CN106679555A - 一种矿热炉电极位置测量装置及方法 - Google Patents

一种矿热炉电极位置测量装置及方法 Download PDF

Info

Publication number
CN106679555A
CN106679555A CN201710071904.7A CN201710071904A CN106679555A CN 106679555 A CN106679555 A CN 106679555A CN 201710071904 A CN201710071904 A CN 201710071904A CN 106679555 A CN106679555 A CN 106679555A
Authority
CN
China
Prior art keywords
electrode
magnetic field
field sensor
furnace
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710071904.7A
Other languages
English (en)
Other versions
CN106679555B (zh
Inventor
张保成
张宗有
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Firstech Control Energy Technology Co Ltd
Inner Mongolia Erdos Power Metallurgy Group Ltd By Share Ltd
Original Assignee
Qingdao Firstech Control Energy Technology Co Ltd
Inner Mongolia Erdos Power Metallurgy Group Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Firstech Control Energy Technology Co Ltd, Inner Mongolia Erdos Power Metallurgy Group Ltd By Share Ltd filed Critical Qingdao Firstech Control Energy Technology Co Ltd
Priority to CN201710071904.7A priority Critical patent/CN106679555B/zh
Publication of CN106679555A publication Critical patent/CN106679555A/zh
Application granted granted Critical
Publication of CN106679555B publication Critical patent/CN106679555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Discharge Heating (AREA)

Abstract

本发明涉及直接位置测量技术领域,公开了一种矿热炉电极位置测量装置及方法。所述装置包括设置在矿热炉炉壁上的至少一个磁场传感器、电极电流测量组件、与所述磁场传感器和电极电流测量组件分别连接的数据采集处理器以及与数据采集处理器连接的控制器。本发明矿热炉电极测量装置及方法,通过在矿热炉的炉壁上设置磁场传感器,磁场传感器可以对矿热炉内电极电流的瞬时磁场强度进行测量,从而可以根据实时工况的电极电流磁场强度推算出电极的具体位置。

Description

一种矿热炉电极位置测量装置及方法
技术领域
本发明涉及直接位置测量技术领域,尤其涉及一种矿热炉电极位置测量装置及方法。
背景技术
矿热炉是一种功率高达数万千瓦的工业矿热炉,其工作的安全性、稳定性、能耗水平都取决于矿热炉电极在炉内的工作位置。矿热炉工作在电弧条件下,坩埚区温度很高,加上炉料为多种固体矿物混合而成,界面不固定,且目前世界各国的矿热炉都没有电极位置直接测量装置,因此矿热炉操作一直都是通过经验来判断电极的工作位置,经常出现由于判断失误造成事故发生或能耗过高的现象。
针对主观判断失误的情况,一些国家的矿热炉采用埋在炉墙中的热电偶测量矿热炉温度场的方式,描述矿热炉内温度分布,但是由于温度从电极传导到炉墙中部隔着碳砖及保温耐材,热惯性大,所以热电偶测量的温度分布难以反映矿热炉瞬时工况;加上矿热炉电极电弧较长,更加难以反映电极的实际工作长度,所以还是无法实现精准控炉。
发明内容
(一)要解决的技术问题
本发明提供一种矿热炉电极测量装置及方法,以解决现有矿热炉电极难以精准定位的问题。
(二)技术方案
为了解决上述技术问题,本发明提供了一种矿热炉电极位置测量装置,包括与电极连接的电极电流测量组件、设置在矿热炉炉壁外侧面上的至少一个磁场传感器、与所述磁场传感器和所述电极电流测量组件分别连接的数据采集处理器以及与所述数据采集处理器连接的控制器;
其中,所述磁场传感器的数量与电极的相数一致,所述电极电流测量组件能够分别测量每相电极的电流值,所述控制器接收所述数据采集处理器采集处理的所述磁场传感器测量的磁场强度值以及所述电极电流测量组件的测量值并计算每相电极的位置。
进一步地,所述矿热炉内设置有三相电极,所述磁场传感器包括三个,每个磁场传感器分别设置在靠近所述矿热炉的炉壁到其中一相电极最短距离的位置,且所述磁场传感器与所述电极一一对应设置;
或每个磁场传感器分别正对所述矿热炉的炉壁到其中一相电极最短距离的位置设置,且所述磁场传感器与所述电极一一对应设置。
进一步地,所述矿热炉为圆形,每个磁场传感器偏离炉壁到其对应的电极距离最短的位置的方向相同且角度相同。
进一步地,所述磁场传感器设置在所述矿热炉的炉壁靠近底部的位置。
进一步地,所述电极电流测量组件为电流传感器,
或所述电极电流测量组件包括功率传感器以及二次电压测量组件,所述二次电压测量组件包括电压互感器以及与所述电压互感器连接的电压传感器。
进一步地,还包括测量冶炼物料的深度、电极顶端到炉底的长度、以及磁场传感器与电极中心轴线水平长度的距离测量组件。
进一步地,所述磁场传感器为双向磁场传感器。
作为本发明的另一方面,为解决上述问题,本发明提供一种矿热炉电极位置测量方法,包括如上述所述的矿热炉电极位置测量装置,具体方法为:测量电极顶端至炉底的距离H、冶炼物料的深度HL、磁场传感器到该相电极中心轴线的水平距离R、电极电流测量组件测量该相电极的电机电流I,获取该相电极电流产生的水平磁场强度B,控制器根据
求解LX,再根据
HX=HL+LX-H
求解电极的入料深度HX,其中,LX为电极长度,μ0为真空磁导率,α为电极最低点与磁场传感器的连线与水平面形成的夹角,β是电极最高点与磁场传感器的连线与水平面形成的夹角。
进一步地,磁热炉内只有一相电极,所述该相电极电流产生的水平磁场强度B等于磁场传感器直接测量的磁场强度Ba
所述磁热炉内设置至少两相电极,所述该相电极电流产生的水平磁场强度B=k*Ba,
其中,k为修正系数,Ba为所述磁场传感器直接测量的磁场强度。
进一步地,修正系数k的获得方法为:将已知长度为L0的电极放置在待测量电极工作时所处的矿热炉内的位置处,将已知长度的电极通电后记录电流测量组件测量的已知长度电极的电流值I0以及磁场传感器测量的已知长度电极在该处的磁场强度B0,将已知电极长度L0、I0带入下述公式,
求得该已知长度电极产生的磁场强度B',再根据
B'=k*B0
求得修正常数k,其中,H0为已知长度电极顶端至炉底的距离、μ0为真空磁导率,R0为磁场传感器到已知长度电极中心轴线的水平距离,α0为已知长度电极最低点与磁场传感器的连线与水平面形成的夹角,β0是已知长度电极最高点与磁场传感器的连线与水平面形成的夹角。
(三)有益效果
本发明的上述技术方案具有如下优点:本发明矿热炉电极测量装置及方法,由于矿热炉炉壳的钢板无法屏蔽掉矿热炉电极电流的磁力场,所以通过在矿热炉的炉壁上设置磁场传感器,通过磁场传感器对矿热炉磁场强度的测量,可以瞬时反映电极电流磁场的工况,从而可以根据实时工况的电极电流磁场推算出电极的具体位置。
除了上面所描述的本发明解决的技术问题、构成的技术方案的技术特征以及有这些技术方案的技术特征所带来的优点之外,本发明的其他技术特征及这些技术特征带来的优点,将结合附图作出进一步说明。
附图说明
图1是本发明实施例1矿热炉电极位置测量装置的示意图
图2是本发明实施例1矿热炉电极位置测量装置的矿热炉内电极安装的剖视示意图;
图3是本发明实施例1矿热炉电极位置测量装置的磁场传感器的安装俯视示意图;
图4是本发明实施例2矿热炉电极位置测量方法的计算原理图。
图中:1:矿热炉,2:电极,21:第一电极,22:第二电极,23:第三电极;3:磁场传感器,31:第一磁场传感器,32:第二磁场传感器,33:第三磁场传感器;4:电极电流测量组件;5:二次电压测量组件;6:数据采集处理器;7:控制器;8:炉料。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,在本发明的描述中,除非另有说明,“多个”、“多根”、“多组”的含义是两个或两个以上,“若干个”、“若干根”、“若干组”的含义是一个或一个以上。
如图1所示,本发明实施例提供的矿热炉电极位置测量装置,包括控制器7、数据采集处理器6、磁场传感器3以及电极电流测量组件4。
如图3所示,所述磁场传感器3安装在所述矿热炉1的炉壁的外侧面上,且所述磁场传感器3的数量与矿热炉1内电极2的数量一致;所述数据采集处理器6与所述磁场传感器3、电极电流测量组件4分别连接,并将采集到的所述磁场传感器3测量的磁场值以及所述电极电流测量组件4的测量值处理后输送给控制器7;所述控制器7根据磁场传感器测量的磁场值以及电极电流测量组件4的测量值以及矿热炉1的尺寸等计算电极的位置。
在实际过程中,电极2在矿热炉1内的水平安装位置是确定的,唯一不能确定的是电极2的入料深度,而电极2的入料深度是电极在矿热炉1内工作的重要参数。本实施例矿热炉电极位置测量装置利用矿热炉1炉壳的钢板无法屏蔽掉矿热炉的电极电流的磁力线的性质,通过磁场传感器3对矿热炉1的磁场进行测量,从而获取瞬时的电极电流磁场的工况,并通过控制器7计算出此时电极2的入料深度,解决了现有技术电极2入料深度不能实时测量以及推算存在误判的问题,能够准确判定电极电流在矿热炉内的分布,为电机操控提供了准确数据。
如图2现有技术中,通常采用的是圆形的矿热炉1,其内通过三根碳素电极2通入数万安培电流对炉料8加热,使炉料8在高温下反应得到所需的产品。对应三根电极2的形式,本实施例矿热炉电极位置测量装置的磁场传感器也设置有三个,作为优选方案,每个磁场传感器3对应设置在炉壁距离其中一相电极2最短距离的位置上,也即三个磁场传感器分别对应设置在了三个电极到炉壁最短距离的炉壁位置点上。
需要说明的是,每相电极2与炉壁间存在最短距离,一般情况下,三相电极2是设置在以矿热炉的中心为圆心的同一圆上,所以炉壁到每相电极2最短的距离的位置应该是矿热炉1的中心与该相电极水平连线的延长线与炉壁的交点位置。
由于在实际应用中,往往存在矿热炉1的中心与该相电极2水平连线的延长线与炉壁的交点位置设置的是出铁口,所以为了满足这种情况下磁场传感器3的设置,可以将每个磁场传感器3分别设置在靠近所述矿热炉的炉壁距离其中一相电极最短距离的位置,且每个磁场传感器3偏离炉壁到其对应的电极距离最短的位置的方向相同且角度相同,也即三个磁场传感器与其对应的电极的相对位置是相同的。
作为一种实现方式,所述磁场传感器3设置在所述矿热炉1的炉壁靠近底部的位置。由于电极2的工作区域是在炉料内部,这样的设置方式,既可以保证磁场传感器3的测量位置点能够准确的测量到电极电流的磁场,同时也可以避免磁场传感器3的设置对其他设备或者电磁炉的有关操作造成影响。
本实施例矿热炉电极位置测量装置的电极电流测量组件4,既可以是直接测量所述电极电流测量的电流传感器;也可以通过功率传感器以及二次电压测量组件5测量,所述二次电压测量组件5包括电压互感器以及与所述电压互感器连接的电压传感器,采用该种方式需要通过控制器7根据功率数值以及电压数值间接换算得到电极电流值。
需要说明的是,本实施例矿热炉电极位置测量装置在具体的测算过程还需要测量电极顶端至炉底距离、冶炼物料深度以及磁场传感器距离电极中心轴线水平距离的距离测量组件完成相关数据的测量,所述距离测量组件测量的相关数据可以通过数据采集器6传输给控制器7,也可以是物理测量完成后采用手动的方式输入到控制器7中。
作为一种优选的方案,所述磁场传感器3为双向磁场传感器,也即本实施例采用的磁场传感器3是能够测量两个方向磁场的磁场强度的传感器,这样交流电在变化过程中,磁场传感器均能够实时检测磁场强度。
实施例2
本实施例提供一种矿热炉电极位置测量方法,该方法是针对上述实施例的矿热炉电极位置测量装置而实现的。
具体过程如下:
测量电极顶端至炉底距离H、冶炼物料深度HL、磁场传感器距离该相电极中心轴线的水平距离R、电极电流测量组件测量该相电极电流I,获取该相电极电流产生的水平磁场强度B,控制器根据
求解LX
其中LX为电极长度,μ0为真空磁导率,α为电极最低点与磁场传感器的连线与水平面形成的夹角,β是电极最高点与磁场传感器的连线与水平面形成的夹角。
需要说明的是,电极顶端至炉底距离H、磁场传感器距离该相电极中心轴线的水平距离R都可以通过直观的物理测量获得,该相电极电流I可以通过电极电流测量组件直接或间接获得,所以只存在LX一个未知参数,这样控制器可以通过上述三个公式以及相应直接获得和间接获得的已知参数采用迭代法求解算出电极长度LX
如图4所示,获得LX后,根据HX=HL+LX-H即可求得电极的入料深度HX。其中,冶炼物料深度HL也是可以通过直观的物理测量获得的参数。
需要说明的是,上述公式
中的水平磁场强度指的是该相电极的竖直电流产生的y轴方向的磁场,也即如图2所示,在矿热炉中设置三相电极时,第一电极21的水平磁场强度指的是第一电极电流Ia在其对应的第一磁场传感器31位置产生的y轴方向的磁场强度,第二电极22的水平磁场强度指的是第二电极电流Ib在其对应的第二磁场传感器32位置产生的y轴方向的磁场强度,第三电极23的水平磁场强度指的是第三电极电流Ic在其对应的第三磁场传感器33位置产生的y轴方向的磁场强度。图4中Bz、Bx、By表示的是三维坐标下的磁场方向,y轴方向的磁场强度具体而言为Bz方向的磁场强度。
可以理解的是,所述磁热炉内只有一相电极时,所述该相电极电流产生的水平磁场强度B等于磁场传感器直接测量的磁场强度Ba;所述磁热炉内设置至少两相电极,由于受其他相电流产生的磁场强度的影响,所以待测相电极电流产生的水平磁场强度B是将磁场传感器直接测量的磁场强度Ba修正后获得的,具体修正公式为
B=k*Ba,
其中,k为修正系数,Ba为所述磁场传感器直接测量的磁场强度。
修正系数k的获得方法为:用已知长度为L0的电极放置在待测量电极位置,将已知长度的电极通电后记录电流测量组件测量的已知长度电极的电流值I0以及磁场传感器测量的已知长度电极在该处的磁场强度B0,将已知电极长度L0、I0带入下述公式,
求得该已知长度电极产生的磁场强度B',再根据
B'=k*B0
求得修正常数k,其中,H0为已知长度电极顶端至炉底的距离、μ0为真空磁导率,α0为已知长度电极最低点与磁场传感器的连线与水平面形成的夹角,β0是已知长度电极最高点与磁场传感器的连线与水平面形成的夹角,R0为磁场传感器距离已知长度电极中心轴线的水平距离。
需要说明的是,由于一致长度的电极的设置位置与待测电极的设置位置相同,所以磁场传感器距离已知长度电极中心轴线的水平距离R0与磁场传感器距离待测电极中心轴线的水平距离R相等;已知长度电极顶端至炉底的距离H0、已知长度电极的长度L0均可以通过直接的物理测量获得,这些已知参数可以通过手动的方式输入到控制器计算软件内,从而得到修正参数。
在常用的矿热炉设置三相电极的情况,预先通过控制器计算获得修订参数k,进而在待测电极工作时控制器通过修正公式获得相应的待测电极的电极电流产生的磁场,再根据相关参数计算输出相应的电极入料深度。
综上所述,本实施例矿热炉电极位置测量方法能够实时测算电极入料深度,从而可以准确确定电极电流的料面与矿热炉内的分布,为电极操控提供了准确的数据。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种矿热炉电极位置测量装置,其特征在于:包括与电极连接的电极电流测量组件、设置在矿热炉炉壁外侧面上的至少一个磁场传感器、与所述磁场传感器和所述电极电流测量组件分别连接的数据采集处理器以及与所述数据采集处理器连接的控制器;
其中,所述磁场传感器的数量与电极的相数一致,所述电极电流测量组件能够分别测量每相电极的电流值,所述控制器接收所述数据采集处理器采集处理的所述磁场传感器测量的磁场强度值以及所述电极电流测量组件的测量值并计算每相电极的位置。
2.根据权利要求1所述的矿热炉电极位置测量装置,其特征在于:所述矿热炉内设置有三相电极,所述磁场传感器包括三个,每个磁场传感器分别设置在靠近所述矿热炉的炉壁到其中一相电极最短距离的位置,且所述磁场传感器与所述电极一一对应设置;
或每个磁场传感器分别正对所述矿热炉的炉壁到其中一相电极最短距离的位置设置,且所述磁场传感器与所述电极一一对应设置。
3.根据权利要求2所述的矿热炉电极位置测量装置,其特征在于:所述矿热炉为圆形,每个磁场传感器偏离炉壁到其对应的电极距离最短的位置的方向相同且角度相同。
4.根据权利要求1所述的矿热炉电极位置测量装置,其特征在于:所述磁场传感器设置在所述矿热炉的炉壁靠近底部的位置。
5.根据权利要求1所述的矿热炉电极位置测量装置,其特征在于:所述电极电流测量组件为电流传感器,
或所述电极电流测量组件包括功率传感器以及二次电压测量组件,所述二次电压测量组件包括电压互感器以及与所述电压互感器连接的电压传感器。
6.根据权利要求1所述的矿热炉电极位置测量装置,其特征在于:还包括测量冶炼物料的深度、电极顶端到炉底的长度、以及磁场传感器与电极中心轴线水平长度的距离测量组件。
7.根据权利要求1所述的矿热炉电极位置测量装置,其特征在于:所述磁场传感器为双向磁场传感器。
8.一种矿热炉电极位置测量方法,包括权利要求1-7任一项矿热炉电极位置测量装置,其特征在于:
测量电极顶端至炉底的距离H、冶炼物料的深度HL、磁场传感器到该相电极中心轴线的水平距离R、电极电流测量组件测量该相电极的电机电流I,获取该相电极电流产生的水平磁场强度B,控制器根据
B = μ 0 I 4 π R ( S i n β - sin α )
sin α = H - L X ( H - L X ) 2 + R 2
求解LX,再根据
HX=HL+LX-H
求解电极的入料深度HX,其中,LX为电极长度,μ0为真空磁导率,α为电极最低点与磁场传感器的连线与水平面形成的夹角,β是电极最高点与磁场传感器的连线与水平面形成的夹角。
9.根据权利要求8所述的矿热炉电极位置测量方法,其特征在于:磁热炉内只有一相电极,所述该相电极电流产生的水平磁场强度B等于磁场传感器直接测量的磁场强度Ba
所述磁热炉内设置至少两相电极,所述该相电极电流产生的水平磁场强度B=k*Ba,
其中,k为修正系数,Ba为所述磁场传感器直接测量的磁场强度。
10.根据权利要求9所述的矿热炉电极位置测量方法,其特征在于:修正系数k的获得方法为:将已知长度为L0的电极放置在待测量电极工作时所处的矿热炉内的位置处,将已知长度的电极通电后记录电流测量组件测量的已知长度电极的电流值I0以及磁场传感器测量的已知长度电极在该处的磁场强度B0,将已知电极长度L0、I0带入下述公式,
B ′ = μ 0 I 0 4 πR 0 ( Sinβ 0 - sinα 0 )
sinα 0 = H 0 - L 0 ( H 0 - L 0 ) 2 + R 0 2
求得该已知长度电极产生的磁场强度B',再根据
B'=k*B0
求得修正常数k,其中,H0为已知长度电极顶端至炉底的距离、μ0为真空磁导率,R0为磁场传感器到已知长度电极中心轴线的水平距离,α0为已知长度电极最低点与磁场传感器的连线与水平面形成的夹角,β0是已知长度电极最高点与磁场传感器的连线与水平面形成的夹角。
CN201710071904.7A 2017-02-09 2017-02-09 一种矿热炉电极位置测量装置及方法 Active CN106679555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710071904.7A CN106679555B (zh) 2017-02-09 2017-02-09 一种矿热炉电极位置测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710071904.7A CN106679555B (zh) 2017-02-09 2017-02-09 一种矿热炉电极位置测量装置及方法

Publications (2)

Publication Number Publication Date
CN106679555A true CN106679555A (zh) 2017-05-17
CN106679555B CN106679555B (zh) 2023-06-02

Family

ID=58860410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710071904.7A Active CN106679555B (zh) 2017-02-09 2017-02-09 一种矿热炉电极位置测量装置及方法

Country Status (1)

Country Link
CN (1) CN106679555B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737754A (zh) * 2019-03-06 2019-05-10 重庆大朗冶金新材料有限公司 矿热炉自动操作系统
CN109757003A (zh) * 2019-03-06 2019-05-14 重庆大朗冶金新材料有限公司 矿热炉自动控制方法
CN112083500A (zh) * 2019-07-11 2020-12-15 安徽省勘查技术院(安徽省地质矿产勘查局能源勘查中心) 一种厚覆盖层下陡倾斜脉状金矿识别方法及系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749804A (en) * 1971-01-25 1973-07-31 Siemens Ag Method for determining the depth of immersion of electrodes in a reduction furnace
DE2743029A1 (de) * 1976-10-04 1978-04-06 Asea Ab Anordnung an einem gleichstromlichtbogenofen
US20050286190A1 (en) * 2004-06-29 2005-12-29 Rostron Joseph R Electric power monitoring and response system
CN201436543U (zh) * 2009-01-05 2010-04-07 中冶东方工程技术有限公司 矿热炉电极电流参数测量系统
CN102111927A (zh) * 2009-12-24 2011-06-29 深圳达实智能股份有限公司 一种敞口式埋弧矿热炉电极控制方法及系统
CN102853794A (zh) * 2012-09-10 2013-01-02 成都高威节能科技有限公司 矿热炉电极长度的检测方法
CN103048517A (zh) * 2012-11-16 2013-04-17 北京思能达电力电子技术有限公司 用于矿热炉低压补偿的通过电极电流测量装置测量电极电流的方法
CN103115599A (zh) * 2013-01-29 2013-05-22 成都高威节能科技有限公司 矿热炉电极做功点位置的确定方法
CN103969497A (zh) * 2014-05-22 2014-08-06 营口东吉科技(集团)有限公司 一种测量交流电弧炉弧电流的方法
CN105698875A (zh) * 2016-04-13 2016-06-22 陈阳 基于电磁原理的矿热炉冶炼参数检测装置
CN105910676A (zh) * 2016-04-13 2016-08-31 刘卫玲 一种用于矿热炉冶炼关键参数检测的磁场检测法
CN106123768A (zh) * 2016-06-29 2016-11-16 青岛菲特测控节能科技有限公司 一种矿热炉电极深度测量系统
CN206523125U (zh) * 2017-02-09 2017-09-26 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种矿热炉电极位置测量装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3749804A (en) * 1971-01-25 1973-07-31 Siemens Ag Method for determining the depth of immersion of electrodes in a reduction furnace
DE2743029A1 (de) * 1976-10-04 1978-04-06 Asea Ab Anordnung an einem gleichstromlichtbogenofen
US20050286190A1 (en) * 2004-06-29 2005-12-29 Rostron Joseph R Electric power monitoring and response system
CN201436543U (zh) * 2009-01-05 2010-04-07 中冶东方工程技术有限公司 矿热炉电极电流参数测量系统
CN102111927A (zh) * 2009-12-24 2011-06-29 深圳达实智能股份有限公司 一种敞口式埋弧矿热炉电极控制方法及系统
CN102853794A (zh) * 2012-09-10 2013-01-02 成都高威节能科技有限公司 矿热炉电极长度的检测方法
CN103048517A (zh) * 2012-11-16 2013-04-17 北京思能达电力电子技术有限公司 用于矿热炉低压补偿的通过电极电流测量装置测量电极电流的方法
CN103115599A (zh) * 2013-01-29 2013-05-22 成都高威节能科技有限公司 矿热炉电极做功点位置的确定方法
CN103969497A (zh) * 2014-05-22 2014-08-06 营口东吉科技(集团)有限公司 一种测量交流电弧炉弧电流的方法
CN105698875A (zh) * 2016-04-13 2016-06-22 陈阳 基于电磁原理的矿热炉冶炼参数检测装置
CN105910676A (zh) * 2016-04-13 2016-08-31 刘卫玲 一种用于矿热炉冶炼关键参数检测的磁场检测法
CN106123768A (zh) * 2016-06-29 2016-11-16 青岛菲特测控节能科技有限公司 一种矿热炉电极深度测量系统
CN206523125U (zh) * 2017-02-09 2017-09-26 内蒙古鄂尔多斯电力冶金集团股份有限公司 一种矿热炉电极位置测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
白羽等: "矿热炉电极的非接触式在线检测系统", 《长春工业大学学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109737754A (zh) * 2019-03-06 2019-05-10 重庆大朗冶金新材料有限公司 矿热炉自动操作系统
CN109757003A (zh) * 2019-03-06 2019-05-14 重庆大朗冶金新材料有限公司 矿热炉自动控制方法
CN109737754B (zh) * 2019-03-06 2024-04-09 重庆大朗冶金新材料有限公司 矿热炉自动操作系统
CN112083500A (zh) * 2019-07-11 2020-12-15 安徽省勘查技术院(安徽省地质矿产勘查局能源勘查中心) 一种厚覆盖层下陡倾斜脉状金矿识别方法及系统
CN112083500B (zh) * 2019-07-11 2024-02-23 安徽省勘查技术院(安徽省地质矿产勘查局能源勘查中心) 一种厚覆盖层下陡倾斜脉状金矿识别方法及系统

Also Published As

Publication number Publication date
CN106679555B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN106679555A (zh) 一种矿热炉电极位置测量装置及方法
CN102853794B (zh) 矿热炉电极长度的检测方法
CN206523125U (zh) 一种矿热炉电极位置测量装置
CN106556249A (zh) 一种矿热炉电极电弧调整的方法、装置及电子设备
CN204101203U (zh) 一种热电偶
CN107043842A (zh) 一种lf精炼炉最优经济配料和智能控制模型
CN107062890A (zh) 一种带全方位控制点的矿热炉治炼专家系统
CN106123768B (zh) 一种矿热炉电极深度测量系统
CN105910676B (zh) 一种用于矿热炉冶炼关键参数检测的磁场检测法
CN102111927A (zh) 一种敞口式埋弧矿热炉电极控制方法及系统
CN109757003A (zh) 矿热炉自动控制方法
CN103115599A (zh) 矿热炉电极做功点位置的确定方法
CN101307386B (zh) 矿热炉冶炼钛渣的冶炼方法及其装置
CN106319122B (zh) 在线测量高炉炉缸渣铁液面信息的方法和装置
CN103969497A (zh) 一种测量交流电弧炉弧电流的方法
CN101576582B (zh) 一种根据变压器原副边电流电压及其参数估计电极电流的方法
CN201184829Y (zh) 结晶器热电偶检测加热器
Li et al. Modeling of flow and temperature distribution in electroslag remelting withdrawal process for fabricating large-scale slab ingots
WO1985003834A1 (en) A method for controlling an electrothermal process
CN207407392U (zh) 电磁炉及其电磁炉面板
CN205537769U (zh) 基于电磁原理的矿热炉冶炼参数检测装置
CN108221001A (zh) 一种用于两相直流电熔镁炉的极心距与炉壳外形设计方法
CN203502496U (zh) 六电极电炉的电极阻抗测量系统
CN101788786B (zh) 一种制备氧化镁晶体电弧炉的热分析控制方法
CN204129111U (zh) 矿热炉电极电流的实时测量装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant