CN106684854A - A risk analysis method for active distribution network voltage crossing limit based on node equivalence - Google Patents

A risk analysis method for active distribution network voltage crossing limit based on node equivalence Download PDF

Info

Publication number
CN106684854A
CN106684854A CN201510753486.0A CN201510753486A CN106684854A CN 106684854 A CN106684854 A CN 106684854A CN 201510753486 A CN201510753486 A CN 201510753486A CN 106684854 A CN106684854 A CN 106684854A
Authority
CN
China
Prior art keywords
eqi
node
equivalent
sigma
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510753486.0A
Other languages
Chinese (zh)
Other versions
CN106684854B (en
Inventor
高菲
宋晓辉
盛万兴
孟晓丽
常松
冯雪平
李建芳
张瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI filed Critical State Grid Corp of China SGCC
Priority to CN201510753486.0A priority Critical patent/CN106684854B/en
Publication of CN106684854A publication Critical patent/CN106684854A/en
Application granted granted Critical
Publication of CN106684854B publication Critical patent/CN106684854B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明提供一种基于节点等效的有源配电网电压越限风险分析方法,包括以下步骤:建立有源配电网等效状态模型;计算各等效节点离散状态下电压越限概率;计算节点负荷实际运行状态下的电压越限概率。本发明利用简化后的各节点等效状态参数数量较少且能够表征系统各种运行状态对该节点电压综合影响效果的特点,提出可根据节点特性选取有源配电网中各等效节点离散状态进行离线计算并生成相应数据库,为在线快速分析提供参考计算样本;有效解决在实际运行时快速准确的计算有源配电网各节点电压越限概率的问题;有利于快速在线分析计算,且具有较高准确性。

The present invention provides a node equivalent-based active distribution network voltage transgression risk analysis method, comprising the following steps: establishing an active distribution network equivalent state model; calculating the voltage transgression probability of each equivalent node in a discrete state; Calculate the voltage limit probability under the actual operating state of the node load. The invention utilizes the characteristics that the number of equivalent state parameters of each node after simplification is small and can represent the comprehensive effect of various operating states of the system on the node voltage, and proposes that each equivalent node in the active distribution network can be selected according to the characteristics of the node to be discrete Offline calculation of the status and generation of corresponding databases to provide reference calculation samples for online rapid analysis; effectively solve the problem of quickly and accurately calculating the voltage over-limit probability of each node of the active distribution network during actual operation; it is conducive to fast online analysis and calculation, and With high accuracy.

Description

一种基于节点等效的有源配电网电压越限风险分析方法A risk analysis method for active distribution network voltage crossing limit based on node equivalence

技术领域technical field

本发明涉及一种分析方法,具体涉及一种基于节点等效的有源配电网电压越限风险分析方法。The invention relates to an analysis method, in particular to a node equivalent-based risk analysis method for voltage over-limit of an active distribution network.

背景技术Background technique

随着能源和环境问题的日益加剧,新能源和可再生能源发电技术获得了快速发展,促进利用可再生能源且为集中式发电有效补充的分布式发电技术也得到了越来越广泛的应用。作为分布式发电技术的重要代表,在有源配电网中,光伏发电系统以规模小、易装设、分散灵活、能源清洁等优势发展最为突出。但是随着光伏系统渗透率的不断升高,由于其受环境影响较大,功率输出具有很强的随机性和波动性,对用户带来一系列电能质量问题。尤其是高渗透率光伏系统可能造成有源配电网出现过电压状况,使得电压越限风险更加突出和复杂。With the increasing energy and environmental problems, new energy and renewable energy power generation technologies have developed rapidly, and distributed power generation technologies that promote the use of renewable energy and effectively complement centralized power generation have also been more and more widely used. As an important representative of distributed power generation technology, in the active distribution network, the photovoltaic power generation system is the most prominent in the development of advantages such as small scale, easy installation, decentralization and flexibility, and clean energy. However, as the penetration rate of photovoltaic systems continues to increase, due to its greater impact on the environment, the power output has strong randomness and volatility, which brings a series of power quality problems to users. In particular, high-penetration photovoltaic systems may cause overvoltage conditions in active distribution networks, making the risk of voltage violations more prominent and complex.

对于含负荷及光伏发电双重不确定因素的有源配电网来说,对其进行电压越限风险分析计算已由确定性计算问题转化为随机性计算问题,由概率潮流取代传统的确定性潮流计算完成含不确定性模型的分析计算。这种方法充分考虑了负荷和光伏系统的功率概率模型特性,相对于确定性模型特殊点对应的离散值,更能够表征电压在可能取值上的整体形态特征。求解概率潮流的方法主要包含模拟法、解析法和近似法。其中模拟法通过大量的抽样来模拟各种不确定因素及其组合,从理论上讲其可以使用准确的非线性潮流计算方法,且可以考虑不确定因素之间的相关性,因此计算准确性的局限性最小。但是其存在计算量过大、耗时长等问题,制约了其在实际运行中的应用。解析法需要在近似线性化的基础上进行大量的卷积运算。而近似法可直接求取目标函数的概率统计特征,但对正态概率分布之外的概率分布类型存在一定误差。For the active distribution network with dual uncertain factors of load and photovoltaic power generation, the risk analysis and calculation of voltage violation has been transformed from a deterministic calculation problem to a random calculation problem, and the traditional deterministic power flow is replaced by a probabilistic power flow Calculation The analysis and calculation of the model with uncertainty is completed. This method fully considers the characteristics of the load and the power probability model of the photovoltaic system. Compared with the discrete values corresponding to the special points of the deterministic model, it can better characterize the overall shape characteristics of the voltage in possible values. The methods of solving probability power flow mainly include simulation method, analytical method and approximate method. Among them, the simulation method simulates various uncertain factors and their combinations through a large number of samples. In theory, it can use an accurate nonlinear power flow calculation method, and can consider the correlation between uncertain factors, so the accuracy of calculation The least restrictive. However, it has problems such as excessive calculation and long time consumption, which restrict its application in actual operation. The analytical method requires a large number of convolution operations on the basis of approximate linearization. The approximation method can directly obtain the probability and statistical characteristics of the objective function, but there are certain errors for the probability distribution types other than the normal probability distribution.

在有源配电网中若考虑到各节点负荷和多个光伏单元多维不确定模型时,并无法保证节点电压的电压分布规律一定满足正态分布。因此无论是采用更为准确的模拟法,还是选择具有一定局限性的解析法和近似法都不能避免计算量过大或是计算误差较大的缺陷。In the active distribution network, if the multidimensional uncertain model of each node load and multiple photovoltaic units is considered, it cannot be guaranteed that the voltage distribution law of the node voltage must satisfy the normal distribution. Therefore, no matter whether the more accurate simulation method is adopted, or the analytical method and approximate method with certain limitations can not avoid the defects of excessive calculation amount or large calculation error.

发明内容Contents of the invention

为了克服上述现有技术的不足,本发明提供一种基于节点等效的有源配电网电压越限风险分析方法,充分考虑负荷和分布式电源的随机特性,进行有源配电网电压越限概率分析计算,在实际运行中对有源配电网进行电能质量评估,并依据评估分析结果进行相应控制。In order to overcome the deficiencies of the above-mentioned prior art, the present invention provides a method for risk analysis of active distribution network voltage exceeding the limit based on node equivalents, which fully considers the random characteristics of loads and distributed power sources, and performs active distribution network voltage exceeding In the actual operation, the power quality of the active distribution network is evaluated, and the corresponding control is carried out according to the evaluation and analysis results.

为了实现上述发明目的,本发明采取如下技术方案:In order to realize the above-mentioned purpose of the invention, the present invention takes the following technical solutions:

本发明提供一种基于节点等效的有源配电网电压越限风险分析方法,所述分析方法包括以下步骤:The present invention provides a node equivalent-based active distribution network voltage transgression risk analysis method, the analysis method includes the following steps:

步骤1:建立节点等效负荷概率模型,并结合光伏系统光照强度随机模型,建立有源配电网等效状态模型;Step 1: Establish the node equivalent load probability model, and combine the photovoltaic system light intensity stochastic model to establish the equivalent state model of the active distribution network;

步骤2:对各等效节点离散状态进行随机潮流计算,并根据随机潮流结果计算各等效节点离散状态下电压越限概率;Step 2: Perform stochastic power flow calculation on the discrete state of each equivalent node, and calculate the voltage limit probability of each equivalent node in the discrete state according to the stochastic power flow result;

步骤3:在离线数据库中查找节点负荷实际运行状态下节点等效状态参数的相邻值,并计算节点负荷实际运行状态下的电压越限概率。Step 3: Find the adjacent values of the node equivalent state parameters in the actual operating state of the node load in the offline database, and calculate the voltage limit probability under the actual operating state of the node load.

