,用于通过预设第一算法,分别得到满足第一预设条件的所述导频序列长度参数的第一数值、满足第二预设条件的所述目标传输信噪比参数的第二数值、满足第三预设条件的所述基站天线数量参数的第三数值及满足第四预设条件的所述接入所述基站的用户数量参数的第四数值。The uplink transmission parameter determination module 402 is configured to respectively obtain the first value of the pilot sequence length parameter satisfying the first preset condition and the target transmission signal noise satisfying the second preset condition through a preset first algorithm. The second value of the ratio parameter, the third value of the parameter of the number of antennas of the base station meeting the third preset condition, and the fourth value of the parameter of the number of users accessing the base station meeting the fourth preset condition.
最优能效确定模块403,用于根据所述第一数值、所述第二数值、所述第三数值、所述第四数值及所述Massive MIMO系统能效数据,确定所述Massive MIMO系统能效数据的数值为最优能效值。An optimal energy efficiency determining module 403, configured to determine the energy efficiency data of the Massive MIMO system according to the first value, the second value, the third value, the fourth value and the energy efficiency data of the Massive MIMO system The value of is the optimal energy efficiency value.
应用本发明实施例,由于Massive MIMO系统能效具有导频序列长度参数,目标传输信噪比参数,基站天线数量参数及接入所述基站的用户数量参数,较之现有技术获取了更接近于实际系统的能效数据,Massive MIMO系统能效包括实际系统中上行导频序列长度,一方面得到了更为精确的实际系统用户平均上行传输速率,从而获取了更合理的能效数据,另一方面,通过导频序列长度优化,均衡信道估计和导频开销,进一步提升系统整体能效。Applying the embodiment of the present invention, since the energy efficiency of the Massive MIMO system has the parameters of the length of the pilot sequence, the parameter of the target transmission signal-to-noise ratio, the parameter of the number of base station antennas and the number of users accessing the base station, compared with the prior art, it is closer to The energy efficiency data of the actual system. The energy efficiency of the Massive MIMO system includes the length of the uplink pilot sequence in the actual system. On the one hand, a more accurate average uplink transmission rate of the actual system users is obtained, thereby obtaining more reasonable energy efficiency data. The length of the pilot sequence is optimized to balance channel estimation and pilot overhead, further improving the overall energy efficiency of the system.
需要说明的是,本发明实施例的装置是应用上述大规模多入多出Massive MIMO系统能效数据的确定方法的装置,则上述大规模多入多出Massive MIMO系统能效数据的确定方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。It should be noted that the device in the embodiment of the present invention is a device that applies the method for determining the energy efficiency data of the massive multiple-input multiple-output Massive MIMO system described above. Examples are applicable to the device, and can achieve the same or similar beneficial effects.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述系统能效数据获取模块401,包括:In the device for determining energy efficiency data of a Massive MIMO system according to another embodiment of the present invention, the system energy efficiency data acquisition module 401 includes:
上行传输速率第一确定子模块,用于根据所述上行传输参数,确定接入基站的每个用户平均上行传输速率;The first submodule for determining the uplink transmission rate is used to determine the average uplink transmission rate of each user accessing the base station according to the uplink transmission parameters;
上行传输速率第二确定子模块,用于根据所述每个用户平均上行传输速率,得到所述Massive MIMO系统的总上行传输速率;The second uplink transmission rate determining submodule is used to obtain the total uplink transmission rate of the Massive MIMO system according to the average uplink transmission rate of each user;
系统总功耗获取子模块,用于获取所述Massive MIMO系统的系统总功耗;The total system power consumption acquisition sub-module is used to obtain the total system power consumption of the Massive MIMO system;
系统能效数据建立子模块,用于根据所述总上行传输速率与所述系统总功耗的比值,建立所述Massive MIMO系统能效数据。The system energy efficiency data establishing submodule is configured to establish the energy efficiency data of the Massive MIMO system according to the ratio of the total uplink transmission rate to the total power consumption of the system.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述上行传输速率第一确定子模块,包括:In another embodiment of the present invention, in the device for determining energy efficiency data of a Massive MIMO system, the first determining submodule of the uplink transmission rate includes:
系统基本参数获取单元,用于获取所述Massive MIMO系统的系统基本参数,其中,所述系统基本参数至少包括:整体带宽参数、相干资源块中传输符号数目参数;A system basic parameter acquisition unit, configured to acquire system basic parameters of the Massive MIMO system, wherein the system basic parameters at least include: overall bandwidth parameters, parameters of the number of symbols transmitted in coherent resource blocks;
上行传输速率确定单元,用于根据所述上行传输参数、所述系统基本参数及公式An uplink transmission rate determination unit, configured to determine the uplink transmission rate according to the uplink transmission parameters, the basic system parameters and the formula
确定接入基站的每个用户平均上行传输速率;Determine the average uplink transmission rate of each user accessing the base station;
其中,所述Rk为所述接入基站的每个用户平均上行传输速率,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述B为整体带宽参数,所述M为基站天线数量参数,所述K为接入所述基站的用户数量参数,所述ρ为目标传输信噪比参数。Wherein, the R k is the average uplink transmission rate of each user accessing the base station, the τ is the pilot sequence length parameter, the T is the number of symbols transmitted in the coherent resource block, and the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the B is the overall bandwidth parameter, the M is the number of base station antennas, the K is the number of users accessing the base station, the ρ is the target transmission signal-to-noise ratio parameter.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述上行传输速率第二确定子模块,包括:In another embodiment of the present invention, in the device for determining energy efficiency data of a Massive MIMO system, the second determination submodule of the uplink transmission rate includes:
