CN106684181A - p-型太阳能电池及其制备方法 - Google Patents

p-型太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106684181A
CN106684181A CN201610105104.8A CN201610105104A CN106684181A CN 106684181 A CN106684181 A CN 106684181A CN 201610105104 A CN201610105104 A CN 201610105104A CN 106684181 A CN106684181 A CN 106684181A
Authority
CN
China
Prior art keywords
layer
type
cadmium sulfide
solar cell
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610105104.8A
Other languages
English (en)
Inventor
K·W·布尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN106684181A publication Critical patent/CN106684181A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供了一种具有层叠结构(10)的p‑型太阳能电池,其中该层叠结构包括背电极(14)、置于背电极(14)上的p‑型半导体吸收层(11)、置于吸收层(11)上的结晶硫化镉层(12)、置于所述层叠结构(10)上与背电极(14)相对的另一侧的前电极(15)。本发明还提供了一种p‑型太阳能电池的制备方法,包括:提供p‑型光敏半导体吸收层(11);刻蚀吸收层(11)的表面减少结晶的不均匀性和针孔;在吸收层(11)上沉积层厚范围为的硫化镉层(12);至少对硫化镉层(12)进行加热以使硫化镉层重结晶;以及,在刻蚀后或施加硫化镉层(12)后,选择性地将不同于硫化镉层的含铜层置于吸收层(11)上。