所述步骤1包括以下步骤:Described step 1 comprises the following steps:

步骤1-1:选取有源配电网中各节点最大负荷状态,建立节点等效负荷概率模型;Step 1-1: Select the maximum load state of each node in the active distribution network, and establish a node equivalent load probability model;

步骤1-2:结合光伏系统光照强度随机模型,建立有源配电网等效状态模型。Step 1-2: Combining with the stochastic model of photovoltaic system light intensity, establish the equivalent state model of active distribution network.

所述步骤1-1中,建立节点等效负荷概率模型包括:In the step 1-1, establishing a node equivalent load probability model includes:

假设节点h和节点k是任意两个相邻节点,节点h和节点k形成线路hk,有:Assuming that node h and node k are any two adjacent nodes, node h and node k form a line hk, there are:

其中,表示节点h和节点k之间的压降矢量,表示线路hk的电流矢量,Rhk表示线路hk的电阻,Xhk表示线路hk的电抗,表示节点k电势矢量,表示流过节点k的复功率;in, Denotes the voltage drop vector between node h and node k, Represents the current vector of the line hk, R hk represents the resistance of the line hk, X hk represents the reactance of the line hk, Indicates the node k potential vector, Indicates the complex power flowing through node k;

忽略线路损耗,则表示为:Neglecting the line loss, then Expressed as:

其中,j=1,2,…,Nk,Nk表示从线路hk首端看进去有源配电网中节点k之后的所有节点集合,表示节点j的负荷复功率;Among them, j=1,2,...,N k , N k represents the collection of all nodes after node k in the active distribution network viewed from the head end of the line hk, Indicates the load complex power of node j;

假设表示有源配电网的额定电压矢量,En表示有源配电网的额定电压矢量幅值,于是又表示为:suppose Represents the rated voltage vector of the active distribution network, E n represents the rated voltage vector magnitude of the active distribution network, so Also expressed as:

其中,表示的共轭,表示线路hk的阻抗矢量;in, express the conjugate of Indicates the impedance vector of the line hk;

因此,对于有源配电网中任一等效节点i,有:Therefore, for any equivalent node i in the active distribution network, there are:

其中,表示等效节点i与有源配电网中母线之间的压降矢量,Li表示等效节点i与有源配电网中母线之间所有线路集合,表示的共轭;in, Indicates the voltage drop vector between the equivalent node i and the bus in the active distribution network, L i represents the set of all lines between the equivalent node i and the bus in the active distribution network, express the conjugate;

如果有源配电网中只存在等效节点i带负荷,则又可表示为:If there is only equivalent node i with load in the active distribution network, then It can also be expressed as:

其中,表示等效节点i与有源配电网中母线之间的阻抗之和,表示的共轭,表示等效节点i的复功率;in, Indicates the sum of the impedance between the equivalent node i and the bus in the active distribution network, express the conjugate of Indicates the complex power of the equivalent node i;

由于负荷功率具有随机波动性,于是各节点负荷有功功率短期波动和无功功率短期波动均满足正态分布,于是由式(5)和(6)得到:Due to the random fluctuation of the load power, the short-term fluctuations of active power and reactive power of each node load satisfy the normal distribution, so it can be obtained from equations (5) and (6):

且有:and have:

其中,ahk表示的实部,bhk表示的虚部;Pk表示有源配电网中节点k之后的所有节点有功负荷之和,即Pj表示节点j的有功负荷;Qk表示有源配电网中节点k之后的所有节点无功负荷之和,即Qj表示节点j的无功负荷;Among them, a hk means The real part of b hk means The imaginary part of ; P k represents the sum of active loads of all nodes after node k in the active distribution network, namely P j represents the active load of node j; Q k represents the sum of reactive loads of all nodes after node k in the active distribution network, namely Q j represents the reactive load of node j;

于是由正态分布的线性定律可得:Then by the linear law of normal distribution we can get:

其中,E(Peqi)表示等效节点i的等效有功负荷期望,E(Qeqi)表示等效节点i的等效无功负荷期望,Peqi表示等效节点i的等效有功负荷,Qeqi表示等效节点i的等效无功负荷,E(Pj)表示节点j的有功负荷期望,E(Qj)表示节点j的无功负荷期望;Among them, E(P eqi ) represents the equivalent active load expectation of equivalent node i, E(Q eqi ) represents the equivalent reactive load expectation of equivalent node i, P eqi represents the equivalent active load of equivalent node i, Q eqi represents the equivalent reactive load of equivalent node i, E(P j ) represents the expected active load of node j, and E(Q j ) represents the expected reactive load of node j;

由于式(10)不满足随机变量独立性,将其变形为:Since formula (10) does not satisfy the independence of random variables, it is transformed into:

且有:and have:

其中,Nnode表示有源配电网中负荷节点集合,m=1,2,…,Nnode表示的共轭,表示负荷节点m的复功率;Lm表示负荷节点m所在线路与Li上存在距负荷节点m最近的交点时母线到该交点之间所有线路集合;Pm表示负荷节点m的有功负荷,Qm表示负荷节点m的无功负荷;cm和dm分别表示的实部和虚部;Wherein, N node represents the set of load nodes in the active distribution network, m=1, 2,..., N node ; express the conjugate of Represents the complex power of the load node m; L m represents the collection of all lines between the bus and the intersection point when the line where the load node m is located and the nearest intersection point to the load node m exists; P m represents the active load of the load node m, Q m represents the reactive load of load node m; c m and d m represent The real and imaginary parts of ;

于是有:So there are:

其中,σ(Peqi)表示等效节点i的等效有功负荷标准差,σ(Qeqi)表示等效节点i的等效无功负荷标准差,D(Peqi)表示等效节点i的等效有功负荷方差,D(Qeqi)表示等效节点i的等效无功负荷方差,D(Pm)表示负荷节点m的有功负荷方差,D(Qm)表示负荷节点m的无功负荷方差。Among them, σ(P eqi ) represents the standard deviation of the equivalent active load of the equivalent node i, σ(Q eqi ) represents the standard deviation of the equivalent reactive load of the equivalent node i, and D(P eqi ) represents the standard deviation of the equivalent node i Equivalent active load variance, D(Q eqi ) represents the equivalent reactive load variance of equivalent node i, D(P m ) represents the active load variance of load node m, D(Q m ) represents the reactive power of load node m load variance.

所述步骤1-2中,光伏系统光照强度随机模型中,太阳光照强度服从Beta分布,太阳光照强度期望用E(S)表示,于是有源配电网等效状态模型表示为:In the step 1-2, in the stochastic model of the photovoltaic system light intensity, the sun light intensity obeys the Beta distribution, and the sun light intensity expectation is represented by E(S), so the equivalent state model of the active distribution network is expressed as:

{E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)} (14){E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )} (14)

其中,σ(Peqi)表示等效节点i的等效有功负荷标准差,σ(Qeqi)表示等效节点i的等效无功负荷标准差,E(Peqi)表示等效节点i的等效有功负荷期望,E(Qeqi)表示等效节点i的等效无功负荷期望。Among them, σ(P eqi ) represents the standard deviation of the equivalent active load of the equivalent node i, σ(Q eqi ) represents the standard deviation of the equivalent reactive load of the equivalent node i, and E(P eqi ) represents the standard deviation of the equivalent node i The equivalent active load expectation, E(Q eqi ) represents the equivalent reactive load expectation of the equivalent node i.