根据所述接入基站的每个用户平均上行传输速率及公式According to the average uplink transmission rate of each user accessing the base station and the formula
得到所述Massive MIMO系统的总上行传输速率;Obtain the total uplink transmission rate of the Massive MIMO system;
其中,所述Rtot为所述Massive MIMO系统的总上行传输速率,所述Rk为所述接入基站的每个用户平均上行传输速率,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述K为接入所述基站的用户数量参数,所述B为整体带宽参数,所述M为基站天线数量参数,所述ρ为目标传输信噪比参数。Wherein, the R tot is the total uplink transmission rate of the Massive MIMO system, the R k is the average uplink transmission rate of each user accessing the base station, the τ is a pilot sequence length parameter, and the T is the number of symbols transmitted in coherent resource blocks, the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the K is the number of users accessing the base station, the B is the overall bandwidth parameter, and the M is the number of base station antennas. ρ is the target transmission signal-to-noise ratio parameter.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述系统总功耗获取子模块,包括:In the device for determining energy efficiency data of a Massive MIMO system according to another embodiment of the present invention, the sub-module for obtaining total power consumption of the system includes:
系统功耗参数获取单元,用于获取所述Massive MIMO系统的系统功耗参数,其中,所述系统功耗参数至少包括:系统功放功耗系数参数、系统电路功耗用户相关系数参数、系统电路功耗用户天线联合相关系数参数、系统电路功耗速率相关系数参数;A system power consumption parameter acquisition unit, configured to acquire system power consumption parameters of the Massive MIMO system, wherein the system power consumption parameters at least include: system power amplifier power consumption coefficient parameters, system circuit power consumption user correlation coefficient parameters, system circuit Power consumption user antenna joint correlation coefficient parameters, system circuit power consumption rate correlation coefficient parameters;
系统总功耗确定单元,用于根据所述系统功耗参数及公式The total system power consumption determination unit is used to determine the system power consumption parameters and formulas according to the system
得到所述Massive MIMO系统的系统总功耗;Obtain the total system power consumption of the Massive MIMO system;
其中,所述Ptot为所述Massive MIMO系统的系统总功耗,所述δ为系统功放功耗系数,所述K为接入所述基站的用户数量参数,所述ρ为目标传输信噪比参数,所述δKρ为用户端功率放大器的功耗,所述为系统电路功耗用户相关系数参数,所述M为基站天线数量参数,所述为系统电路功耗用户天线联合相关系数参数,所述为系统电路功耗速率相关系数参数,所述Rtot为系统总上行传输速率,所述为电路功耗。Wherein, the P tot is the total system power consumption of the Massive MIMO system, the δ is the system power amplifier power consumption coefficient, the K is the number of users accessing the base station parameter, and the ρ is the target transmission signal-to-noise ratio parameter, the δKρ is the power consumption of the power amplifier at the user end, and the is the system circuit power consumption user correlation coefficient parameter, and the M is the number parameter of the base station antenna, and the is the system circuit power consumption user antenna joint correlation coefficient parameter, the is the system circuit power consumption rate correlation coefficient parameter, the R tot is the total uplink transmission rate of the system, and the is the power consumption of the circuit.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述上行传输参数确定模块402,包括:In another embodiment of the present invention, in the device for determining energy efficiency data of a Massive MIMO system, the uplink transmission parameter determination module 402 includes:
第一分配单元,用于分别分配所述上行传输参数中的除第一参数外的其他参数的数值为第一预设常量,对应得到第一参数计算公式,其中,所述第一参数为所述导频序列长度参数、所述目标传输信噪比参数、所述基站天线数量参数及所述接入所述基站的用户数量参数中的任一个;The first allocating unit is configured to respectively allocate the values of other parameters in the uplink transmission parameters except the first parameter as a first preset constant, and correspondingly obtain a first parameter calculation formula, wherein the first parameter is the first parameter Any one of the pilot sequence length parameter, the target transmission signal-to-noise ratio parameter, the base station antenna number parameter, and the number of users accessing the base station parameter;
第一参数确定单元,用于根据所述第一参数计算公式及第二预设算法,得到所述上行传输参数中的第一参数的数值;A first parameter determination unit, configured to obtain the value of the first parameter in the uplink transmission parameters according to the first parameter calculation formula and the second preset algorithm;
第二分配单元,用于重新分别分配所述上行传输参数中的除第二参数及所述第一参数外的其他参数的数值为第二预设常量,并根据所述第一参数的数值,对应得到第二参数计算公式,其中,所述第二参数为所述导频序列长度参数、所述目标传输信噪比参数、所述基站天线数量参数及所述接入所述基站的用户数量参数中的除所述第一参数外的任一个;The second allocation unit is configured to re-allocate values of other parameters in the uplink transmission parameters except the second parameter and the first parameter as a second preset constant, and according to the value of the first parameter, A second parameter calculation formula is correspondingly obtained, wherein the second parameter is the pilot sequence length parameter, the target transmission signal-to-noise ratio parameter, the base station antenna number parameter, and the number of users accessing the base station any one of the parameters except said first parameter;
第二参数确定单元,用于根据所述第二参数计算公式及第二预设算法,得到所述上行传输参数中的第二参数的数值;A second parameter determination unit, configured to obtain the value of the second parameter in the uplink transmission parameters according to the second parameter calculation formula and the second preset algorithm;
第三分配单元,用于重新分配所述上行传输参数中的第四参数的数值为第三预设常量,根据所述第一参数的数值、所述第二参数的数值,对应得到第三参数计算公式,其中,所述第三参数为所述导频序列长度参数、所述目标传输信噪比参数、所述基站天线数量参数及所述接入所述基站的用户数量参数中的除所述第一参数、所述第二参数外的任一个;The third allocating unit is configured to reallocate the value of the fourth parameter among the uplink transmission parameters as a third preset constant, and correspondingly obtain the third parameter according to the value of the first parameter and the value of the second parameter A calculation formula, wherein the third parameter is a division of the pilot sequence length parameter, the target transmission signal-to-noise ratio parameter, the number of base station antennas parameter, and the number of users accessing the base station parameter Any one of the first parameter and the second parameter;
第三参数确定单元,用于根据所述第三参数计算公式及第二预设算法,得到所述上行传输参数中的第三参数的数值;A third parameter determination unit, configured to obtain the value of the third parameter in the uplink transmission parameters according to the third parameter calculation formula and the second preset algorithm;
第四分配单元,用于根据所述第一参数的数值、所述第二参数的数值及所述第三参数的数值,对应得到第四参数计算公式,其中,所述第一参数、所述第二参数、所述第三参数与所述第四参数为不同参数;The fourth allocation unit is configured to obtain a fourth parameter calculation formula according to the value of the first parameter, the value of the second parameter, and the value of the third parameter, wherein the first parameter, the The second parameter, the third parameter and the fourth parameter are different parameters;
第四参数确定单元,用于根据所述第四参数计算公式及第二预设算法,得到所述上行传输参数中的第四参数的数值,直至分别得到满足第一预设条件的所述导频序列长度参数的第一数值、满足第二预设条件的所述目标传输信噪比参数的第二数值、满足第三预设条件的所述基站天线数量参数的第三数值、及满足所述第四预设条件的所述接入所述基站的用户数量参数的第四数值;The fourth parameter determination unit is configured to obtain the value of the fourth parameter in the uplink transmission parameters according to the calculation formula of the fourth parameter and the second preset algorithm, until the derived parameters satisfying the first preset condition are respectively obtained. The first value of the frequency sequence length parameter, the second value of the target transmission signal-to-noise ratio parameter satisfying the second preset condition, the third value of the base station antenna number parameter satisfying the third preset condition, and the The fourth value of the parameter of the number of users accessing the base station of the fourth preset condition;
其中,所述第一预设条件为当前时刻的第一数值与上一时刻的第一数值之差的绝对值小于预设第一门限值,所述第二预设条件为当前时刻的第二数值与上一时刻的第二数值之差的绝对值小于预设第二门限值,所述第三预设条件为当前时刻的第三数值与上一时刻的第三数值之差的绝对值小于预设第三门限值,所述第四预设条件为当前时刻的第四数值与上一时刻的第四数值之差的绝对值小于预设第四门限值。Wherein, the first preset condition is that the absolute value of the difference between the first value at the current moment and the first value at the previous moment is less than the preset first threshold value, and the second preset condition is that the first value at the current moment The absolute value of the difference between the two values and the second value at the previous moment is less than the second preset threshold value, and the third preset condition is the absolute value of the difference between the third value at the current moment and the third value at the previous moment The value is smaller than the preset third threshold value, and the fourth preset condition is that the absolute value of the difference between the fourth value at the current moment and the fourth value at the previous moment is smaller than the preset fourth threshold value.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述第一参数确定单元、所述第二参数确定单元、所述第三参数确定单元及所述第四参数确定单元中的所述第二预设算法为黄金分割算法,其中,所述黄金分割算法,包括:In another embodiment of the present invention, in the apparatus for determining energy efficiency data of a Massive MIMO system, the first parameter determination unit, the second parameter determination unit, the third parameter determination unit, and the The second preset algorithm in the fourth parameter determination unit is the golden section algorithm, wherein the golden section algorithm includes:
获取所述上行传输参数中的每个参数的参数范围,并根据所述参数范围,确定所述每个参数对应的原始上限值、原始下限值及参数计算公式;Obtaining a parameter range of each parameter in the uplink transmission parameters, and determining an original upper limit value, an original lower limit value, and a parameter calculation formula corresponding to each parameter according to the parameter range;
比较所述原始上限值及所述原始下限值的差值、与预设迭代容忍误差,在所述差值大于所述预设迭代容忍误差时,得到公式:u1=ulow+0.382×(uup-ulow)及u2=ulow+0.618×(uup-ulow);Comparing the difference between the original upper limit value and the original lower limit value with the preset iteration tolerance error, when the difference is greater than the preset iteration tolerance error, the formula is obtained: u 1 =u low +0.382 ×(u up -u low ) and u 2 =u low +0.618×(u up -u low );
分别代入所述u1及所述u2至所述参数计算公式内,对应得到第一计算结果及第二计算结果;Respectively substituting said u1 and said u2 into said parameter calculation formulas to obtain a first calculation result and a second calculation result correspondingly;
在所述第一计算结果大于或等于所述第二计算结果时,将所述u2替换所述原始上限值;When the first calculation result is greater than or equal to the second calculation result, replacing the original upper limit with the u 2 ;
在所述第一计算结果小于所述第二计算结果时,将所述u1替换所述原始下限值;When the first calculation result is less than the second calculation result, replacing the original lower limit value with the u 1 ;
根据公式:u*=(uup+ulow)/2,得到所述上行传输参数中的每个参数的数值;According to the formula: u * =(u up +u low )/2, the value of each parameter in the uplink transmission parameters is obtained;
其中,所述ulow为所述上行传输参数中的每个参数的下限值,所述uup为所述上行传输参数中的每个参数的上限值,所述u1为通过黄金分割公式得到的新的下限值,所述u2为通过黄金分割公式得到的新的上限值。Wherein, the u low is the lower limit value of each parameter in the uplink transmission parameters, the u up is the upper limit value of each parameter in the uplink transmission parameters, and the u 1 is the The new lower limit value obtained by the formula, and the u 2 is the new upper limit value obtained by the golden section formula.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述系统能效数据建立子模块,包括:In the device for determining energy efficiency data of a Massive MIMO system according to another embodiment of the present invention, the system energy efficiency data establishment submodule includes:
根据公式:According to the formula:
建立所述Massive MIMO系统能效数据;Establish energy efficiency data of the Massive MIMO system;
其中,所述EE为所述Massive MIMO系统能效数据,所述Rtot为所述系统的总上行传输速率,所述Ptot为所述系统的总功耗,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述K为接入所述基站的用户数量参数,所述B为整体带宽参数,所述M为基站天线数量参数,所述ρ为目标传输信噪比参数,所述δ为系统功放功耗系数,所述δKρ为用户端功率放大器的功耗,所述为系统电路功耗用户相关系数参数,所述为系统电路功耗用户天线联合相关系数参数,所述为系统电路功耗速率相关系数参数,所述为电路功耗。Wherein, the EE is the energy efficiency data of the Massive MIMO system, the R tot is the total uplink transmission rate of the system, the P tot is the total power consumption of the system, and the τ is a pilot sequence length parameter , the T is a parameter of the number of symbols transmitted in the coherent resource block, and the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the K is the number of users accessing the base station, the B is the overall bandwidth parameter, and the M is the number of base station antennas. ρ is the target transmission signal-to-noise ratio parameter, the δ is the power consumption coefficient of the system power amplifier, the δKρ is the power consumption of the user end power amplifier, and the is the user correlation coefficient parameter for system circuit power consumption, the is the system circuit power consumption user antenna joint correlation coefficient parameter, the is the system circuit power consumption rate correlation coefficient parameter, the is the power consumption of the circuit.
本发明的又一实施例的大规模多入多出Massive MIMO系统能效数据的确定装置中,所述最优能效确定模块403,包括:In another embodiment of the present invention, in the device for determining energy efficiency data of a Massive MIMO system, the optimal energy efficiency determination module 403 includes:
代入所述第一数值、所述第二数值、所述第三数值、所述第四数值至所述MassiveMIMO系统能效数据中,确定所述Massive MIMO系统能效数据的数值为最优能效值。Substituting the first value, the second value, the third value, and the fourth value into the energy efficiency data of the Massive MIMO system, and determining the value of the energy efficiency data of the Massive MIMO system as an optimal energy efficiency value.
下面结合具体的应用实例,对本发明实施例所提供的进行详细说明。本实施例结合图5进行具体说明。The details provided by the embodiments of the present invention will be described in detail below in conjunction with specific application examples. This embodiment is described in detail with reference to FIG. 5 .
图5为本发明实施例的大规模多入多出Massive MIMO系统上行传输系统示意图。FIG. 5 is a schematic diagram of an uplink transmission system of a Massive MIMO system according to an embodiment of the present invention.
基站501收集用户502位置分布模型参数和信道衰落模型参数,计算用户502信道衰落倒数的期望,即The base station 501 collects the location distribution model parameters and the channel fading model parameters of the user 502, and calculates the expectation of the reciprocal channel fading of the user 502, namely
其中,所述为用户502信道衰落倒数的期望,所述dmax为小区半径,所述dmin距离基站501最小距离参数,所述β0为单位距离标准衰落,所述α为信道衰落系数。Among them, the is the expectation of the reciprocal channel fading of the user 502, the d max is the cell radius, the d min is the minimum distance parameter from the base station 501, the β 0 is the unit distance standard fading, and the α is the channel fading coefficient.
基站501测量接收天线噪声功率,并收集Massive MIMO系统电路功耗,芯片计算效率,以及系统编解码、回程传输效率,获取Massive MIMO系统总功耗:The base station 501 measures the noise power of the receiving antenna, and collects the power consumption of the Massive MIMO system circuit, chip computing efficiency, system codec, and backhaul transmission efficiency to obtain the total power consumption of the Massive MIMO system:
其中,所述Ptot为Massive MIMO系统的系统总功耗,所述为基站501接收天线噪声功率,所述ζ为用户502的功放效率,所述ρ为目标传输信噪比参数,所述为用户502的信道衰落倒数,所述为用户502的信道衰落倒数的期望,所述为系统电路功耗用户相关系数参数且所述PFIX为用于设备冷却、控制信令传输等的系统固有功耗,与天线、用户502数目配置和传输速率无关,所述PSYN为基站带晶振功耗,所述PUE为用户502的硬件设施包括的低噪声放大器、直接频率放大器、滤波器和模拟数字转化器等的功耗,所述B为整体带宽参数,所述T为相干资源块中传输符号数目参数,所述LBS为芯片计算效率,所述K为接入所述基站501的用户502数量参数,所述M为基站501的天线数量参数,所述为系统电路功耗用户天线联合相关系数参数且所述PBS为基站501的每根天线的硬件设施包含的数字模拟转换器、混频器、滤波器等的能耗,所述为系统电路功耗速率相关系数参数且所述PC为用户端单位数据编码功耗,PD为基站端单位数据解码功耗,PBT为基站501带单位数据回程传输功耗,所述Rtot为系统总上行传输速率,所述为电路功耗,所述δ为系统功放功耗系数,所述δKρ为用户502功率放大器的功耗。Wherein, the P tot is the total system power consumption of the Massive MIMO system, and the is the antenna noise power received by the base station 501, the ζ is the power amplifier efficiency of the user 502, the ρ is the target transmission signal-to-noise ratio parameter, and the is the reciprocal channel fading of user 502, the is the expectation of the reciprocal channel fading of user 502, the is the system circuit power consumption user correlation coefficient parameter and The P FIX is the inherent power consumption of the system used for equipment cooling, control signaling transmission, etc., and has nothing to do with the configuration of the number of antennas and users 502 and the transmission rate. The P SYN is the power consumption of the base station with a crystal oscillator, and the P UE is the power consumption of the user The hardware facilities of 502 include the power consumption of low-noise amplifiers, direct frequency amplifiers, filters, and analog-to-digital converters, etc., the B is the overall bandwidth parameter, the T is the number of symbols transmitted in the coherent resource block, and the L BS is the calculation efficiency of the chip, the K is the parameter of the number of users 502 accessing the base station 501, the M is the parameter of the number of antennas of the base station 501, and the is the system circuit power consumption user antenna joint correlation coefficient parameter and The P BS is the energy consumption of the digital-to-analog converters, mixers, filters, etc. included in the hardware facilities of each antenna of the base station 501, and the is the system circuit power consumption rate correlation coefficient parameter and The P C is the unit data encoding power consumption of the user end, the PD is the unit data decoding power consumption of the base station end, P BT is the unit data backhaul transmission power consumption of the base station 501, the R tot is the total uplink transmission rate of the system, and the is the power consumption of the circuit, the δ is the power consumption coefficient of the system power amplifier, and the δKρ is the power consumption of the user 502 power amplifier.