Description

p-型太阳能电池及其制备方法
技术领域
本发明涉及一种p-型太阳能电池及其产品的制备方法,该电池具有层叠结构,该层叠结构包括背电极、置于该背电极上的p-型半导体吸收层、置于该吸收层上的铜掺杂硫化镉(Cds)层,以及置于层叠结构远离背电极一侧的前电极。
背景技术
高效太阳能电池板通常是p-n型电池,p-n型电池能够将电荷载流子分离并引导被分离的电荷载流子到电极,以便产生光-电压和光-电流。此外,曾有人尝试提出用肖特基势垒来替代p-n结。太阳能电池需要通过回火来获得更高的效率,因此造成靠近肖特基势垒的薄n-层成为掺杂的n-型,因而有效地产生p-n结,而使得这种尝试总是失败。
因此,本发明的目的在于避免或减少现有技术的缺陷,特别是提供一种具有改进的电气参数的p-型太阳能电池。
发明内容
上述目的是通过具有独立权利要求限定特征的p-型太阳能电池以及制备这种p-型太阳能电池的方法来实现的。因此,本发明的第一方面涉及一种具有层叠结构的p-型太阳能电池,所述层叠结构包括:
--背电极,
--置于该背电极上的p-型半导体吸收层,
--置于该吸收层上的铜掺杂硫化镉(CdS)层,
--置于层叠结构的远离背电极一侧的前电极。依据本发明,CdS层是铜掺杂的,且层厚范围为(埃格斯特朗)。
令人惊奇的是,据观察,根据本发明的太阳能电池中的p-n结可以被消除,这是因为根据本发明由于薄的铜掺杂硫化镉CdS层使得与电极的直接连接成为可能,由于其内部的高场畴区(high-field domain),铜掺杂硫化镉CdS层已经成为p-型导电。由于极为贴近电极,这个高场畴区有漂移电导性(drift conductivity)且是空间电荷自由的——具有1010cm-3数量级的空穴浓度,其中空穴由光产生,可以自由地通过隧道进入高场畴区中而没有进一步的能量损失。
根据本发明的硫化镉CdS层以优化方式实现吸收层与前电极之间的电化学连接。与现有技术的电池相比,本发明具有特殊的优势,即开路电压Voc增加了,因为高场畴区限制电场远低于100kV/cm,换句话说,高场畴区远低于隧道场强度,通常导致泄露电流通过二极管而降低场域。
在高场畴区中,电荷载流子的密度是1010cm-3,导致德拜长度大于30μm,因此明显大于硫化镉CdS层的厚度。这也意味着硫化镉CdS实现串联电阻的作用且必须因此而保持是薄的。层厚是太薄的层与太厚的层之间的一种折中,太薄的层容易出现所谓的针孔(pinhole),太厚的层则在每增加硫化镉厚度的同时开路电压会损失0.05V。在层厚为时,理论上可实现的开路电压下的不可避免的损失为0.15V。然而,根据本发明,对于许多p-型太阳能电池而言,开路电压高达1V,大于未掺杂铜的硫化镉层。
因此,本发明涉及一种薄的铜掺杂硫化镉层,可以应用于任何p-型太阳能电池中,并且将铜掺杂硫化镉层与阻碍电子的电极直接相连,从而避免了通常导致开路电压损失并降低场域的p-n结。
例如,厚度为的铜掺杂硫化镉CdS层可以将碲化镉CdTe电池的开路电压从0.4V提高至0.8V。薄层可以产生开路电压的额外增加,薄层的厚度每减少开路电压增加0.05V。
由于提供太阳能的p-型太阳能电池限制空穴的补充,铜掺杂硫化镉层是稳定的p-型。铜掺杂硫化镉CdS层中的p-型状态由高场畴区产生,它附着于太阳能电池的p-型边界线并延伸贴近前电极,前电极的空穴电流通过隧道进行传导,这样阻止了额外的损失。远大于硫化镉CdS层厚度的德拜长度使得与前电极的直接接触成为可能。
薄层太阳能组件的典型效率至多为18%。可以预期,这种效率可以增加到超过大约22%。此时,除了具有其他类型吸收体的碲化镉CdTe电池,比如α-Si,或者CIS的各种同系物[黄铜矿;铜铟(镓)硫/硒],电池被提供具有这种铜掺杂硫化镉CdS薄层,因此防止了产生损失的p-n结。
因此,根据本发明的p-型太阳能电池的优点在于,特别是开路电压Voc的增加,而仅仅增加些微的串联电阻Rs。在根据本发明的p-型太阳能电池中,由于避免了传统的p-n结,促进了电荷载流子在吸收层与电极之间的传递,特别是在界面上的传递,并减少了再结合。结果证明,p-型铜掺杂硫化镉CdS层与减少的硫化镉CdS层(其厚度值低于尤其是低于最佳厚度是)的结合,改善了根据本发明的薄层太阳能电池的性能参数。
发现的高场畴区是一个方向垂直于等距电流线的场结构。它们出现于一个材料的传导性陡降而非线性的过程。为了关于高场畴区的进一步讨论,所参考的文献是Annals of Physics 2015(Ann.Phys.(Berlin)527,No.5-6,378-395(2015))的专栏文章,在此并入一并参考。