所述步骤2包括以下步骤:Described step 2 comprises the following steps:

步骤2-1:选取有源配电网中各等效节点离散状态;Step 2-1: Select the discrete state of each equivalent node in the active distribution network;

步骤2-2:采用拉丁超立方采样对各等效节点离散状态进行随机潮流计算,得到随机潮流结果;Step 2-2: Use Latin hypercube sampling to perform stochastic power flow calculations on the discrete states of each equivalent node, and obtain stochastic power flow results;

步骤2-3:根据随机潮流结果,并采用大数定理计算各等效节点离散状态下电压越限概率;Step 2-3: According to the results of random power flow, and using the theorem of large numbers to calculate the probability of voltage exceeding the limit of each equivalent node in a discrete state;

步骤2-4:将各等效节点离散状态下电压越限概率保存至离线数据库。Step 2-4: Save the voltage limit probability in the discrete state of each equivalent node to the offline database.

所述步骤3包括以下步骤:Described step 3 comprises the following steps:

步骤3-1:获取各节点负荷实际运行状态和光伏系统实际运行状态;Step 3-1: Obtain the actual operating status of each node load and the actual operating status of the photovoltaic system;

步骤3-2:在离线数据库中查找节点负荷实际运行状态下节点等效状态参数的相邻值;Step 3-2: Find the adjacent value of the node equivalent state parameter under the actual running state of the node load in the offline database;

步骤3-3:采用多维Lagrange插值法计算节点负荷实际运行状态下的电压越限概率,并对电压越限风险进行分析。Step 3-3: Use the multidimensional Lagrange interpolation method to calculate the probability of voltage exceeding the limit under the actual operating state of the node load, and analyze the risk of voltage exceeding the limit.

所述步骤3-2中,节点等效状态参数包括太阳光照强度期望E(S)、等效节点i的等效有功负荷期望E(Peqi)、等效节点i的等效有功负荷标准差σ(Peqi)、等效节点i的等效无功负荷期望E(Qeqi)和等效节点i的等效无功负荷标准差σ(Qeqi)。In the step 3-2, the node equivalent state parameters include the solar illumination intensity expectation E(S), the equivalent active load expectation E(P eqi ) of the equivalent node i, and the equivalent active load standard deviation of the equivalent node i σ(P eqi ), the equivalent reactive load expectation E(Q eqi ) of the equivalent node i and the standard deviation σ(Q eqi ) of the equivalent reactive load of the equivalent node i.

所述步骤3-3包括以下步骤:Said step 3-3 comprises the following steps:

步骤3-3-1:采用多维Lagrange插值法计算节点负荷实际运行状态下电压越限概率,包括:Step 3-3-1: Use the multidimensional Lagrange interpolation method to calculate the voltage limit probability under the actual operating state of the node load, including:

假设E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)在离线数据库中查找到的下行相邻数分别为E0(S),E0(Peqi),σ0(Peqi),E0(Qeqi),σ0(Qeqi),在离线数据库中查找到的上行相邻数分别为E1(S),E1(Peqi),σ1(Peqi),E1(Qeqi),σ1(Qeqi),则获得相邻数对应的电压越限概率f,有:Suppose E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), σ(Q eqi ) find the downlink adjacent numbers in the offline database as E 0 (S), E 0 (P eqi ),σ 0 (P eqi ),E 0 (Q eqi ),σ 0 (Q eqi ), the uplink adjacent numbers found in the offline database are E 1 (S),E 1 (P eqi ),σ 1 (P eqi ),E 1 (Q eqi ),σ 1 (Q eqi ), then the probability f of the voltage exceeding the limit corresponding to the adjacent number is obtained:

其中,j1,j2,...,j5分别表示E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)的状态索引,取值均为0或1,即:Among them, j 1 , j 2 ,..., j 5 represent the state indexes of E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), σ(Q eqi ) respectively, and the values are Both are 0 or 1, namely:

j1,j2,...,j5取0时,分别表示E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)的下行相邻数;When j 1 ,j 2 ,...,j 5 take 0, Respectively represent the downlink adjacent numbers of E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), and σ(Q eqi );

j1,j2,...,j5取1时,分别表示E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)的上行相邻数;When j 1 ,j 2 ,...,j 5 take 1, Respectively represent the uplink adjacent numbers of E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), σ(Q eqi );

表示E(S)的第j1个插值基函数,即j1取0时,表示E(S)的第0个插值基函数l0(E(S));j1取1时,表示E(S)的第1个插值基函数l1(E(S));l0(E(S))和l1(E(S))分别表示为:use Indicates the j 1st interpolation basis function of E(S), that is, when j 1 is 0, Indicates the 0th interpolation basis function l 0 (E(S)) of E(S); when j 1 is 1, The first interpolation basis function l 1 (E(S)) representing E(S); l 0 (E(S)) and l 1 (E(S)) are expressed as:

表示E(Peqi)的第j2个插值基函数,即j2取0时,表示E(Peqi)的第0个插值基函数l0(E(Peqi));j2取1时,表示E(Peqi)的第1个插值基函数l1(E(Peqi));l0(E(Peqi))和l1(E(Peqi))分别表示为:use Indicates the j 2th interpolation basis function of E(P eqi ), that is, when j 2 is 0, Indicates the 0th interpolation basis function l 0 (E(P eqi )) of E(P eqi ); when j 2 is 1, The first interpolation basis function l 1 (E(P eqi )) representing E(P eqi ); l 0 (E(P eqi )) and l 1 (E(P eqi )) are expressed as:

表示σ(Peqi)的第j3个插值基函数,即j3取0时,表示σ(Peqi)的第0个插值基函数l0(σ(Peqi));j3取1时,表示σ(Peqi)的第1个插值基函数l1(σ(Peqi));l0(σ(Peqi))和l1(σ(Peqi))分别表示为:use Indicates the jth 3rd interpolation basis function of σ(P eqi ), that is, when j 3 is 0, Indicates the 0th interpolation basis function l 0 (σ(P eqi )) of σ(P eqi ); when j 3 is 1, The first interpolation basis function l 1 (σ(P eqi )) representing σ(P eqi ); l 0 (σ(P eqi )) and l 1 (σ(P eqi )) are expressed as:

表示E(Qeqi)的第j4个插值基函数,即j4取0时,表示E(Qeqi)的第0个插值基函数l0(E(Qeqi));j4取1时,表示E(Qeqi)的第1个插值基函数l1(E(Qeqi));l0(E(Qeqi))和l1(E(Qeqi))分别表示为:use Indicates the j 4th interpolation basis function of E(Q eqi ), that is, when j 4 is 0, Indicates the 0th interpolation basis function l 0 (E(Q eqi )) of E(Q eqi ); when j 4 is 1, The first interpolation basis function l 1 (E(Q eqi )) representing E(Q eqi ); l 0 (E(Q eqi )) and l 1 (E(Q eqi )) are expressed as:

表示σ(Qeqi)的第j5个插值基函数,即j5取0时,表示σ(Qeqi)的第0个插值基函数l0(σ(Qeqi));j5取1时,表示σ(Qeqi)的第1个插值基函数l1(σ(Qeqi));l0(σ(Qeqi))和l1(σ(Qeqi))分别表示为:use Indicates the j 5th interpolation basis function of σ(Q eqi ), that is, when j 5 is 0, Indicates the 0th interpolation basis function l 0 (σ(Q eqi )) of σ(Q eqi ); when j 5 is 1, The first interpolation basis function l 1 (σ(Q eqi )) representing σ(Q eqi ); l 0 (σ(Q eqi )) and l 1 (σ(Q eqi )) are expressed as:

于是,得到节点负荷实际运行状态下的电压越限概率,有:Therefore, the probability of voltage exceeding the limit under the actual operating state of the node load is obtained, as follows:

其中,f(E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi))表示节点负荷实际运行状态下的电压越限概率;Among them, f(E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )) represent the voltage limit probability under the actual operating state of the node load;

步骤3-3-2:根据f(E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi))对电压越限风险进行分析,具体有:f(E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi))越大,电压越限风险越大。Step 3-3-2: According to f(E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )), analyze the voltage over-limit risk, specifically: The greater the f(E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )), the greater the risk of voltage exceeding the limit.

与最接近的现有技术相比,本发明提供的技术方案具有以下有益效果:Compared with the closest prior art, the technical solution provided by the present invention has the following beneficial effects:

1)本发明利用节点等效方法简化了考虑负荷和光伏系统随机特性的有源配电网运行状态参数,利用单个节点的等效负荷概率模型来表征整个系统负荷综合作用对该节点电压的影响;1) The present invention uses the node equivalent method to simplify the operating state parameters of the active distribution network considering the random characteristics of the load and photovoltaic system, and uses the equivalent load probability model of a single node to characterize the influence of the overall system load comprehensive action on the node voltage ;

2)本发明利用简化后的各节点等效状态参数数量较少且能够表征系统各种运行状态对该节点电压综合影响效果的特点,提出可根据节点特性选取有源配电网中各等效节点离散状态进行离线计算并生成相应数据库,为在线快速分析提供参考计算样本;2) The present invention utilizes the characteristics that the number of equivalent state parameters of each node after simplification is small and can characterize the comprehensive effect of various operating states of the system on the node voltage, and proposes that each equivalent state parameter in the active distribution network can be selected according to the characteristics of the nodes. The discrete state of nodes is used for offline calculation and corresponding database is generated to provide reference calculation samples for online rapid analysis;

3)本发明提出在配电网实际运行中,利用节点等效原理计算应此的各节点随机参数,即可在离线数据库中查找相邻值,形成多组离散状态从而进行快速多维Lagrange插值法计算获得节点电压越限概率,与利用各类随机潮流方法且同时考虑多个随机变量的直接求解方法比较,本方法更有利于快速在线分析计算,且具有较高准确性;3) The present invention proposes that in the actual operation of the distribution network, the node equivalent principle is used to calculate the corresponding random parameters of each node, and the adjacent values can be searched in the offline database to form multiple sets of discrete states to perform fast multi-dimensional Lagrange interpolation method Compared with the direct solution method using various stochastic power flow methods and considering multiple random variables at the same time, this method is more conducive to fast online analysis and calculation, and has higher accuracy;

4)本发明有效解决在实际运行时快速准确的计算有源配电网各节点电压越限概率的问题。4) The present invention effectively solves the problem of quickly and accurately calculating the voltage over-limit probability of each node of the active distribution network during actual operation.

附图说明Description of drawings

图1是本发明实施例中采用大数定理计算各等效节点离散状态下电压越限概率流程图;Fig. 1 is a flow chart of calculating the probability of voltage exceeding the limit of each equivalent node in a discrete state by using the theorem of large numbers in an embodiment of the present invention;

图2是本发明实施例中采用多维Lagrange插值法计算节点负荷实际运行状态下电压越限概率流程图。Fig. 2 is a flow chart of the calculation of the voltage over-limit probability under the actual operating state of the node load using the multi-dimensional Lagrange interpolation method in the embodiment of the present invention.

具体实施方式detailed description

下面结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.

本发明提供一种基于节点等效的有源配电网电压越限风险分析方法,采用离线计算和在线分析相结合的方法,解决在实际运行时快速准确的计算配电网各节点电压越限概率的问题。The invention provides a node equivalent-based active distribution network voltage overrun risk analysis method, which uses a method combining off-line calculation and online analysis to solve the problem of quickly and accurately calculating the voltage overrun of each node in the distribution network during actual operation A question of probability.

(1)简化考虑负荷和分布式电源随机特性的配电系统运行状态参数,使其有利于离线计算时典型状态的选取和在线分析时实际运行状态的映射;(1) Simplify the operating state parameters of the distribution system considering the random characteristics of loads and distributed power sources, making it conducive to the selection of typical states during offline calculations and the mapping of actual operating states during online analysis;

(2)根据简化后的配电系统运行状态参数,通过对典型离散状态进行选取和基于模拟法的随即潮流计算,形成离线的典型状态与电压越限概率分析结果数据库,为在线运行时的快速计算奠定基础;(2) According to the simplified operating state parameters of the power distribution system, through the selection of typical discrete states and the random power flow calculation based on the simulation method, an offline typical state and the analysis result database of voltage exceeding the limit probability are formed, which is fast for online operation. Computing lays the foundation;

(3)根据节点等效原理将实际运行特性等效为简化后的运行参数,并在离线数据库中查找各等效运行参数相邻值,最终通过多维插值的方式快速计算实际运行时的电压越限概率。(3) According to the node equivalent principle, the actual operating characteristics are equivalent to the simplified operating parameters, and the adjacent values of each equivalent operating parameter are searched in the offline database, and finally the actual operating voltage is quickly calculated by multi-dimensional interpolation. limited probability.

本发明提供一种基于节点等效的有源配电网电压越限风险分析方法,所述分析方法包括以下步骤:The present invention provides a node equivalent-based active distribution network voltage transgression risk analysis method, the analysis method includes the following steps:

步骤1:建立节点等效负荷概率模型,并结合光伏系统光照强度随机模型,建立有源配电网等效状态模型;Step 1: Establish the node equivalent load probability model, and combine the photovoltaic system light intensity stochastic model to establish the equivalent state model of the active distribution network;

步骤2:对各等效节点离散状态进行随机潮流计算,并根据随机潮流结果计算各等效节点离散状态下电压越限概率;Step 2: Perform stochastic power flow calculation on the discrete state of each equivalent node, and calculate the voltage limit probability of each equivalent node in the discrete state according to the stochastic power flow result;

步骤3:在离线数据库中查找节点负荷实际运行状态下节点等效状态参数的相邻值,并计算节点负荷实际运行状态下的电压越限概率。Step 3: Find the adjacent values of the node equivalent state parameters in the actual operating state of the node load in the offline database, and calculate the voltage limit probability under the actual operating state of the node load.

所述步骤1包括以下步骤:Described step 1 comprises the following steps:

步骤1-1:选取有源配电网中各节点最大负荷状态,建立节点等效负荷概率模型;Step 1-1: Select the maximum load state of each node in the active distribution network, and establish a node equivalent load probability model;

步骤1-2:结合光伏系统光照强度随机模型,建立有源配电网等效状态模型。Step 1-2: Combining with the stochastic model of photovoltaic system light intensity, establish the equivalent state model of active distribution network.

所述步骤1-1中,建立节点等效负荷概率模型包括:In the step 1-1, establishing a node equivalent load probability model includes:

假设节点h和节点k是任意两个相邻节点,节点h和节点k形成线路hk,有:Assuming that node h and node k are any two adjacent nodes, node h and node k form a line hk, there are:

其中,表示节点h和节点k之间的压降矢量,表示线路hk的电流矢量,Rhk表示线路hk的电阻,Xhk表示线路hk的电抗,表示节点k电势矢量,表示流过节点k的复功率;in, Denotes the voltage drop vector between node h and node k, Represents the current vector of the line hk, R hk represents the resistance of the line hk, X hk represents the reactance of the line hk, Indicates the node k potential vector, Indicates the complex power flowing through node k;

忽略线路损耗,则表示为:Neglecting the line loss, then Expressed as:

其中,j=1,2,…,Nk,Nk表示从线路hk首端看进去有源配电网中节点k之后的所有节点集合,表示节点j的负荷复功率;Among them, j=1,2,...,N k , N k represents the collection of all nodes after node k in the active distribution network viewed from the head end of the line hk, Indicates the load complex power of node j;

假设表示有源配电网的额定电压矢量,En表示有源配电网的额定电压矢量幅值,于是又表示为:suppose Represents the rated voltage vector of the active distribution network, E n represents the rated voltage vector magnitude of the active distribution network, so Also expressed as:

其中,表示的共轭,表示线路hk的阻抗矢量;in, express the conjugate of Indicates the impedance vector of the line hk;

因此,对于有源配电网中任一等效节点i,有:Therefore, for any equivalent node i in the active distribution network, there are:

其中,表示等效节点i与有源配电网中母线之间的压降矢量,Li表示等效节点i与有源配电网中母线之间所有线路集合,表示的共轭;in, Indicates the voltage drop vector between the equivalent node i and the bus in the active distribution network, L i represents the set of all lines between the equivalent node i and the bus in the active distribution network, express the conjugate;

如果有源配电网中只存在等效节点i带负荷,则又可表示为:If there is only equivalent node i with load in the active distribution network, then It can also be expressed as:

其中,表示等效节点i与有源配电网中母线之间的阻抗之和,表示的共轭,表示等效节点i的复功率;in, Indicates the sum of the impedance between the equivalent node i and the bus in the active distribution network, express the conjugate of Indicates the complex power of the equivalent node i;