计算系统总可得传输速率Rtot:Calculate the total available transmission rate R tot of the system:
其中,所述Rtot为Massive MIMO系统的总上行传输速率,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述K为接入基站501的用户数量参数,所述B为整体带宽参数,所述M为基站501天线数量参数,所述ρ为目标传输信噪比参数。Wherein, the R tot is the total uplink transmission rate of the Massive MIMO system, the τ is the pilot sequence length parameter, the T is the number of symbols transmitted in the coherent resource block, and the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the K is the parameter of the number of users accessing the base station 501, the B is the overall bandwidth parameter, and the M is the parameter of the number of antennas of the base station 501, the ρ is the target transmission signal-to-noise ratio parameter.
确定Massive MIMO系统能效参数据:Determine the energy efficiency parameters of the Massive MIMO system:
其中,所述EE为Massive MIMO系统能效数据,所述Rtot为系统的总上行传输速率,所述Ptot为系统的整体功耗,所述τ为导频序列长度参数,所述T为相干资源块中传输符号数目参数,所述为上行导频传输所占相干资源块中传输符号数目的比例,所述K为接入基站501的用户数量参数,所述B为整体带宽参数,所述M为基站501天线数量参数,所述ρ为目标传输信噪比参数,所述δ为系统功放功耗系数,所述δKρ为用户502功率放大器的功耗,所述为系统电路功耗用户相关系数参数,所述为系统电路功耗用户天线联合相关系数参数,所述为系统电路功耗速率相关系数参数,所述为电路功耗。Wherein, the EE is the energy efficiency data of the Massive MIMO system, the R tot is the total uplink transmission rate of the system, the P tot is the overall power consumption of the system, the τ is the pilot sequence length parameter, and the T is the coherent The number of symbols transmitted in the resource block parameter, the is the ratio of uplink pilot transmission to the number of transmission symbols in the coherent resource block, the K is the parameter of the number of users accessing the base station 501, the B is the overall bandwidth parameter, and the M is the parameter of the number of antennas of the base station 501, the ρ is the target transmission signal-to-noise ratio parameter, the δ is the power consumption coefficient of the system power amplifier, the δKρ is the power consumption of the power amplifier of the user 502, and the is the user correlation coefficient parameter for system circuit power consumption, the is the system circuit power consumption user antenna joint correlation coefficient parameter, the is the system circuit power consumption rate correlation coefficient parameter, the is the power consumption of the circuit.
求解Massive MIMO系统的能效最优值,即求解Massive MIMO系统能效参数据最大化问题:Solve the optimal energy efficiency value of the Massive MIMO system, that is, solve the problem of maximizing the energy efficiency parameters of the Massive MIMO system:
基站501定义变量转换x=K,z=Kρ,则Massive MIMO系统能效参数据最大化问题化为:The base station 501 defines variable conversion x=K, z=Kρ, Then the problem of maximizing the energy efficiency parameters of the Massive MIMO system is transformed into:
基站501使用所述第一算法求解上述最大化问题,得到最终解x*,y*,z*,θ*,本发明实施例中,第一算法为交替迭代与黄金分割算法,具体求解步骤包含:The base station 501 uses the first algorithm to solve the above-mentioned maximization problem, and obtains the final solution x * , y * , z * , θ * . In the embodiment of the present invention, the first algorithm is an alternate iteration and golden section algorithm, and the specific solution steps include :
第一步,初始化迭代次数t=0以及优化变量x[0]、y[0]、z[0]、θ[0];The first step is to initialize the number of iterations t=0 and optimize variables x[0], y[0], z[0], θ[0];
第二步,预设y=y[t]、z=z[t]、θ=θ[t],定义函数f1(x)=f0(x,y,z,θ);将ulow=0、uup=T/θ与F(u)=f1(x)代入第二算法,得到u*,更新x*=u*;In the second step, preset y=y[t], z=z[t], θ=θ[t], define function f 1 (x)=f 0 (x,y,z,θ); set u low =0, u up =T/θ and F(u)=f 1 (x) are substituted into the second algorithm to obtain u * and update x * =u * ;
第三步,预设x=x*、z=z[t]、θ=θ[t],定义函数f2(y)=f0(x,y,z,θ);将ulow=1、uup=1000与F(u)=f2(y)代入第二算法,得到u*,更新y*=u*;The third step, preset x=x * , z=z[t], θ=θ[t], define function f 2 (y)=f 0 (x,y,z,θ); set u low =1 , u up = 1000 and F(u) = f 2 (y) are substituted into the second algorithm to obtain u * and update y * = u * ;
第四步,预设x=x*、y=y*、θ=θ[t],定义函数f3(z)=f0(x,y,z,θ);将ulow=0、uup=1000与F(u)=f3(z)代入第二算法,得到u*,更新z*=u*;Step 4, preset x=x * , y=y * , θ=θ[t], define function f 3 (z)=f 0 (x,y,z,θ); set u low =0, u Up = 1000 and F(u) = f 3 (z) are substituted into the second algorithm to obtain u * and update z * = u * ;
第五步,预设x=x*、y=y*、z=z*,定义函数f4(θ)=f0(x,y,z,θ);将ulow=1、uup=T/x与F(u)=f4(θ)代入第二算法,得到u*,更新θ*=u*;The fifth step, preset x=x * , y=y * , z=z * , define function f 4 (θ)=f 0 (x,y,z,θ); set u low =1, u up = T/x and F(u)=f 4 (θ) are substituted into the second algorithm to obtain u * , and update θ * =u * ;
第六步,更新t=t+1、x[t]=x*、y[t]=y*、z[t]=z*、θ[t]=θ*;若参数x,y,z,θ收敛,即|x[t]-x[t-1]|、|y[t]-y[t-1]|、|z[t]-z[t-1]|、|θ[t]-θ[t-1]|均小于给定误差门限,则停止迭代,输出最终解x*,y*,z*,θ*;否则跳回第二步。The sixth step is to update t=t+1, x[t]=x * , y[t]=y * , z[t]=z * , θ[t]=θ * ; if the parameters x, y, z , θ converges, namely |x[t]-x[t-1]|, |y[t]-y[t-1]|, |z[t]-z[t-1]|, |θ[ t]-θ[t-1]| are both smaller than the given error threshold, then stop the iteration and output the final solution x * , y * , z * , θ * ; otherwise, jump back to the second step.
根据K*=x*,M*=x*y*,τ*=θ*x*,并将参数M、K、τ取为M*、K*、τ*的临近整数。According to K * =x * , M * =x * y * , τ * = θ * x * , and the parameters M, K, and τ are taken as adjacent integers of M * , K * , and τ * .
基站501依据得到的能效参数配置M、K、τ、ρ,随机选择M根收发天线与K个接收用户502。The base station 501 configures M, K, τ, and ρ according to the obtained energy efficiency parameters, and randomly selects M transceiver antennas and K receiving users 502 .
基站501根据导频序列长度τ给K个用户502分配相应的导频序列,并将目标传输信噪比ρ、接收天线噪声功率以及每个用户502的平均信道衰落βk发送给每个用户502。The base station 501 allocates corresponding pilot sequences to K users 502 according to the pilot sequence length τ, and sets the target transmission signal-to-noise ratio ρ, receiving antenna noise power And the average channel fading β k of each user 502 is sent to each user 502 .
用户502根据所述目标传输信噪比ρ、所述接收天线噪声功率与所述平均信道衰落βk,计算所需发送功率 User 502 according to the target transmission signal-to-noise ratio ρ, the receiving antenna noise power With the average channel fading β k , calculate the required transmit power
用户502使用发送功率pk进行上行数据传输,基站501使用信道估计矩阵,计算破零接收矩阵,从而进行信号译码,译码过程属于现有技术,这里不再赘述。The user 502 uses the transmit power p k for uplink data transmission, and the base station 501 uses the channel estimation matrix to calculate the zero-breaking reception matrix, thereby performing signal decoding. The decoding process belongs to the prior art and will not be repeated here.
优选的,本发明实施例中,所述第二算法为黄金分割算法,黄金分割算法包括:Preferably, in the embodiment of the present invention, the second algorithm is the golden section algorithm, and the golden section algorithm includes:
首先,获取所述上行传输参数中的每个参数的参数范围,并根据所述参数范围,确定所述每个参数对应的原始上限值uup、原始下限值ulow、及参数计算公式(交替迭代与黄金分割算法中的F(u));First, obtain the parameter range of each parameter in the uplink transmission parameters, and determine the original upper limit value u up , the original lower limit value u low , and the parameter calculation formula corresponding to each parameter according to the parameter range (alternate iteration and F(u) in the golden section algorithm);
其次,比较所述原始上限值及所述原始下限值之差|uup-ulow|、与预设迭代容忍误差ε,在|uup-ulow|≥ε时,得到公式:u1=ulow+0.382×(uup-ulow)及u2=ulow+0.618×(uup-ulow);Secondly, compare the difference between the original upper limit value and the original lower limit value |u up -u low | with the preset iteration tolerance error ε, and when |u up -u low |≥ε, the formula is obtained: u 1 =u low +0.382×(u up −u low ) and u 2 =u low +0.618×(u up −u low );
再次,分别代入所述u1及所述u2至所述参数计算公式内,对应得到第一计算结果F(u1)及第二计算结果F(u2);Again, respectively substituting the u 1 and the u 2 into the parameter calculation formula to obtain the first calculation result F(u 1 ) and the second calculation result F(u 2 );
然后,在F(u1)≥F(u2)时,更新上限值uup=u2;在F(u1)<F(u2)时,更新下限值ulow=u1;Then, when F(u 1 )≥F(u 2 ), update the upper limit value u up =u 2 ; when F(u 1 )<F(u 2 ), update the lower limit value u low =u 1 ;
最后,根据公式u*=(uup+ulow)/2,得到所述上行传输参数中的每个参数的数值。Finally, according to the formula u * =(u up +u low )/2, the value of each parameter in the uplink transmission parameters is obtained.
应用本发明实施例,得到的Massive MIMO系统上行传输参数能够使Massive MIMO系统的能效最优,用户向基站传输数据的能量效率最大。并且通过本实施例可以得到,所述参数具有较高的快速收敛性。By applying the embodiment of the present invention, the obtained uplink transmission parameters of the Massive MIMO system can optimize the energy efficiency of the Massive MIMO system, and maximize the energy efficiency of data transmission from the user to the base station. And it can be obtained through this embodiment that the parameters have a relatively high fast convergence.
如表1所示为本发明实施例所设置的仿真参数。Table 1 shows the simulation parameters set by the embodiment of the present invention.
表1Table 1
同时定义系统电路功耗系数向量[PFIX+PSYN,PBS,PUE],默认值为仿真中通过调整伸缩系数设置不同的电路功耗系数 At the same time, define the system circuit power consumption coefficient vector [P FIX +P SYN ,P BS ,P UE ], the default value is In the simulation, by adjusting the expansion coefficient Set different circuit power dissipation coefficients
图6为本发明实施例的交替迭代与黄金分割算法的仿真示意图。图中横坐标表示迭代的次数,纵坐标表示得到的系统能效,dmax表示小区半径,系统电路功耗系数伸缩因子设为四条曲线分别对应着不同小区大小。图中可以清晰的得到所提算法一般在迭代5次内就已经很好收敛,因此计算复杂度很低,具有很好的实际应用价值。FIG. 6 is a schematic diagram of a simulation of an alternate iteration and golden section algorithm according to an embodiment of the present invention. The abscissa in the figure indicates the number of iterations, the ordinate indicates the obtained system energy efficiency, d max indicates the radius of the cell, and the expansion factor of the power consumption coefficient of the system circuit is set to The four curves correspond to different cell sizes. It can be clearly seen from the figure that the proposed algorithm generally converges well within 5 iterations, so the computational complexity is very low, and it has good practical application value.
图7为本发明实施例的交替迭代与黄金分割算法和穷搜算法的性能对比示意图。图中横坐标表示小区半径,纵坐标表示得到的系统能效,表示系统电路功耗系数伸缩因子。图中不同曲线对应着不同的电路功耗系数设置。图中可以看出所提算法得到的系统能效基本与穷搜算法吻合,表明所提算法可以找到全局最优的系统参数配置。Fig. 7 is a schematic diagram of the performance comparison between the alternate iteration and the golden section algorithm and the exhaustive search algorithm according to the embodiment of the present invention. The abscissa in the figure indicates the radius of the cell, and the ordinate indicates the obtained system energy efficiency. Indicates the expansion factor of the power consumption coefficient of the system circuit. Different curves in the figure correspond to different circuit power consumption coefficient settings. It can be seen from the figure that the system energy efficiency obtained by the proposed algorithm is basically consistent with the exhaustive search algorithm, indicating that the proposed algorithm can find the globally optimal system parameter configuration.
图8为本发明实施例的能效数据确定方法与现有技术能效参数优化方法的系统能效对比示意图。图中横坐标表示系统电路功耗系数伸缩因子,取值越大表示系统采用的电路元器件功耗越大,纵坐标表示得到的系统能效。图中可看出,相比于现有技术,本发明实施例所提出的大规模多入多出系统能效数据的确定方法及装置可以获得更好的系统参数配置,有效改善系统能效。例如,当系统电路功耗较低时本发明实施例所采用的交替迭代与黄金分割算法的性能较之现有技术分别提升24%和93%(当小区半径为dmax=200m时)、48%和235%(当小区半径为dmax=400m时)。其中,现有技术1获取的系统能效不具有实际系统中基站端信道估计误差;现有技术2获取的系统能效不具有上行传输导频序列长度参数和信道估计误差,且采用穷搜算法确定使系统能效最优的参数。FIG. 8 is a schematic diagram of system energy efficiency comparison between the method for determining energy efficiency data according to the embodiment of the present invention and the method for optimizing energy efficiency parameters in the prior art. The abscissa in the figure represents the expansion factor of the power consumption coefficient of the system circuit. The larger the value, the greater the power consumption of the circuit components used in the system, and the ordinate represents the obtained system energy efficiency. It can be seen from the figure that, compared with the prior art, the method and device for determining energy efficiency data of a large-scale MIMO system proposed by the embodiments of the present invention can obtain better system parameter configuration and effectively improve system energy efficiency. For example, when system circuit power consumption is low The performance of alternate iteration and golden section algorithm adopted in the embodiment of the present invention improves respectively 24% and 93% (when the cell radius is dmax =200m), 48% and 235% (when the cell radius is d max = 400m). Among them, the system energy efficiency obtained by the prior art 1 does not have the channel estimation error of the base station in the actual system; the system energy efficiency obtained by the prior art 2 does not have the uplink transmission pilot sequence length parameter and the channel estimation error, and the exhaustive search algorithm is used to determine the Parameters for optimum energy efficiency of the system.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that in this article, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply that there is a relationship between these entities or operations. There is no such actual relationship or order between them. Furthermore, the term "comprises", "comprises" or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus comprising a set of elements includes not only those elements, but also includes elements not expressly listed. other elements of or also include elements inherent in such a process, method, article, or device. Without further limitations, an element defined by the phrase "comprising a ..." does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the present invention are included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610543539.0A CN106685491A (en) | 2016-07-11 | 2016-07-11 | Method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610543539.0A CN106685491A (en) | 2016-07-11 | 2016-07-11 | Method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106685491A true CN106685491A (en) | 2017-05-17 |
Family
ID=58839640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610543539.0A Pending CN106685491A (en) | 2016-07-11 | 2016-07-11 | Method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106685491A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108234101A (en) * | 2018-01-11 | 2018-06-29 | 郑州航空工业管理学院 | Efficiency maximizes pilot signal design method and large-scale multi-antenna system |
CN109379752A (en) * | 2018-09-10 | 2019-02-22 | 中国移动通信集团江苏有限公司 | Optimization method, apparatus, device and medium for Massive MIMO |
CN110445520A (en) * | 2019-07-31 | 2019-11-12 | 郑州航空工业管理学院 | Downlink power distributing method based on frequency division duplex multi-user multi-aerial system |
-
2016
- 2016-07-11 CN CN201610543539.0A patent/CN106685491A/en active Pending
Non-Patent Citations (6)
Title |
---|
EMIL BJORNSON ET AL: "Optimal Design of Energy-Efficient Multi-User MIMO Systems Is Massive MIMO the Answer", 《IEEE TRANSACTIONS ON WIRELESS COMMUNTCATIONS》 * |
JUEI-CHIN SHEN ET AL: "Downlink User Capacity of Massive MIMO Under Pilot Contamination", 《IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS》 * |
MICHAEL HENZLER ET AL: "Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles", 《2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV)》 * |
SAIF KHAN MOHAMMED: "Impact of Transceiver Power Consumption on the Energy Efficiency of Zero-Forcing Detector in Massive MIMO Systems", 《IEEE TRANSACTIONS ON COMMUNTCATIONS》 * |
吴旭光: "《系统建模和参数估计-理论与算法》", 31 August 2002, 机械工业出版社 * |
胡莹等: "基于上行多用户大规模MIMO系统能效优化算法", 《通信学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108234101A (en) * | 2018-01-11 | 2018-06-29 | 郑州航空工业管理学院 | Efficiency maximizes pilot signal design method and large-scale multi-antenna system |
CN109379752A (en) * | 2018-09-10 | 2019-02-22 | 中国移动通信集团江苏有限公司 | Optimization method, apparatus, device and medium for Massive MIMO |
CN109379752B (en) * | 2018-09-10 | 2021-09-24 | 中国移动通信集团江苏有限公司 | Optimization method, apparatus, device and medium for Massive MIMO |
CN110445520A (en) * | 2019-07-31 | 2019-11-12 | 郑州航空工业管理学院 | Downlink power distributing method based on frequency division duplex multi-user multi-aerial system |
CN110445520B (en) * | 2019-07-31 | 2020-11-24 | 郑州航空工业管理学院 | Downlink power allocation method based on frequency division duplex multi-user multi-antenna system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bashar et al. | On the performance of backhaul constrained cell-free massive MIMO with linear receivers | |
CN105246142B (en) | Based on the extensive antenna relay system power distribution method of the optimal single user of efficiency | |
CN102970256B (en) | Based on the multiple antennas D2D communication system interference elimination method of kernel | |
WO2013163859A1 (en) | Mimo wireless communication system, transmission method and device | |
CN110166088B (en) | Power control algorithm of user-centered cell-free MIMO system | |
Farhadi Zavleh et al. | Resource allocation in sparse code multiple access‐based systems for cloud‐radio access network in 5G networks | |
CN107528624A (en) | A kind of design method of the sane beam forming based on non-orthogonal multiple access technology | |
CN108832979B (en) | A Multi-objective Optimal Resource Allocation Algorithm for MU-MIMO Systems with Under-ranked Channels | |
Yan et al. | Pilot length and channel estimation for massive MIMO IoT systems | |
Yu et al. | Energy-efficiency optimization for IoT-distributed antenna systems with SWIPT over composite fading channels | |
Xia et al. | Joint optimization of fronthaul compression and bandwidth allocation in uplink H-CRAN with large system analysis | |
CN104144039B (en) | Pilot distribution method based on coherence time in a kind of extensive mimo system | |
CN104168574B (en) | Uplink transmission method based on adaptable interference selection in mixed cellular system | |
CN106332291B (en) | Quality of Service-Oriented Downlink Radio Resource Allocation Method for User-Centric Networks | |
CN106685491A (en) | Method and device for determining energy efficiency data of a large-scale multiple-input multiple-output system | |
CN104618921B (en) | A kind of method of estimation of the user capacity of the extensive mimo system of multi-service | |
CN116846435A (en) | Method for realizing rate splitting multiple access of mobile de-cellular large-scale MIMO system | |
CN105025565B (en) | Full duplex bidirectional relay system power optimization method under asymmetric rate | |
CN114586435B (en) | Channel state information reporting method, base station and user equipment | |
CN103475399B (en) | Interference Alignment Methods and Devices | |
CN108055699A (en) | Fast three-point interpolation algorithm for joint optimization of perception duration and resource allocation | |
CN108064070B (en) | User access method for large-scale MIMO multi-cell network | |
CN105900494A (en) | Method to save energy for mobile terminals in wireless network | |
WO2020210845A2 (en) | Methods and apparatus for power allocation | |
CN111277307B (en) | Resource allocation method for limited feedback under-rank channel time MU-MIMO system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170517 |
|
RJ01 | Rejection of invention patent application after publication |