常见的薄层材料,例如铜铟硒CIS,α-硅和碲化镉CdTe,它们被用做吸收材料。
硫化镉CdS层优选地形成一个结晶的单层。可选地,根据本发明,硫化镉CdS层可以具有多层结构,其中层叠结构中所有硫化镉CdS层的厚度之和为当硫化镉CdS层的层厚低于时,会增加层内转移缺陷的风险,如针孔。为了防止层内产生针孔并保持层的串联电阻尽可能小(硫化镉CdS层的厚度每增加开路电压就会降低0.05V),铜掺杂硫化镉CdS层的厚度范围为特别是
在本发明的优选实施例中,硫化镉CdS层的层厚范围为特别是特别优选为硫化镉CdS层的层厚显示了减少例如由无覆盖针孔引起短路电路与提升由于高场畴区的影响的电池的电气性能之间渐增的优化关系。
在本发明的另一优选实施例中,硫化镉CdS层的掺杂比例范围为30-80ppm,优选为40-80ppm,特别为60ppm。掺杂是一个影响硫化镉层p-型或n-型性质的基本因素,掺杂的电池会表现最好的参数特性,特别是连同考虑硫化镉CdS层厚度。在一具体优选实施例中,掺杂物包含过渡金属族元素,特别是铜、银或金。最佳掺杂物是铜。当掺杂时,特别是铜掺杂时,最佳应在60ppm的范围内,以促进高场畴区和p-型发射器连接处的界面溶解。然而,根据本发明,硫化镉CdS层掺杂比例在30-100ppm的宽公差范围之间仍可工作。
本发明的另一方面是一种生产根据本发明的p-型太阳能电池的方法。所述方法包括至少以下步骤,以所列出的顺序或相反的顺序。首先,提供p-型光敏半导体吸收层。然后,刻蚀吸收层的表面以减少结晶不均匀。接着,硫化镉层被更均匀地施加且具有更少的针孔。在将硫化镉层以层厚范围施加于吸收层上之后,用加热方法来进行重结晶步骤。可选地,在吸收层上刻蚀完后,施加含铜的硫化镉CdS层。
另外,前电极和背电极都排布在层叠结构上。为此目的,根据其是否为基板或覆盖结构,从前电极开始,硫化镉层与其相连接,或者与面向吸收层的背电极相连接。
为了防止薄的(铜)掺杂硫化镉层的缺陷,根据本发明,对发射器的背面层进行浅蚀,以使表面平滑,特别是减少针孔,因此使得施加的硫化镉层更加均匀。
在一个优选实施例中,刻蚀是通过由盐酸和一种溶剂(特别是丙三醇)组成的刻蚀溶液进行的。重要的是,酸不能具有太高的浓度和侵蚀性,因为这样会使现有针孔增大并产生不期望的粗糙表面。
硫化镉CdS层可以采用常用方法施敷,比如气相沉积法、喷雾法、电化学法、喷溅涂覆法等等,但是优选的是不会损坏发射器表面的方法,也就是,以与发射器的兼容性相适应的略高温度下的真空蒸发法。有利的,硫化镉CdS层因此可以通过气相沉积法将硫化镉相沉积在吸收层上。
此外,优选地,在施敷硫化镉CdS层的同时对硫化镉CdS层进行掺杂,和/或从紧邻硫化镉CdS层的层通过掺杂物的扩散作用对硫化镉CdS层进行掺杂。具体而言,所述紧邻硫化镉CdS层的层为吸收层或者助剂。掺杂的有利影响已被描述。优选地,氯化镉CdCl2被用作助剂。
具体的优点是,在气相沉积完成后,整个太阳能电池重结晶,最好的方式是通过薄的氯化镉CdCl2层(助剂)发起。这种助剂一般包含足够的铜杂质以满足硫化镉CdS层的掺杂。
与硫化镉CdS相连的电极结构取决于所需的太阳能电池(前膜光电池或后膜光电池)的类型,它可以是透明的或者金属不透明的,并且可以阻碍电子。然而,这与在任何情况下通过隧道进行空穴传输无关。
以常规方式施敷吸收层,也就是说,对于碲化镉吸收层而言例如通过气相沉积,对于铜铟硒CIS吸收层而言例如通过溅射。
将吸收层和硫化镉CdS层连接后,优选在准备后接触点之前对太阳能电池进行热处理,优选在含氯气氛下。经过这种活化作用,太阳能电池的性能(VOC,JSC,FF)得到更多的提高。
在本发明的具体优选实施例中,加热温度范围为300-500℃,特别是300-400℃,优选350℃。之前沉积的硫化镉CdS在这些温度范围内会重结晶。宏观晶界的相关减少,降低了重组影响,特别是提高了电池的填充因子。
特别有利的是,持续加热的时间范围为0.5-4小时,特别是0.5-2小时,优选1个小时。有利地,这个处理步骤使用CdCl2作为助剂完成,然后,例如,将该助剂施加于层叠结构。或者,加热是在CdCl2气氛下,如在退火炉中。
可选地,在根据本发明的p-型太阳能电池中,任何其他的n-型吸收体材料(AB),特别是硫族类化合物,可以被用于代替硫化镉CdS。正如之前所描述硫化镉CdS的实例方式,n-型吸收体材料被掺杂上述掺杂物之一,其效果是在吸收体材料AB中形成具有上述优点的高场畴区。
正如所描述的硫化镉CdS的例子,例如以上述方式,在具有n-型吸收体材料(AB),特别是硫族类化合物,的p-型太阳能电池中进行浅刻蚀。
p-型太阳能电池及其制备方法的实施例也都适用于其他n-型吸收体材料(AB),特别是硫族类化合物。
优选地,被认为是好的空穴陷阱的掺杂物被选择用来掺杂n-型吸收体材料。具体包括,被称作双库仑引力陷阱(double-Coulomb-Attractivetraps)。因此特别优选过渡族金属元素,比如银、金或铜。对于前述加热处理,依据在n-型吸收体中掺杂物的特定饱和度在n-型吸收体中添加掺杂物,所以至少可以获得近似均匀分布的掺杂物原子,其距离在范围内。
本发明中的进一步优选实施例将由从属权利要求所限定的特征表述。
在本申请中提及的本发明的不同实施例能够有利地相互结合,除非被注明为单独案例。
附图说明
以下将参照附图所示的示例性实施例对本发明进行描述。其中:
图1:根据本发明优选实施例的层叠结构的示意图,
图2:根据本发明优选实施例的通过形成高场畴区的吸收层与p-掺杂硫化镉CdS层之间的界面的能带结构图。
附图标记
10 层叠结构
11 吸收层
12 具有高场畴区的硫化镉CdS层
14 背电极
15 前电极
具体实施方式
图1示出了根据本发明优选实施例的层叠结构10的示意图。所示为基本形式的层序列的原理结构。
层叠结构10包括背电极14,在背电极14上排列着导电性的吸收层11。吸收层11包括呈现内部光效应的半导体材料,比如碲化镉CdTe。或者,吸收体材料可以包括来自铜铟硒CIS吸收体[铜铟(镓)-硫化物(硒化物)]族的半导体材料。
铜掺杂硫化镉CdS层12置于吸收层11远离背电极14的一侧。硫化镉CdS层12的层厚范围为优选范围为特别是硫化镉CdS层12也是p-掺杂的,且优选的掺杂物是铜。掺杂物的浓度范围为30-90ppm,优选的浓度范围是40-80ppm,特别为60ppm。掺杂浓度相对于与层边界平行的平面尽可能均匀的分布在硫化镉CdS层12中。掺杂浓度也可以相对于硫化镉CdS层12的层厚均匀分布;或者在一个优选实施例中掺杂浓度可以呈现为梯度形式,在这种情况下,掺杂浓度从吸收层11与硫化镉CdS层12之间的界面开始减少。
硫化镉CdS层12是结晶状态,也就是说,优选为晶态,优选以微观晶粒或宏观晶粒的形式存在。
高场畴区形成于硫化镉CdS层12中。根据硫化镉CdS层的层厚、掺杂度和结晶度,高场畴区不仅贯穿硫化镉CdS层,还会超出其层厚。
层叠结构10是光电薄层电池的一部分,通常是封装且连接的(未示出)。该功能的结果特别是来自于吸收体材料的内部光电效应。当光入射,由于光激发的在空间电荷区内(也就是p/n结内)产生的电荷载流子的分离,在吸收层11中产生光电流。激发的电荷载流子由电极带走,所述电极与吸收体材料导电连接。电池的发明设计,特别是吸收层11与硫化镉CdS层12之间的传导的优化,可以尽可能地利用产生的电荷载流子,也就是说,最大程度地获得电池的理论效率。结果证明,由于硫化镉CdS层12的p-型特性而最大程度地实现效果。这个层具有空间电荷自由的高场畴区,其中自由电荷载流子(空穴)的密度达到1010cm-3
因此,根据本发明的电池具有一个高的开路电压Voc,以及些微增加的串联电阻。
这种电池可以根据本发明的方法生产。
优选示例性实施例:
在一个具体优选示例性实施例中,根据本发明,p-型太阳能电池具有碲化镉CdTe吸收层,其层厚在1.5-5μm,优选为2μm。铜掺杂硫化镉CdS层置于吸收层的表面并与前电极相对,硫化镉CdS层的掺杂浓度的范围为30-90ppm,尤其是掺杂60ppm的铜Cu。硫化镉CdS层的层厚为优选为
根据优选示例性实施例,如图2所示的能带结构可被确定用于p-型太阳能电池。示出了在吸收层/硫化镉CdS层区域中电池的导带和价带。
所使用的碲化镉CdTe吸收体材料在温度为0K时,其带隙为1.45eV,其光电流具有26mA/cm2的短路电流密度,其电场为100kV/cm。确定空穴密度p(CdS)为5.1·1010cm-3,导致硫化镉CdS中价带和导带之间的带跃阶(band discontinuity)为EFp-Ev=0.48eV。吸收层的空穴密度在界面区域受扩散限制。在所述的优选实施例中,碲化镉的空穴密度p(CdTe)为1.25·1010cm-3,碲化镉CdTe/硫化镉CdS界面处的带跃阶为EFp-Ev=0.54eV。基于以上值,确定德拜长度LD为15,000μm。这是基于以下德拜长度的计算公式:
(通式)
得到
这意味着,相对于整个层厚而言,根据本发明的薄层电池中的具有非常小的硫化镉CdS层厚的区域在CdS层中是恒定的。金属费米等级的不连续性非常小,以至于自由电荷载流子p可以穿过结而不经历明显的电流损耗。

Claims (18)

1.一种具有层叠结构(10)的p-型太阳能电池,其中所述层叠结构(10)包括:
背电极(14),
置于所述背电极(14)上的p-型半导体吸收层(11),
置于所述吸收层(11)上的结晶n-型连接体层(12),
置于所述层叠结构(10)上与所述背电极(14)相对的另一侧的前电极(15),
其特征在于,所述n-型层(12)包含掺杂物,且层厚范围为
2.如权利要求1所述的p-型太阳能电池,其特征在于,所述n-型层(12)选自硫族化合物的群组,特别是硫化镉。
3.如权利要求1所述的p-型太阳能电池,其特征在于,所述n-型层(12)中掺杂物的掺杂比例范围为30-80ppm,优选为40-80ppm,特别是60ppm。
4.如权利要求1所述的p-型太阳能电池,其特征在于,所述n-型层(12)中掺杂物的元素来自于过渡金属族的群组,特别是选自银、金或铜。
5.一种如任一前述权利要求所述的p-型太阳能电池的制备方法,包括以下步骤:
提供p-型光敏半导体吸收层(11);
刻蚀所述吸收层(11)的表面,以减少结晶的不均匀性和针孔;
在所述p-型吸收层(11)上施加厚度范围为的n-型层(12);
至少为所述n-型层(12)加热,以便重结晶所述n-型层(12);以及
在刻蚀后或施加n-型层(12)后,选择性地将不同于所述n-型层的含掺杂物的一层置在所述吸收层(11)上。
6.如权利要求5所述的制备方法,其特征在于,所述n-型层(12)是通过气相沉积法沉积在所述吸收层(11)上。
7.如权利要求5所述的制备方法,其特征在于,通过使用刻蚀溶液来完成刻蚀,所述刻蚀溶液包含盐酸和一种溶剂,特别是丙三醇。
8.如权利要求5所述的制备方法,其特征在于,加热温度至少是350℃,特别是350-500℃,优选是350-450℃。
9.如权利要求5所述的制备方法,其特征在于,加热的时间为0.5-4小时,特别是0.5-2小时。
10.一种具有层叠结构(10)的p-型太阳能电池,其中所述层叠结构(10)包括:
背电极(14),
置于所述背电极(14)上的p-型半导体吸收层(11),
置于所述吸收层(11)上的结晶硫化镉层(12),
置于所述层叠结构(10)上与所述背电极(14)相对的另一侧的前电极(15),
其特征在于,所述硫化镉层(12)是铜掺杂的,且层厚范围为
11.如权利要求10所述的p-型太阳能电池,其特征在于,所述硫化镉层(12)的层厚范围为特别是优选是
12.如权利要求10所述的p-型太阳能电池,其特征在于,所述硫化镉层(12)的掺杂物的掺杂比例范围为30-80ppm,优选为40-80ppm,特别是60ppm。
13.如权利要求10所述的p-型太阳能电池,其特征在于,所述硫化镉层(12)的掺杂物是铜。
14.一种生产如权利要求10所述的p-型太阳能电池的方法,包括以下步骤:
提供p-型光敏半导体吸收层(11),
刻蚀所述吸收层(11)的表面,以减少结晶的不均匀性和针孔,
在所述吸收层(11)上沉积层厚范围为的硫化镉层(12),
至少对所述硫化镉层进行加热,以使所述硫化镉层(12)重结晶,以及
在刻蚀后或施加所述硫化镉层(12)后,选择性地将不同于所述硫化镉层的含铜层置于所述吸收层(11)上。
15.如权利要求14所述的方法,其特征在于,通过气相沉积法将所述硫化镉层(12)施加于所述吸收层(11)上。
16.如权利要求14所述的方法,其特征在于,通过使用含盐酸及溶剂的刻蚀溶液进行刻蚀,该溶剂具体是丙三醇。
17.如权利要求14所述的方法,其特征在于,加热的温度至少是350℃,特别是350-500℃,优选是350-450℃。
18.如权利要求书14所述的方法,其特征在于,加热的持续时间为0.5-4小时,特别是0.5-2小时。
CN201610105104.8A 2015-11-11 2016-02-25 p-型太阳能电池及其制备方法 Pending CN106684181A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015119489.9 2015-11-11
DE102015119489 2015-11-11

Publications (1)

Publication Number Publication Date
CN106684181A true CN106684181A (zh) 2017-05-17

Family

ID=58663836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610105104.8A Pending CN106684181A (zh) 2015-11-11 2016-02-25 p-型太阳能电池及其制备方法

Country Status (2)

Country Link
US (1) US20170133540A1 (zh)
CN (1) CN106684181A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010115949A2 (en) * 2009-04-09 2010-10-14 Von Roll Solar Ag High efficiency photovoltaic device, photovoltaic panel and manufacturing method thereof
US20120322198A1 (en) * 2011-06-17 2012-12-20 Kobyakov Pavel S METHODS FOR SUBLIMATION OF Mg AND INCORPORATION INTO CdTe FILMS TO FORM TERNARY COMPOSITIONS
US20150221812A1 (en) * 2014-02-06 2015-08-06 Alliance For Sustainable Energy, Llc SURFACE PASSIVATION FOR CdTe DEVICES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010115949A2 (en) * 2009-04-09 2010-10-14 Von Roll Solar Ag High efficiency photovoltaic device, photovoltaic panel and manufacturing method thereof
US20120322198A1 (en) * 2011-06-17 2012-12-20 Kobyakov Pavel S METHODS FOR SUBLIMATION OF Mg AND INCORPORATION INTO CdTe FILMS TO FORM TERNARY COMPOSITIONS
US20150221812A1 (en) * 2014-02-06 2015-08-06 Alliance For Sustainable Energy, Llc SURFACE PASSIVATION FOR CdTe DEVICES

Also Published As

Publication number Publication date
US20170133540A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
Fang et al. Perovskite-based tandem solar cells
TWI631721B (zh) 高效率堆疊太陽電池
US20170271622A1 (en) High efficiency thin film tandem solar cells and other semiconductor devices
US20160276506A1 (en) Solar cell
US11616160B2 (en) Tandem solar cell
JP2011061197A (ja) 太陽電池およびその製造方法
US20180151771A1 (en) Multi-junction solar cell
US20100218820A1 (en) Solar cell and method of fabricating the same
US20150228918A1 (en) Solar cell
JP6463937B2 (ja) 光電変換素子、及び、光電変換素子の製造方法
CN113571594B (zh) 铜铟镓硒电池及其制造方法
CN107112377A (zh) 用于薄膜太阳能电池的层结构和制造方法
US20120145232A1 (en) Solar cell having improved rear contact
CN106684181A (zh) p-型太阳能电池及其制备方法
KR20160111623A (ko) 태양 전지
KR101898858B1 (ko) 태양 전지
Dang et al. Wide spectral response and ambient air-stable nanowire window-absorber type solar cells
US20170133541A1 (en) P-Type Solar Cell and the Production Thereof
CN113013340B (zh) 一种异质结太阳能电池及其制造方法
US20160240700A1 (en) Solar Battery
TWI464889B (zh) 具異質介面之太陽能電池及其製造方法
KR101470061B1 (ko) 태양전지 및 이의 제조방법
JP3397213B2 (ja) 太陽電池
DE102012022745B4 (de) Tandem-Dünnschicht-Solarzelle
CN114512559A (zh) 一种柔性大面积叠层太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170517