由于负荷功率具有随机波动性,于是各节点负荷有功功率短期波动和无功功率短期波动均满足正态分布,于是由式(5)和(6)得到:Due to the random fluctuation of the load power, the short-term fluctuations of active power and reactive power of each node load satisfy the normal distribution, so it can be obtained from equations (5) and (6):

且有:and have:

其中,ahk表示的实部,bhk表示的虚部;Pk表示有源配电网中节点k之后的所有节点有功负荷之和,即Pj表示节点j的有功负荷;Qk表示有源配电网中节点k之后的所有节点无功负荷之和,即Qj表示节点j的无功负荷;Among them, a hk means The real part of b hk means The imaginary part of ; P k represents the sum of active loads of all nodes after node k in the active distribution network, namely P j represents the active load of node j; Q k represents the sum of reactive loads of all nodes after node k in the active distribution network, namely Q j represents the reactive load of node j;

于是由正态分布的线性定律可得:Then, from the linear law of normal distribution, we can get:

其中,E(Peqi)表示等效节点i的等效有功负荷期望,E(Qeqi)表示等效节点i的等效无功负荷期望,Peqi表示等效节点i的等效有功负荷,Qeqi表示等效节点i的等效无功负荷,E(Pj)表示节点j的有功负荷期望,E(Qj)表示节点j的无功负荷期望;Among them, E(P eqi ) represents the equivalent active load expectation of equivalent node i, E(Q eqi ) represents the equivalent reactive load expectation of equivalent node i, P eqi represents the equivalent active load of equivalent node i, Q eqi represents the equivalent reactive load of equivalent node i, E(P j ) represents the expected active load of node j, and E(Q j ) represents the expected reactive load of node j;

由于式(10)不满足随机变量独立性,将其变形为:Since formula (10) does not satisfy the independence of random variables, it is transformed into:

且有:and have:

其中,Nnode表示有源配电网中负荷节点集合,m=1,2,…,Nnode表示的共轭,表示负荷节点m的复功率;Lm表示负荷节点m所在线路与Li上存在距负荷节点m最近的交点时母线到该交点之间所有线路集合;Pm表示负荷节点m的有功负荷,Qm表示负荷节点m的无功负荷;cm和dm分别表示的实部和虚部;Wherein, N node represents the set of load nodes in the active distribution network, m=1, 2,..., N node ; express the conjugate of Represents the complex power of the load node m; L m represents the collection of all lines between the bus and the intersection point when the line where the load node m is located and the nearest intersection point to the load node m exists; P m represents the active load of the load node m, Q m represents the reactive load of load node m; c m and d m represent The real and imaginary parts of ;

于是有:So there are:

其中,σ(Peqi)表示等效节点i的等效有功负荷标准差,σ(Qeqi)表示等效节点i的等效无功负荷标准差,D(Peqi)表示等效节点i的等效有功负荷方差,D(Qeqi)表示等效节点i的等效无功负荷方差,D(Pm)表示负荷节点m的有功负荷方差,D(Qm)表示负荷节点m的无功负荷方差。Among them, σ(P eqi ) represents the standard deviation of the equivalent active load of the equivalent node i, σ(Q eqi ) represents the standard deviation of the equivalent reactive load of the equivalent node i, and D(P eqi ) represents the standard deviation of the equivalent node i Equivalent active load variance, D(Q eqi ) represents the equivalent reactive load variance of equivalent node i, D(P m ) represents the active load variance of load node m, D(Q m ) represents the reactive power of load node m load variance.

所述步骤1-2中,光伏系统光照强度随机模型中,太阳光照强度服从Beta分布,太阳光照强度期望用E(S)表示,于是有源配电网等效状态模型表示为:In the step 1-2, in the stochastic model of the photovoltaic system light intensity, the sun light intensity obeys the Beta distribution, and the sun light intensity expectation is represented by E(S), so the equivalent state model of the active distribution network is expressed as:

{E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)} (14){E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )} (14)

其中,σ(Peqi)表示等效节点i的等效有功负荷标准差,σ(Qeqi)表示等效节点i的等效无功负荷标准差,E(Peqi)表示等效节点i的等效有功负荷期望,E(Qeqi)表示等效节点i的等效无功负荷期望。Among them, σ(P eqi ) represents the standard deviation of the equivalent active load of the equivalent node i, σ(Q eqi ) represents the standard deviation of the equivalent reactive load of the equivalent node i, and E(P eqi ) represents the standard deviation of the equivalent node i The equivalent active load expectation, E(Q eqi ) represents the equivalent reactive load expectation of the equivalent node i.

如图1,所述步骤2包括以下步骤:As shown in Figure 1, the step 2 includes the following steps:

步骤2-1:选取有源配电网中各等效节点离散状态;Step 2-1: Select the discrete state of each equivalent node in the active distribution network;

步骤2-2:采用拉丁超立方采样对各等效节点离散状态进行随机潮流计算,得到随机潮流结果;Step 2-2: Use Latin hypercube sampling to perform stochastic power flow calculations on the discrete states of each equivalent node, and obtain stochastic power flow results;

步骤2-3:根据随机潮流结果,并采用大数定理计算各等效节点离散状态下电压越限概率;Step 2-3: According to the results of random power flow, and using the theorem of large numbers to calculate the probability of voltage exceeding the limit of each equivalent node in a discrete state;

步骤2-4:将各等效节点离散状态下电压越限概率保存至离线数据库。Step 2-4: Save the voltage limit probability in the discrete state of each equivalent node to the offline database.

如图2,所述步骤3包括以下步骤:As shown in Figure 2, the step 3 includes the following steps:

步骤3-1:获取各节点负荷实际运行状态和光伏系统实际运行状态;Step 3-1: Obtain the actual operating status of each node load and the actual operating status of the photovoltaic system;

步骤3-2:在离线数据库中查找节点负荷实际运行状态下节点等效状态参数的相邻值;Step 3-2: Find the adjacent value of the node equivalent state parameter under the actual running state of the node load in the offline database;

步骤3-3:采用多维Lagrange插值法计算节点负荷实际运行状态下的电压越限概率,并对电压越限风险进行分析。Step 3-3: Use the multidimensional Lagrange interpolation method to calculate the probability of voltage exceeding the limit under the actual operating state of the node load, and analyze the risk of voltage exceeding the limit.

所述步骤3-2中,节点等效状态参数包括太阳光照强度期望E(S)、等效节点i的等效有功负荷期望E(Peqi)、等效节点i的等效有功负荷标准差σ(Peqi)、等效节点i的等效无功负荷期望E(Qeqi)和等效节点i的等效无功负荷标准差σ(Qeqi)。In the step 3-2, the node equivalent state parameters include the solar illumination intensity expectation E(S), the equivalent active load expectation E(P eqi ) of the equivalent node i, and the equivalent active load standard deviation of the equivalent node i σ(P eqi ), the equivalent reactive load expectation E(Q eqi ) of the equivalent node i and the standard deviation σ(Q eqi ) of the equivalent reactive load of the equivalent node i.

所述步骤3-3包括以下步骤:Said step 3-3 comprises the following steps:

步骤3-3-1:采用多维Lagrange插值法计算节点负荷实际运行状态下电压越限概率,包括:Step 3-3-1: Use the multidimensional Lagrange interpolation method to calculate the voltage limit probability under the actual operating state of the node load, including:

假设E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)在离线数据库中查找到的下行相邻数分别为E0(S),E0(Peqi),σ0(Peqi),E0(Qeqi),σ0(Qeqi),在离线数据库中查找到的上行相邻数分别为E1(S),E1(Peqi),σ1(Peqi),E1(Qeqi),σ1(Qeqi),则获得相邻数对应的电压越限概率f,有:Suppose E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), σ(Q eqi ) find the downlink adjacent numbers in the offline database as E 0 (S), E 0 (P eqi ),σ 0 (P eqi ),E 0 (Q eqi ),σ 0 (Q eqi ), the uplink adjacent numbers found in the offline database are E 1 (S),E 1 (P eqi ),σ 1 (P eqi ),E 1 (Q eqi ),σ 1 (Q eqi ), then the probability f of the voltage exceeding the limit corresponding to the adjacent number is obtained:

其中,j1,j2,...,j5分别表示E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)的状态索引,取值均为0或1,即:Among them, j 1 , j 2 ,..., j 5 represent the state indexes of E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), σ(Q eqi ) respectively, and the values are Both are 0 or 1, namely:

j1,j2,...,j5取0时,分别表示E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)的下行相邻数;When j 1 ,j 2 ,...,j 5 take 0, Respectively represent the downlink adjacent numbers of E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), and σ(Q eqi );

j1,j2,...,j5取1时,分别表示E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)的上行相邻数;When j 1 ,j 2 ,...,j 5 take 1, Respectively represent the uplink adjacent numbers of E(S), E(P eqi ), σ(P eqi ), E(Q eqi ), σ(Q eqi );

表示E(S)的第j1个插值基函数,即j1取0时,表示E(S)的第0个插值基函数l0(E(S));j1取1时,表示E(S)的第1个插值基函数l1(E(S));l0(E(S))和l1(E(S))分别表示为:use Indicates the j 1st interpolation basis function of E(S), that is, when j 1 is 0, Indicates the 0th interpolation basis function l 0 (E(S)) of E(S); when j 1 is 1, The first interpolation basis function l 1 (E(S)) representing E(S); l 0 (E(S)) and l 1 (E(S)) are expressed as:

表示E(Peqi)的第j2个插值基函数,即j2取0时,表示E(Peqi)的第0个插值基函数l0(E(Peqi));j2取1时,表示E(Peqi)的第1个插值基函数l1(E(Peqi));l0(E(Peqi))和l1(E(Peqi))分别表示为:use Indicates the j 2th interpolation basis function of E(P eqi ), that is, when j 2 is 0, Indicates the 0th interpolation basis function l 0 (E(P eqi )) of E(P eqi ); when j 2 is 1, The first interpolation basis function l 1 (E(P eqi )) representing E(P eqi ); l 0 (E(P eqi )) and l 1 (E(P eqi )) are expressed as:

表示σ(Peqi)的第j3个插值基函数,即j3取0时,表示σ(Peqi)的第0个插值基函数l0(σ(Peqi));j3取1时,表示σ(Peqi)的第1个插值基函数l1(σ(Peqi));l0(σ(Peqi))和l1(σ(Peqi))分别表示为:use Indicates the jth 3rd interpolation basis function of σ(P eqi ), that is, when j 3 is 0, Indicates the 0th interpolation basis function l 0 (σ(P eqi )) of σ(P eqi ); when j 3 is 1, The first interpolation basis function l 1 (σ(P eqi )) representing σ(P eqi ); l 0 (σ(P eqi )) and l 1 (σ(P eqi )) are expressed as:

表示E(Qeqi)的第j4个插值基函数,即j4取0时,表示E(Qeqi)的第0个插值基函数l0(E(Qeqi));j4取1时,表示E(Qeqi)的第1个插值基函数l1(E(Qeqi));l0(E(Qeqi))和l1(E(Qeqi))分别表示为:use Indicates the j 4th interpolation basis function of E(Q eqi ), that is, when j 4 is 0, Indicates the 0th interpolation basis function l 0 (E(Q eqi )) of E(Q eqi ); when j 4 is 1, The first interpolation basis function l 1 (E(Q eqi )) representing E(Q eqi ); l 0 (E(Q eqi )) and l 1 (E(Q eqi )) are expressed as:

表示σ(Qeqi)的第j5个插值基函数,即j5取0时,表示σ(Qeqi)的第0个插值基函数l0(σ(Qeqi));j5取1时,表示σ(Qeqi)的第1个插值基函数l1(σ(Qeqi));l0(σ(Qeqi))和l1(σ(Qeqi))分别表示为:use Indicates the j 5th interpolation basis function of σ(Q eqi ), that is, when j 5 is 0, Indicates the 0th interpolation basis function l 0 (σ(Q eqi )) of σ(Q eqi ); when j 5 is 1, The first interpolation basis function l 1 (σ(Q eqi )) representing σ(Q eqi ); l 0 (σ(Q eqi )) and l 1 (σ(Q eqi )) are expressed as:

于是,得到节点负荷实际运行状态下的电压越限概率,有:Therefore, the probability of voltage exceeding the limit under the actual operating state of the node load is obtained, as follows:

其中,f(E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi))表示节点负荷实际运行状态下的电压越限概率;Among them, f(E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )) represent the voltage limit probability under the actual operating state of the node load;

步骤3-3-2:根据f(E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi))对电压越限风险进行分析,具体有:f(E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi))越大,电压越限风险越大。Step 3-3-2: According to f(E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )), analyze the voltage over-limit risk, specifically: The greater the f(E(S),E(P eqi ),σ(P eqi ),E(Q eqi ),σ(Q eqi )), the greater the risk of voltage exceeding the limit.

最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Those of ordinary skill in the art can still modify or equivalently replace the specific implementation methods of the present invention with reference to the above embodiments. Any modifications or equivalent replacements departing from the spirit and scope of the present invention are within the protection scope of the claims of the pending application of the present invention.

Claims (8)

1. An active power distribution network voltage out-of-limit risk analysis method based on node equivalence is characterized by comprising the following steps: the analysis method comprises the following steps:
step 1: establishing a node equivalent load probability model, and establishing an equivalent state model of the active power distribution network by combining a photovoltaic system illumination intensity random model;
step 2: carrying out random load flow calculation on the discrete state of each equivalent node, and calculating the voltage out-of-limit probability of each equivalent node in the discrete state according to the random load flow result;
and step 3: and searching the adjacent values of the node equivalent state parameters in the actual running state of the node load in an offline database, and calculating the voltage out-of-limit probability in the actual running state of the node load.
2. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 1, characterized in that: the step 1 comprises the following steps:
step 1-1: selecting the maximum load state of each node in the active power distribution network, and establishing a node equivalent load probability model;
step 1-2: and establishing an equivalent state model of the active power distribution network by combining a random model of the illumination intensity of the photovoltaic system.
3. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 2, characterized in that: in the step 1-1, establishing a node equivalent load probability model includes:
assuming that the node h and the node k are any two adjacent nodes, the node h and the node k form a line hk, which has:
V · h k = I · h k ( R h k + jX h k ) = ( S ‾ k E · k ) * ( R h k + jX h k ) - - - ( 1 )
wherein,representing the vector of the voltage drop between node h and node k,representing the current vector, R, of the line hkhkRepresenting the resistance, X, of the line hkhkThe reactance of the line hk is shown,a vector of the potential of the node k is represented,represents the complex power flowing through node k;
neglecting the line loss, thenExpressed as:
S ‾ k = Σ j ∈ N k S ‾ j - - - ( 2 )
wherein j is 1,2, …, Nk,NkRepresenting the set of all nodes looking into the active distribution network from the head end of line hk behind node k,represents the load complex power of node j;
suppose that Representing the rated voltage vector of the active distribution network, EnRepresenting the magnitude of the rated voltage vector of the active distribution network, thusAnd is represented as:
V · h k = 1 E n S ‾ k * Z · h k = S ‾ k * E n ( R h k + jX h k ) - - - ( 3 )
wherein,to representThe conjugate of (a) to (b),represents the impedance vector of line hk;
therefore, for any equivalent node i in the active power distribution network, there are:
V · 0 i = Σ h k ∈ L i V · h k = Σ h k ∈ L i [ Z · h k E n ( Σ j ∈ N k S ‾ j * ) ] - - - ( 4 )
wherein,representing the vector of the voltage drop between the equivalent node i and the bus in the active distribution network, LiRepresenting the set of all lines between the equivalent node i and the bus in the active distribution network,to representConjugation of (1);
if only the equivalent node i in the active power distribution network is loaded, the load is reducedAnd can be represented as:
V · 0 i = Z · 0 i S ‾ e q i * E n - - - ( 5 )
wherein,representing the sum of the impedances between the equivalent node i and the busbars in the active distribution network,to representThe conjugate of (a) to (b),representing the complex power of the equivalent node i;
since the load power has random fluctuation, the active power short-term fluctuation and the reactive power short-term fluctuation of each node load both satisfy the normal distribution, and then are obtained by the following equations (5) and (6):
S ‾ e q i * = Σ h k ∈ L i [ Z · h k Z · 0 i ( Σ j ∈ N k S ‾ j * ) ] = Σ h k ∈ L i [ ( a h k P k + b h k Q k ) + j ( b h k P k - a h k Q k ) ] - - - ( 6 )
and has the following components:
Z · h k Z · 0 i = a h k + jb h k - - - ( 7 )
wherein, ahkTo representThe real part of (a) is,bhkto representAn imaginary part of (d); pkRepresenting the sum of the active loads of all nodes following node k in the active distribution network, i.e.PjRepresenting the active load of node j; qkRepresenting the sum of the reactive loads of all nodes after node k in the active distribution network, i.e.QjRepresenting the reactive load of node j;
from the linear law of normal distribution then:
E ( P e q i ) = Σ h k ∈ L i [ a h k Σ j ∈ N k E ( P j ) + b h k Σ j ∈ N k E ( Q j ) ] - - - ( 8 )
E ( Q e q i ) = Σ h k ∈ L i [ a h k Σ j ∈ N k E ( Q j ) - b h k Σ j ∈ N k E ( P j ) ] - - - ( 9 )
wherein, E (P)eqi) Representing the equivalent active load expectation, E (Q), of the equivalent node ieqi) Representing the equivalent reactive load expectation, P, of the equivalent node ieqiRepresenting the equivalent active load, Q, of an equivalent node ieqiRepresenting the equivalent reactive load of the equivalent node i, E (P)j) Representing the active load expectation of node j, E (Q)j) Represents the reactive load expectation of node j;
since equation (10) does not satisfy the random variable independence, it is transformed into:
S ‾ e q i * = Σ m ∈ N n o d e [ S ‾ m * Σ h k ∈ L m Z · h k ] Z · 0 i = Σ m ∈ N n o d e [ ( c m P m + d m Q m ) + j ( d m P m - c m Q m ) ] - - - ( 10 )
and has the following components:
Σ h k ∈ L m Z · h k Z · 0 i = c m + jd m - - - ( 11 )
wherein N isnodeRepresenting a set of load nodes in the active distribution network, m being 1,2, …, NnodeTo representThe conjugate of (a) to (b),representing the complex power of the load node m; l ismIndicates the line and L of the load node miWhen the intersection point which is closest to the load node m exists, all lines from the bus to the intersection point are collected; pmRepresenting the active load, Q, of the load node mmRepresenting the reactive load of the load node m; c. CmAnd dmRespectively representThe real and imaginary parts of (c);
thus, there are:
σ ( P e q i ) = D ( P e q i ) = Σ m ∈ N n o d e [ c m 2 D ( P m ) + d m 2 D ( Q m ) ] - - - ( 12 )
σ ( Q e q i ) = D ( Q e q i ) = Σ m ∈ N n o d e [ d m 2 D ( P m ) + c m 2 D ( Q m ) ] - - - ( 13 )
wherein, σ (P)eqi) Represents the equivalent active load standard deviation, sigma (Q) of the equivalent node ieqi) Represents the equivalent reactive load standard deviation, D (P) of the equivalent node ieqi) Represents the equivalent active load variance, D (Q), of the equivalent node ieqi) Represents the equivalent reactive load variance, D (P), of the equivalent node im) Representing the active load variance, D (Q), of the load node mm) Representing the reactive load variance of load node m.
4. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 3, wherein: in the step 1-2, in the photovoltaic system illumination intensity random model, the solar illumination intensity obeys Beta distribution, and the solar illumination intensity is expected to be expressed by e(s), so that the active power distribution network equivalent state model is expressed as:
{E(S),E(Peqi),σ(Peqi),E(Qeqi),σ(Qeqi)} (14)
wherein, σ (P)eqi) Represents the equivalent active load standard deviation, sigma (Q) of the equivalent node ieqi) Represents the equivalent reactive load standard deviation, E (P), of the equivalent node ieqi) Representing the equivalent active load expectation, E (Q), of the equivalent node ieqi) Representing the equivalent reactive load expectation of the equivalent node i.
5. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 1, characterized in that: the step 2 comprises the following steps:
step 2-1: selecting discrete states of equivalent nodes in the active power distribution network;
step 2-2: performing random load flow calculation on the discrete state of each equivalent node by adopting Latin hypercube sampling to obtain a random load flow result;
step 2-3: calculating the voltage out-of-limit probability of each equivalent node in a discrete state by adopting a majority theorem according to the random load flow result;
step 2-4: and storing the voltage out-of-limit probability of each equivalent node in a discrete state to an offline database.
6. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 1, characterized in that: the step 3 comprises the following steps:
step 3-1: acquiring the actual running state of each node load and the actual running state of the photovoltaic system;
step 3-2: searching an adjacent value of the node equivalent state parameter in an actual running state of the node load in an offline database;
step 3-3: and calculating the voltage out-of-limit probability of the node load in the actual running state by adopting a multidimensional Lagrange interpolation method, and analyzing the voltage out-of-limit risk.
7. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 6, wherein: in the step 3-2, the node equivalent state parameters include the solar illumination intensity expectation E (S), the equivalent active load expectation E (P) of the equivalent node ieqi) And the equivalent active load standard deviation sigma (P) of the equivalent node ieqi) Equivalent reactive load expectation E (Q) of equivalent node ieqi) And the equivalent reactive load standard deviation sigma (Q) of the equivalent node ieqi)。
8. The node equivalence-based active distribution network voltage out-of-limit risk analysis method according to claim 7, wherein: the step 3-3 comprises the following steps:
step 3-3-1: calculating the voltage out-of-limit probability under the actual operation state of the node load by adopting a multidimensional Lagrange interpolation method, wherein the method comprises the following steps:
assume E (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) The downlink adjacent numbers found in the off-line database are respectively E0(S),E0(Peqi),σ0(Peqi),E0(Qeqi),σ0(Qeqi) In an off-line databaseThe found uplink adjacent numbers are respectively E1(S),E1(Peqi),σ1(Peqi),E1(Qeqi),σ1(Qeqi) Then, the voltage out-of-limit probability f corresponding to the adjacent number is obtained, including:
f = f ( E j 1 ( S ) , E j 2 ( P e q i ) , σ j 3 ( P e q i ) , E j 4 ( Q e q i ) , σ j 5 ( Q e q i ) ) - - - ( 15 )
wherein j is1,j2,...,j5Respectively represent E (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) The values of the state index of (1) are both 0 or 1, namely:
j1,j2,...,j5when the value of 0 is taken out,respectively represent E (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) The downlink adjacency number of (2);
j1,j2,...,j5when the number 1 is taken out, the number 1,respectively represent E (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) The uplink adjacency number of (2);
by usingJ denotes E (S)1An interpolation basis function, i.e. j1When the value of 0 is taken out,0 th interpolation basis function l representing E (S)0(E(S));j1When the number 1 is taken out, the number 1,1 st interpolation basis function l representing E (S)1(E(S));l0(E (S)) and l1(E (S)) are respectively represented as:
l 0 ( E ( S ) ) = E ( S ) - E 1 ( S ) E 0 ( S ) - E 1 ( S ) - - - ( 16 )
l 1 ( E ( S ) ) = E ( S ) - E 0 ( S ) E 1 ( S ) - E 0 ( S ) - - - ( 17 )
by usingRepresents E (P)eqi) J (d) of2An interpolation basis function, i.e. j2When the value of 0 is taken out,represents E (P)eqi) 0 th interpolation basis function l0(E(Peqi));j2When the number 1 is taken out, the number 1,represents E (P)eqi) 1 st interpolation basis function l1(E(Peqi));l0(E(Peqi) And l)1(E(Peqi) Respectively expressed as:
l 0 ( E ( P e q i ) ) = E ( P e q i ) - E 1 ( P e q i ) E 0 ( P e q i ) - E 1 ( P e q i ) - - - ( 18 )
l 1 ( E ( P e q i ) ) = E ( P e q i ) - E 0 ( P e q i ) E 1 ( P e q i ) - E 0 ( P e q i ) - - - ( 19 )
by usingRepresents sigma (P)eqi) J (d) of3An interpolation basis function, i.e. j3When the value of 0 is taken out,represents sigma (P)eqi) 0 th interpolation basis function l0(σ(Peqi));j3When the number 1 is taken out, the number 1,represents sigma (P)eqi) 1 st interpolation basis function l1(σ(Peqi));l0(σ(Peqi) And l)1(σ(Peqi) Respectively expressed as:
l 0 ( σ ( P e q i ) ) = σ ( P e q i ) - σ 1 ( P e q i ) σ 0 ( P e q i ) - σ 1 ( P e q i ) - - - ( 20 )
l 1 ( σ ( P e q i ) ) = σ ( P e q i ) - σ 0 ( P e q i ) σ 1 ( P e q i ) - σ 0 ( P e q i ) - - - ( 21 )
by usingRepresents E (Q)eqi) J (d) of4An interpolation basis function, i.e. j4When the value of 0 is taken out,represents E (Q)eqi) 0 th interpolation basis function l0(E(Qeqi));j4When the number 1 is taken out, the number 1,represents E (Q)eqi) 1 st interpolation basis function l1(E(Qeqi));l0(E(Qeqi) And l)1(E(Qeqi) Respectively expressed as:
l 0 ( E ( Q e q i ) ) = E ( Q e q i ) - E 1 ( Q e q i ) E 0 ( Q e q i ) - E 1 ( Q e q i ) - - - ( 22 )
l 1 ( E ( Q e q i ) ) = E ( Q e q i ) - E 0 ( Q e q i ) E 1 ( Q e q i ) - E 0 ( Q e q i ) - - - ( 23 )
by usingRepresents sigma (Q)eqi) J (d) of5An interpolation basis function, i.e. j5When the value of 0 is taken out,represents sigma (Q)eqi) 0 th interpolation basis function l0(σ(Qeqi));j5When the number 1 is taken out, the number 1,represents sigma (Q)eqi) 1 st interpolation basis function l1(σ(Qeqi));l0(σ(Qeqi) And l)1(σ(Qeqi) Respectively expressed as:
l 0 ( σ ( Q e q i ) ) = σ ( Q e q i ) - σ 1 ( Q e q i ) σ 0 ( Q e q i ) - σ 1 ( Q e q i ) - - - ( 24 )
l 1 ( σ ( Q e q i ) ) = σ ( Q e q i ) - σ 0 ( Q e q i ) σ 1 ( Q e q i ) - σ 0 ( Q e q i ) - - - ( 25 )
therefore, the voltage out-of-limit probability under the actual operation state of the node load is obtained by the following steps:
f ( E ( S ) , E ( P e q i ) , σ ( P e q i ) , E ( Q e q i ) , σ ( Q e q i ) ) = Σ j 1 = 0 1 Σ j 2 = 0 1 ... Σ j 5 = 0 1 l j 1 ( E ( S ) ) × l j 2 ( E ( P e q i ) ) × l j 3 ( σ ( P e q i ) ) × l j 4 ( E ( Q e q i ) ) × l j 5 ( σ ( Q e q i ) ) × f ( E j 1 ( S ) , E j 2 ( P e q i ) , σ j 3 ( P e q i ) , E j 4 ( Q e q i ) , σ j 5 ( Q e q i ) ) - - - ( 26 )
wherein f (E), (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) Represents the voltage out-of-limit probability under the actual operating state of the node load;
step 3-3-2: according to f (E), (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) Analysis of voltage out-of-limit risks, specifically: f (E), (S), E (P)eqi),σ(Peqi),E(Qeqi),σ(Qeqi) The greater the voltage violation risk.
CN201510753486.0A 2015-11-06 2015-11-06 A kind of active power distribution network voltage limit risk analysis method based on node equivalent Active CN106684854B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510753486.0A CN106684854B (en) 2015-11-06 2015-11-06 A kind of active power distribution network voltage limit risk analysis method based on node equivalent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510753486.0A CN106684854B (en) 2015-11-06 2015-11-06 A kind of active power distribution network voltage limit risk analysis method based on node equivalent

Publications (2)

Publication Number Publication Date
CN106684854A true CN106684854A (en) 2017-05-17
CN106684854B CN106684854B (en) 2019-04-19

Family

ID=58862999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510753486.0A Active CN106684854B (en) 2015-11-06 2015-11-06 A kind of active power distribution network voltage limit risk analysis method based on node equivalent

Country Status (1)

Country Link
CN (1) CN106684854B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449982A (en) * 2018-12-07 2019-03-08 国网山西省电力公司临汾供电公司 The operation and maintenance method of power distribution network containing multiple photovoltaic micros
CN111682530A (en) * 2020-06-11 2020-09-18 广东电网有限责任公司韶关供电局 Method, device, equipment and medium for determining out-of-limit probability of voltage of power distribution network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279592A (en) * 2013-04-23 2013-09-04 国家电网公司 Power distribution network voltage threshold-crossing simulation method
CN103779861A (en) * 2013-12-30 2014-05-07 天津大学 Active reconfiguration strategy of distribution network and preventing control method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279592A (en) * 2013-04-23 2013-09-04 国家电网公司 Power distribution network voltage threshold-crossing simulation method
CN103779861A (en) * 2013-12-30 2014-05-07 天津大学 Active reconfiguration strategy of distribution network and preventing control method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
于晗 等: "采用拉丁超立方采样的电力系统概率潮流计算方法", 《电力系统自动化》 *
刘新东 等: "基于功角受扰轨迹拟合的暂态稳定快速预测", 《电力系统自动化》 *
卢洋 等: "考虑随机特性的微电网电源优化配置", 《电力系统及其自动化学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449982A (en) * 2018-12-07 2019-03-08 国网山西省电力公司临汾供电公司 The operation and maintenance method of power distribution network containing multiple photovoltaic micros
CN111682530A (en) * 2020-06-11 2020-09-18 广东电网有限责任公司韶关供电局 Method, device, equipment and medium for determining out-of-limit probability of voltage of power distribution network
CN111682530B (en) * 2020-06-11 2022-06-28 广东电网有限责任公司韶关供电局 Method, device, equipment and medium for determining out-of-limit probability of voltage of power distribution network

Also Published As

Publication number Publication date
CN106684854B (en) 2019-04-19

Similar Documents

Publication Publication Date Title
CN110969347B (en) A Method for Structural Form Evaluation of Transmission Network
CN105449713B (en) Consider the intelligent Sofe Switch planing method of active power distribution network of distributed power source characteristic
CN103855707B (en) Power supply reliability assessment method for power distribution network with distributed power supply
Rahmatian et al. Transient stability assessment via decision trees and multivariate adaptive regression splines
CN107612016B (en) Planning method of distributed power supply in power distribution network based on maximum voltage correlation entropy
CN106655177B (en) Distributed power supply maximum access capacity calculation method based on extended second-order cone programming
CN104504607A (en) Method for diagnosing photovoltaic power station faults on the basis of fuzzy clustering algorithm
CN104133143B (en) A kind of Guangdong power system diagnostic system and method calculating platform based on Hadoop cloud
CN105069236B (en) Consider the broad sense load joint probability modeling method of wind power plant node space correlation
CN105260952A (en) Markov chain Monte Carlo method-based photovoltaic power station reliability evaluation method
CN108074038A (en) A kind of power generation analogy method for considering regenerative resource and load multi-space distribution character
CN104113061B (en) A kind of distribution network three-phase power flow method containing distributed power source
CN106779277A (en) The classification appraisal procedure and device of a kind of distribution network loss
CN105610192A (en) On-line risk assessment method considering large-scale wind power integration
CN105656036B (en) Consider trend and the probability static security analysis method of sensitivity uniformity equivalence
CN111079972A (en) Method, device and medium for planning reliability of active power distribution network
CN103824124B (en) A kind of energy potential evaluation method for grid company
CN106058863A (en) Random optimal trend calculation method based on random response surface method
CN107730153A (en) A kind of power network topology dynamic analysing method based on improvement incidence matrix
Ni et al. A review of line loss analysis of the low-voltage distribution system
CN116361603A (en) A Calculation Method of Carbon Emission Flow in Electric Power System
CN110571788A (en) Calculation Method of Boundary Coefficient of Static Voltage Stability Region Based on Dynamic Equivalent Circuit
CN106684854A (en) A risk analysis method for active distribution network voltage crossing limit based on node equivalence
Wang et al. Analysis of network loss energy measurement based on machine learning
CN118229087A (en) Key transmission section search method and system based on standard cutting and safety risk

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant