CN106663123B - 以评论为中心的新闻阅读器 - Google Patents

以评论为中心的新闻阅读器 Download PDF

Info

Publication number
CN106663123B
CN106663123B CN201580043166.4A CN201580043166A CN106663123B CN 106663123 B CN106663123 B CN 106663123B CN 201580043166 A CN201580043166 A CN 201580043166A CN 106663123 B CN106663123 B CN 106663123B
Authority
CN
China
Prior art keywords
content
comments
computer
comment
presented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580043166.4A
Other languages
English (en)
Other versions
CN106663123A (zh
Inventor
韦福如
周明
刘洋
曹自强
黄绍晗
董力
崔磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Publication of CN106663123A publication Critical patent/CN106663123A/zh
Application granted granted Critical
Publication of CN106663123B publication Critical patent/CN106663123B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/12Use of codes for handling textual entities
    • G06F40/134Hyperlinking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/166Editing, e.g. inserting or deleting
    • G06F40/169Annotation, e.g. comment data or footnotes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/205Parsing
    • G06F40/216Parsing using statistical methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • G06F40/295Named entity recognition

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Probability & Statistics with Applications (AREA)
  • Human Computer Interaction (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

用于提供以评论为中心的新闻阅读器的方法和系统。配置允许实况评论与新闻或类似的网站内容一起呈现。当用户在用户的计算机设备(例如,移动设备)上呈现新闻文章的浏览器中上下滚动时,经链接的评论被显示在所选区域中。所显示的评论自动改变以适应用户当前正在阅读新闻文章的什么部分(段落,语句)。同时,用户可发布他们自己的评论而无需前进到浏览器的分开部分,从而使观看者节省了动作并改善了用户的体验。在评论被输入时,用户的系统或远程服务器将评论连同文章或用户在文章中所处的位置一起记录。

Description

以评论为中心的新闻阅读器
背景
存在产生新闻和观点文章的许多网站。在一些此类网站中,用户可发布关于特定新闻文章的评论。然而,新闻内容和相应的评论常常是分开的或未经链接的。此外,在大多数场景中,用户必须滚动到与新闻不同的区域才能阅读其他人的评论或张贴他们自己的评论。
允许进行评论的其他新闻网站要求用户在他们张贴他们的评论之前必须首先从所呈现的新闻文章中手动地选择词语或短语。这增加了用户的负担,由此削减了用户的体验。
概述
本文描述了用于提供评论和内容链接和呈现技术的技术。
本文公开的配置允许实况评论与新闻或类似的网站内容一起呈现。连接到网络的计算设备接收包括文本的内容。该内容源自连接到网络的一个或多个内容源。计算设备接收先前与该内容相关联的一个或多个评论,该评论源自连接到网络的该计算设备或其他计算设备之一。然后,所接收到的内容的至少一部分被呈现在计算机设备的显示设备的第一部分中。计算设备至少基于当前呈现在显示设备的第一部分中的内容的部分来确定将呈现所接收到的评论中的哪些评论,以及在显示设备的第二部分中呈现所确定的评论。
所公开的配置允许用户在阅读新闻文章期间更容易地查看/阅读其他评论,并允许用户张贴关于文章的特定部分的评论,而不必主动地指定文章的特定部分。这提供了用于提供评论的更直观的交互式用户体验。这降低了用户的负担,由此增加了用户的效率和体验。
应当理解,上述主题可被实现为计算机控制的装置、计算机进程、计算系统或诸如计算机可读存储介质之类的制品。通过阅读下面的详细描述并审阅相关联的附图,这些及各种其他特征将变得显而易见。
提供本概述以便以简化的形式介绍以下在详细描述中进一步描述的一些概念。本发明内容不旨在标识所要求保护的主题的关键或必要特征,也不旨在用于帮助确定所要求保护的主题的范围。例如术语“技术”可指代上述上下文和通篇文档中所准许的系统、方法、计算机可读指令、模块、算法、硬件逻辑和/或操作。
附图简述
结合附图来描述具体实施方式。在附图中,附图标记最左边的数字标识该附图标记首次出现的附图。不同附图中的相同参考标记指示相似或相同的项。
图1是描绘用于实现新闻阅读和评论链接应用的示例环境的图。
图2A-B示出了被允许基于由图1所示的系统的各组件所提供的功能来呈现内容和评论的示例移动设备的不同实例。
图3是描绘用于训练新闻/评论链接和呈现系统的过程的示例操作的流程图。
图4示出了描绘用于预测评论和新闻内容之间的链接的过程的示例操作的流程图。
图5是示出了能够实现本文所呈现的配置的各方面的计算设备的说明性计算机硬件和软件体系结构的计算机体系结构图。
详细描述
概览
本文所描述的各示例提供具有主机服务器的系统的构造,该主机服务器提供通往诸如新闻文章之类的网络可访问内容内的特定位置的评论链接。系统还具有用于将内容与经链接的评论一起呈现的客户端侧组件。
进一步参考图1-5来描述各示例、场景和方面。
说明性环境
图1示出了用于实现以评论为中心的新闻阅读器的示例环境。以评论为中心的新闻阅读器根据用户当前正与所接收到的内容(例如,新闻文章)的什么部分进行交互(例如,阅读、观看、收听、感测等)来呈现(最近的和过去的)评论。
在一示例中,基于网络的系统100包括一个或多个内容服务器102、多个客户端计算设备104(1-N)以及一个或多个内容/评论链接服务器108。内容服务器102、客户端计算设备104(1-N)以及内容/评论链接服务器108全部跨一个或多个数据网络106进行通信。
(诸)网络106可包括诸如因特网之类的公共网络、诸如机构和/或个人内联网之类的专用网络、或专用网络和公共网络的某种组合。网络106还可包括任何类型的有线和/或无线网络,包括但不限于局域网(LAN)、广域网(WAN)、卫星网络、有线网络、Wi-Fi网络、WiMax网络、移动通信网络(如3G、4G等等)或它们的任意组合。网络106可利用通信协议,包括基于分组的和/或基于数据报的协议,如网际协议(IP)、传输控制协议(TCP)、用户数据报协议(UDP)或其他类型的协议。而且,网络106还可包括便于网络通信和/或形成网络的硬件基础的若干设备,如交换机、路由器、网关、接入点、防火墙、基站、中继器、主干设备等等。
在示例场景中,服务器102、108可包括一个或多个可在群集中操作或在其他分组的配置中操作以共享资源、平衡负载、提升性能、提供故障转移支持或冗余或出于其他目的的一个或多个计算设备。服务器102、108可属于各种各样类别或分类的设备,诸如传统的服务器类型的设备、台式计算机类型的设备、移动类型的设备、专用类型的设备、嵌入式类型的设备和/或可穿戴类型的设备。由此,虽然被示为塔式计算机,但是服务器102、108可包括多种多样的设备类型并不限于特定类型的设备。服务器102、108可表示但不限于:台式计算机、服务器计算机、web服务器计算机、个人计算机、移动计算机、膝上型计算机、平板计算机、可穿戴计算机、植入式计算设备、电信设备、车载计算机、启用网络的电视机、瘦客户机、终端、个人数据助理(PDA)、游戏控制台、游戏设备、工作站、媒体播放器、个人录像机(PVR)、机顶盒、相机、用于包括在计算设备内的集成组件、家用电器,或任何其他类型的计算设备。
在一些示例中,内容/评论链接服务器108可至少包括处理器110、存储器112以及输入/输出(I/O)设备114。存储器112可至少包括内容/评论链接模块116。当由处理器110执行时,内容/评论链接模块116导致接收由用户在设备104(1-N)中的任何设备处生成的评论以及接收关于作为该评论的目标的内容的信息。处理器110执行内容/评论链接模块116导致将所接收到的评论链接到相关联的内容的特定部分。
客户端设备104(1-N)至少包括处理器118、显示器120、用户界面122、存储器124以及I/O设备126。存储器124可存储内容/评论模块128,该内容/评论模块128在被处理器118执行时从特定内容服务器102接收内容以及从内容/评论链接服务器108接收与链接有关的经链接的评论信息。基于对什么内容当前正在显示器120上被呈现和所接收到的经链接的评论信息的知识,执行内容/评论模块128的其他组件的处理器118呈现先前链接到当前所呈现的内容的评论。同样,处理器118在执行内容/评论模块128的其他组件的同时可在显示器120上呈现评论区域。评论区域可接收与所呈现的内容有关的用户评论。如果客户端设备104包括内容/评论链接模块116,则所接收到的评论可被链接到内容/评论链接服务器108处或客户端设备104处的内容的特定部分。图5中示出了客户端设备104的其他组件的示例。
模块116、128提供的功能可位于网络上的其他计算位置处,或者可跨网络上的多个计算位置分布。
图2A示出了被实现为移动设备200(即,智能电话、个人数据助理等)的客户端设备104的示例。移动设备200包括显示器202并可包括用户界面控件204。内容/评论模块128导致处理器118通过在必要时与内容服务器102和/或(诸)内容/评论链接服务器108进行通信来将关于内容的信息和评论呈现在显示器202上。处理器118在执行内容/评论模块128的各组件的同时基于用户的请求来呈现来自内容服务器102的内容。针对内容的用户请求的示例可包括将新闻源网站地址输入到显示器202上呈现的浏览器(未示出)中。所请求的内容(例如,新闻文章网页)被部分地呈现在显示器202的内容呈现区域206内。
所呈现的内容可包括标题和正文。在该示例中,标题被呈现在内容呈现区域206的标题部分206a中。内容的正文被呈现在内容呈现区域206的正文部分206b中。
显示器202包括评论区域208。评论区域208可以是示出过去和实况评论的被选择的区域。当用户观看时,评论区域208可被呈现在内容呈现区域206之上、之下或毗邻内容呈现区域206。内容/评论模块128可导致处理器118维持与实体(例如,内容/评论链接服务器108)的开放通信链路,该实体将评论链接到当前呈现在内容呈现区域206中的内容。该实体可以是其他客户端设备104(1-N),如果这些其他设备包括内容/评论链接模块116的话。该开放通信链路允许将来自其他用户的评论实况地或接近实时地链接、发送、随后呈现在显示器202上。因此,在评论区域208中仅呈现先前链接到或将链接到当前显示在内容呈现区域206中的内容的那些评论。这些评论的选择将由与内容交互的用户的当前位置来确定(哪些语句被示出在屏幕上)。
如果评论的数目超过阈值或评论的大小,或评论组超过评论区域208的大小值,则经链接的评论将水平或垂直滚动。该滚动可自动地发生,或响应于用户对用户界面控件204或显示器202(如果该显示器包括触摸屏组件)的动作而发生。
在内容呈现区域206中呈现的内容的具有经链接的评论的语句可被突出显示或以区分于没有经链接的评论的那些语句的方式被显示。
显示器202还可包括评论输入区域210。评论输入区域210包括用于允许用户发布其自己的评论的评论输入框。用户可通过在用户已将评论输入到评论输入区域210的评论输入框后激活去往(Go)按钮212或相似的激活机制来将评论与内容或与内容呈现区域206内的所呈现的内容相关联。在将评论输入到评论输入区域210之际,经输入的评论和内容信息被发送到内容/评论链接服务器108。替换地,当被存储在存储器124中时,内容/评论模块128导致处理器118将评论链接到该内容内的特定语句/短语。
图2B示出了用户已将正文部分206b中的文章滚动之后的客户端设备104。因为现在文章的不同部分出现在了正文部分206b中,所以客户端设备104滚动评论区域208以便示出被标识为被链接到现在出现在正文部分206b中的语句的评论。
在分类框架中,评论被自动地链接到内容的语句,该分类框架包括基于一组评论-语句对来训练模型。首先创建从样本评论和语句中提取的特征的训练集。该训练集可使用先前与许多不同的内容帖子相关联的许多不同的评论。训练集被用于使用自然语言处理技术来训练用于对各实例进行分类的分类器。这被描述如下:
◆给定具有评论集C={c1,c2,…,cm}的内容项S={s1,s2,…,sn}(s=语句),通过计算这两个集的笛卡尔乘积来获得候选评论-语句对T={t11,t12,…,tmn}。
◆从所获得的对中提取词汇级、实体级、以及主题级特征。根据训练对tpq的每个cp和sq的所提取的特征创建特征向量v(tpq)。
◆tpq的类别被分配成ypq=1,而其中o≠q的任何其他的对t’pq=<cp,so>的类别被分配成ypo=0。训练实例<t,y>被输入到支持向量机(SVM)分类器中,该分类器学习每一对的权重值。
◆对于新的评论-语句对,SVM分类器可被用于在提取了对的特征之后预测该对为真的可能性。
在表1中列出了所提取的词汇特征的示例。
Figure GDA0002435281580000061
表1:所提取的特征
词汇特征包括语句与被表示为两个Tf-idf向量的评论之间的余弦相似性。Tf-idf表示术语频率乘以文档频率逆。词汇特征还包括通用词、词根、词性(POS)标签和功能词的数目。功能词包括动词和名词,因为它们是最重要的词语类型。
利用通用实体类型的数目和每种类型内的通用实体的数目来计算实体级特征。所有词汇级和实体级数目被相关联的内容语句的长度所平均。[m1]主题级特征基于对评论和语句的潜在狄利克雷分配(LDA)分析。在LDA之后,为每个评论或语句生成主题向量,其中每个维度表示文本中的一个潜在主题。评论与语句主题向量的余弦相似性被确定。这表示评论与内容语句之间的语义相似性。
词汇特征被用于生成特征向量。管理该训练操作的人基于这个人对每一对是否可能链接的感知来向该对的特征向量施加权重。经加权的对被施加到建模器/分类器,诸如SVM分类器,其创建用于将评论链接到语句的模型/分类器。[m2]
说明性过程
过程300-400被示为逻辑流程图中的各框的集合,这表示可用硬件、软件或其组合实现的一系列操作。在软件的上下文中,这些操作表示存储在一个或多个计算机可读存储介质上的计算机可执行指令,这些指令在由一个或多个处理器执行时执行所述操作。计算机可执行指令可包括执行特定功能或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等。描述操作的次序并不旨在被解释为限制,并且任何数量的所述框可以按任何次序和/或并行地组合以实现所示的过程。本文中描述的过程中的一个或多个过程可独立地或按任何次序(串行或并行)相关地发生。
如在说明书和权利要求书中使用的术语“计算机可读指令”及其变型,在本文是用来广泛地包括例程、应用、应用模块、程序模块、程序、组件、数据结构、算法等等。计算机可读指令可以在各种系统配置上实现,包括单处理器或多处理器系统、小型计算机、大型计算机、个人计算机、手持式计算设备、基于微处理器的可编程消费电子产品、其组合等等。
因此,应该理解,此处所述的逻辑操作被实现为(1)一系列计算机实现的动作或运行于计算系统上的程序模块,和/或(2)计算系统内的互连的机器逻辑电路或电路模块。该实现是取决于计算系统的性能及其他要求的选择问题。因此,此处描述的逻辑操作被不同地称为状态、操作、结构设备、动作或模块。这些操作、结构设备、动作和模块可以用软件、固件、专用数字逻辑及其任何组合来实现。
图3例示出了用于训练在自动链接过程中使用的链接模型的高级过程300。过程300是使用自然语言处理(NLP)技术的特定实现。首先在框302,从训练评论和语句中获得一组评论-语句对。该组对可针对各种流派(例如,世界新闻、本地新闻、体育、观点、食物、娱乐、音乐等)获得。使用不同流派的各组对得到不同流派的训练模型。当使用与类似于当前查看的内容的流派相关联的训练模型时,将评论链接到内容的过程可产生更准确的经链接的结果。
接下来,在框304,针对每对的评论和语句来标识这两个项的词语、词语词根、功能词以及词性(POS)。
在框306,标识每对的评论和语句的名称实体。命名对象的示例包括埃菲尔铁塔、林肯总统、以及弦乐柔板(Adagio for Strings)。
然后,在框308,标识每个评论-语句对的主题向量。主题的标识包括在文本中找到抽象主题。在自然语言处理中,主题模型是用于发现可能在文档集合中出现的抽象主题的一类统计模型。直观地,假设文档是关于特定主题的,人们将期望特定词语较频繁或较不频繁地出现在文档中。文档通常以不同的比例涉及多个主题。主题模型在数学框架——主题向量中被捕捉,该主题向量包括各个语句中与多个主题中的每一个相关联的词语的比例。
然后,在框310,基于主题向量、名称实体、以及在框304处找到的其他细节来提取特征。特征提取的结果产生每个评论-语句对中的评论和语句的特征向量。
在框312,训练器基于对每对特征向量是否匹配的感知到的可能性来注释每对特征向量。该注释可以是向该特征向量对分配的权重值的形式。
在框314,基于经注释的特征向量对来训练模型或分类器。在一个示例中,SVM至少基于经注释的特征向量对来生成模型或分类器。
在判定框316,一旦该训练被确定为完成,则过程300准备好分析并将实际评论链接到内容语句,见图4中的过程400。
图4例示出了用于将评论自动链接到被包括在内容中的一语句的高级过程400。除了仅使用一个内容和一个评论之外,框402-410中所示的步骤类似于图3的框302-310中所示的步骤。
首先在框402,从所输入的评论和经定义的内容中的各语句获得一组评论-语句对。
接下来,在框404,针对每对的评论和语句来标识这两项的词语、词语词根、功能词以及POS。
在框406,标识每对的评论和语句的名称实体。
然后,在框408,标识每个评论-语句对的主题向量。如训练过程300中的那些主题向量可能在大小方面受到限制。限制主题向量的大小减少了与此链接过程相关联的时间和成本。
然后,在框410,基于主题向量来提取特征。特征提取的结果产生每个评论-语句对中的评论和语句的特征向量。
在框412,基于与图3的经训练的模型的比较来确定每个评论-语句对是否是最佳匹配的预测。结果是该内容的语句之一被确定为是针对所输入的评论的最佳匹配/链接。
然后,在框414,将评论链接到所标识的最佳匹配/链接语句。此所标识的链接被输出以供诸如内容/评论模块128之类的系统100的组件将来使用。
下面示出评论-内容语句对和相关联的分析的示例。
评论:
GoPro has some cool products,but it seems like they would be reallyeasy to knock off.(GoPro有一些很酷的产品,但看起来似乎它们将会很容易被敲坏。)Arugged camera isn't rocket science.(一个坚固的相机不是火箭科学。)
来自内容的语句:
The Yi itself features a 16-megapixel camera capable of shooting1080p video at 60 frames per second—better on paper than the$130 GoPro Hero,which can only shoot 1080p footage at 30 frames per second,or 720p film at 60frames.(Yi本身的特征为能够以每秒60帧的速度拍摄1080p的视频的1600万像素的相机——在理论上比130美元的GoPro Hero更好,GoPro Hero只能以每秒30帧的速度拍摄1080p的录像,或以60帧的速度拍摄720p的影片。)
首先,对该对中的每个语句进行词根化、词例化、以及POS标签化(粗体字是POS标记):
NNP GoPro VBZ has DT some JJ cool NNS products,CC but PRP it VBZseems IN like PRP they MD would VB be RB really JJ easy TO to VB knock RPoff.DT A JJ rugged NN camera VBZ is RB n't NN rocket NN science.
DT The NNP Yi PRP itself VBZ features DT a JJ 16-megapixel NN cameraJJ capable IN of VBG shooting NN 1080p NN video IN at CD 60 NNS frames IN perJJ second NN—JJR better IN on NN paper IN than DT the NN$130NNP GoPro NNPHero,WDT which MD can RB only VB shoot NN 1080p NN footage IN at CD 30 NNSframes IN per JJ second,CC or NN 720p NN film IN at CD 60 NNS frames.
以下列表是POS标签的示例:
CC 并列连词
CD 基数
DT 限定词
EX 存在性“there”
FW 外来词
IN 介词或从属连词
JJ 形容词
JJR 形容词,比较级
JJS 形容词,最高级
LS 列表项标记
MD 模态
NN 名词,单数或集合
NNS 名词,复数
NNP 专有名词,单数
NNPS 专有名词,复数
PDT 前置限定词
POS 所有格字尾
PRP 人称代词
PRP$ 物主代词
RB 副词
RBR 副词,比较级
RBS 副词,最高级
RP 虚词
SYM 符号
TO 至
UH 感叹词
VB 动词,基础形式
VBD 动词,过去式
VBG 动词,动名词或现在分词
VBN 动词,过去分词
VBP 动词,不存在第三人称单数
VBZ 动词,存在第三人称单数
WDT Wh 限定词
WP Wh 代词
WP$ 所有格wh代词
WRB Wh 副词
接下来,分析语句以便找到名称实体。评论中的结果是:[GoPro]。内容语句中的结果是:[Yi,GoPro,Hero]。
在此示例中,主题的数目被选择为五个。以下是用于该语句的主题模型的主题向量:
[0.1,0.1,0.4,0.3,0.1]
而对于该评论:
[0.2,0,0.2,0.5,0.1]
这些向量的每个维度与一个抽象主题相关联,并且它的值等于与该抽象主题相关联的评论或语句的词语的比例。
然后,基于以上分析从该对的评论和语句中提取特征以得到针对每一对语句和评论的特征向量:
Fsentence(F语句)
Fcomment(F评论)
假设训练已经发生,则相对于经训练的模型/分类器(经训练的SVM分类器)来分析这些特征向量以及所有其他评论-语句对的特征向量以确定这些语句中的哪些语句将被标识成该评论的链接。
尽管上述示例涉及将文本评论链接到文本语句,但是本发明的实现可以被应用于可听评论以及音频和/或视频内容。语音到文本可被用作用于将语音转换为文本的技术,然后由本发明使用。视频分析技术可用于标识视频中的事件(例如,改变事件)并随后将该信息用作用于与评论相链接的基础。
图5示出了图1所示的组件的示例计算机体系结构的附加细节,该计算机体系结构能够执行上述用于提供以评论为中心的新闻阅读器和链接系统的程序组件。图5所示的计算机体系结构示出了游戏控制台、常规服务器计算机、工作站、台式计算机、膝上型计算机、平板、平板手机、网络设备、个人数字助理(“PDA”)、电子阅读器、数字蜂窝电话或其他计算设备,并且可用于执行本文提及的任一软件组件。例如,图5所示的计算机体系结构可用于执行上述任一软件组件。尽管本文描述的一些组件专用于客户端设备104,但可以理解这些组件和其他组件可以是服务器108的一部分。
客户端设备104包括基板502或“母板”,其是大量组件或设备可通过系统总线或其他电子通信路径所连接到的印刷电路板。在一个说明性配置中,一个或多个中央处理单元(“CPU”)504结合芯片组506一起操作。CPU 504可以是执行客户端设备104的操作所需的算术和逻辑操作的标准可编程处理器。
CPU 504通过从一个分立的物理状态转换到下一状态来执行操作,该转换是通过操纵在各状态之间进行区别并改变这些状态的切换元件来实现的。切换元件一般可包括维持两个二进制状态之一的电子电路,诸如触发电路,以及基于一个或多个其它切换元件的状态的逻辑组合来提供输出状态的电子电路,诸如逻辑门。这些基本切换元件可被组合以创建更复杂的逻辑电路,包括寄存器、加减器、算术逻辑单元、浮点单元等等。
芯片组506提供CPU 504与基板502上的其余组件和器件之间的接口。芯片组506可提供对用作客户端设备104中的主存储器的RAM 508的接口。芯片组506还可提供对诸如只读存储器(“ROM”)510或非易失性RAM(“NVRAM”)之类的用于存储有助于启动客户端设备104并在各种组件和器件之间传送信息的基本例程的计算机可读存储介质的接口。ROM 510或NVRAM还可存储根据本文描述的配置的客户端设备104的操作所必需的其他软件组件。
客户端设备104可以通过诸如局域网106之类的网络使用到远程计算设备和计算机系统的逻辑连接来在联网环境中操作。芯片组506可包括用于通过诸如千兆比特以太网适配器等网络接口控制器(NIC)512提供网络连通性的功能。NIC 512能够通过网络106将客户端设备104连接到其他计算设备。应理解,多个NIC 512可存在于客户端设备104中,以将该计算机连接到其它类型的网络和远程计算机系统。网络106允许客户端设备104与远程服务和服务器(诸如服务器102、108)通信。
客户端设备104可连接到为计算设备提供非易失性存储的大容量存储设备526。大容量存储设备526可存储已经在本文更详细地描述的系统程序、应用程序、其他程序模块和数据。大容量存储设备526可以通过连接到芯片组506的存储控制器515连接到客户端设备104。大容量存储设备526可包括一个或多个物理存储单元。存储控制器515可以通过串行附连SCSI(“SAS”)接口、串行高级技术附连(“SATA”)接口、光纤通道(“FC”)接口或用于在计算机和物理存储单元之间物理地连接和传送数据的其它类型的接口与物理存储单元对接。还应理解,大容量存储设备526、其他存储介质和存储控制器515可包括多媒体卡(MMC)组件、eMMC组件、安全数字(SD)组件、PCI高速组件等。
客户端设备104可通过变换物理存储单元的物理状态以反映被存储的信息来将数据存储在大容量存储设备526上。在本说明书的不同实现中,物理状态的具体变换可取决于各种因素。这些因素的示例可以包括,但不仅限于:用于实现物理存储单元的技术,大容量存储设备526被表征为主存储还是辅存储等等。
例如,客户端设备104可通过经由存储控制器515发出以下指令来将信息存储在大容量存储设备526:更改磁盘驱动器单元内的特定位置的磁特性、光存储单元中的特定位置的反射或折射特性,或者固态存储单元中的特定电容、晶体管或其它分立组件的电特性。在没有偏离本说明书的范围和精神的情况下,物理介质的其他变换也是可能的,前面提供的示例只是为了便于此描述。客户端设备104还可通过检测物理存储单元内的一个或多个特定位置的物理状态或特性来从大容量存储设备526中读取信息。
除了上述大容量存储设备526之外,客户端设备104还可访问其它计算机可读介质以存储和检索信息,诸如程序模块、数据结构或其它数据。由此,尽管程序模块116、128和其他模块被描绘为存储在大容量存储设备526中的数据和软件,但应理解,这些组件和/或其他模块可被至少部分地存储在客户端设备104的其他计算机可读存储介质中。虽然对此处包含的计算机可读介质的描述引用了诸如固态驱动器、硬盘或CD-ROM驱动器之类的大容量存储设备,但是本领域的技术人员应该明白,计算机可读介质可以是可由客户端设备104访问的任何可用计算机存储介质或通信介质。
通信介质包括诸如载波或其它传输机制等已调制数据信号中的计算机可读指令、数据结构、程序模块或其它数据,且包含任何传递介质。术语“已调制数据信号”指的是其一个或多个特征以在信号中编码信息的方式被更改或设定的信号。作为示例而非限制,通信介质包括有线介质,诸如有线网络或直接线路连接,以及无线介质,诸如声学、RF、红外线和其他无线介质。上述的任意组合也应包含在计算机可读介质的范围内。
作为示例而非限制,计算机存储介质可包括以用于存储诸如计算机可读指令、数据结构、程序模块或其他数据等信息的任何方法或技术实现的易失性和非易失性、可移动和不可移动介质。例如,计算机介质包括但不限于,RAM、ROM、EPROM、EEPROM、闪存或其他固态存储器技术,CD-ROM、数字多功能盘(“DVD”)、HD-DVD、BLU-RAY或其他光学存储,磁带盒、磁带、磁盘存储或其他磁性存储设备,或能用于存储所需信息且可以由客户端设备104访问的任何其他介质。为了声明的目的,短语“计算机存储介质”及其变型不包括波或信号本身和/或通信介质。
大容量存储设备526可存储用于控制客户端设备104的操作的操作系统527。根据一个配置,操作系统包括游戏操作系统。根据另一配置,操作系统包括可从其相应的制造商获得的
Figure GDA0002435281580000131
UNIXTM、ANDROIDTM
Figure GDA0002435281580000141
PHONE、或iOSTM操作系统。应理解,也可利用其他操作系统。大容量存储设备526可存储由客户端设备104利用的其他系统或应用程序和数据,诸如程序模块116、128、上下文数据529和/或上述任意其他软件组件和数据。大容量存储设备526可能还存储本文未具体标识的其他程序和数据。
在一个配置中,大容量存储设备526或其他计算机可读存储介质用计算机可执行指令来编码,这些计算机可执行指令在被加载到客户端设备104中时将计算机从通用计算系统变换成能够实现本文描述的配置的专用计算机。这些计算机可执行指令通过如上所述地指定CPU 504如何在各状态之间转换来变换客户端设备104。根据一个配置,客户端设备104具有对存储计算机可执行指令的计算机可读存储介质的访问,这些计算机可执行指令在由客户端设备104执行时执行以上参考图5和其他附图描述的各个例程。客户端设备104可能还包括用于执行本文描述的任意其他计算机实现的操作的计算机可读存储介质。
客户端设备104还可包括用于接收并处理来自诸如键盘、鼠标、话筒、耳机、触摸垫、触摸屏、电子指示笔、或任何其他类型的输入设备之类的多个输入设备的输入的一个或多个输入/输出控制器516。还示出输入/输出控制器516与输入/输出设备525通信。输入/输出控制器516可向诸如计算机监视器、HMD、平板显示器、数字投影仪、打印机、绘图仪或其他类型的输出设备之类的显示器提供输出。输入/输出控制器516可提供与诸如话筒518、扬声器520、游戏控制器和/或音频设备等其他设备的输入通信。另外地或替代地,视频输出522可以与芯片组506通信并且独立于输入/输出控制器516进行操作。可以领会,客户端设备104可以不包括图5所示的全部组件,可以包括未在图5中明确示出的其他组件,或者可使用完全不同于图5所示的体系结构。
示例条款
条款1:一种计算机实现的方法,包括:在连接到网络的计算设备处接收包括文本的内容,所述内容源自连接到所述网络的一个或多个内容源;在所述计算设备处接收先前与所述内容相关联的一个或多个评论,所述评论源自连接到所述网络的所述计算设备或其他计算设备之一;在客户端计算机设备的显示设备的第一部分中呈现所接收到的内容的至少一部分;至少基于当前呈现在所述显示设备的所述第一部分中的所述内容的所述部分来确定所接收到的评论中的哪些评论将被呈现;以及在所述显示设备的第二部分中呈现所确定的评论。
条款2:如条款1所述的计算机实现的方法,其特征在于,进一步包括:在所述显示设备的第三部分中接收用户输入的文本作为评论;以及经由所述网络将所接收到的评论和与所述内容有关的信息发送到评论/内容链接设备。
条款3:如条款1-2所述的计算机实现的方法,其特征在于,所述内容包括新闻文章网页或帖子网页。
条款4:如条款1-3所述的计算机实现的方法,其特征在于,所述一个或多个内容源包括与新闻服务相关联的服务器。
条款5:如条款1-4所述的计算机实现的方法,其特征在于,进一步包括:标识具有先前经链接的评论的所述内容的语句;以及以区分于所述内容中没有任何经链接的评论的语句的方式呈现所述内容中被标识为具有经链接的评论的语句。
条款6:如条款1-5所述的计算机实现的方法,其特征在于,呈现被标识为具有经链接的评论的内容包括突出显示具有所述经链接的评论的内容的语句的至少一部分。
条款7:如条款1-6所述的计算机实现的方法,其特征在于,进一步包括:响应于确定所接收到的评论中的哪些评论将被呈现,确定将被呈现的评论的数目是否超过阈值数目;以及如果评论的数目超过所述阈值数目,则在所述第二部分内自动滚动所述评论。
条款8:如条款7所述的计算机实现的方法,其特征在于,所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
条款9:如条款1-6所述的计算机实现的方法,其特征在于,进一步包括:响应于确定所述评论中的哪些评论将被呈现,确定待呈现的评论中的文本或字符量是否超过阈值数目;以及如果文本或字符量超过所述阈值数目,则在所述第二部分内自动滚动所述评论。
条款10:如条款9所述的计算机实现的方法,其特征在于,所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
条款11:一种计算设备,包括:处理器;显示设备;以及与所述处理器通信的计算机可读存储介质,所述计算机可读存储介质上存储有计算机可执行指令,所述计算机可执行指令在被所述处理器执行时使得所述计算机:接收包括文本的内容,所述内容源自连接到所述网络的一个或多个内容源;接收先前与所述内容相关联的一个或多个评论,所述评论源自连接到所述网络的所述计算设备或其他计算设备之一;在所述客户端计算机设备的显示设备的第一部分中呈现所接收到的内容的至少一部分;至少基于当前呈现在所述显示设备的所述第一部分中的所接收到的内容的所确定的部分来确定所接收到的评论中的哪些评论将被呈现;以及在所述显示设备的第二部分处呈现所确定的评论。
条款12:如条款11所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:在所述显示设备的第三部分中接收用户输入的文本作为评论;以及经由所述网络将所接收到的评论和与所接收到的内容有关的信息发送到评论/内容链接设备。
条款13:如条款11-12所述的计算设备,其特征在于,所述内容包括新闻文章或帖子。
条款14:如条款11-13所述的计算设备,其特征在于,所述一个或多个内容源包括新闻服务器。
条款15:如条款11-14所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:标识所述内容中具有经链接的评论的语句;以及以区分于所述内容中没有任何经链接的评论的语句的方式呈现所述内容中被标识为具有经链接的评论的语句。
条款16:如条款11-15所述的计算设备,其特征在于,呈现被标识为具有经链接的评论的所述内容包括突出显示所述内容中具有所述经链接的评论的语句的至少一部分。
条款17:如条款11-16所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:响应于确定所接收到的评论中的哪些评论将在所述第二部分处被呈现,确定将被呈现的评论的数目是否超过阈值数目;以及如果评论的数目超过所述阈值数目,则在所述第二部分内自动滚动所述评论,其中所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
条款18:如条款11-16所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:响应于确定所述评论中的哪些评论将在所述第二部分处被呈现,确定待呈现的评论中的文本或字符量是否超过阈值数目;以及如果文本或字符量超过所述阈值数目,则在所述第二部分内自动滚动所述评论。
条款19:如条款18所述的计算设备,其特征在于,所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
条款20:一种其上存储有计算机可执行指令的计算机可读存储介质,所述计算机可执行指令在由计算机执行时使所述计算机:接收包括文本的内容,所述内容源自连接到网络的一个或多个内容源;接收先前与所述内容相关联的一个或多个评论,所述评论源自连接到所述网络的所述计算设备或其他计算设备之一;在移动设备的显示设备的第一部分中呈现所接收到的内容的至少一部分;至少基于当前呈现在所述显示设备的所述第一部分中的所接收到的内容的所确定的部分来确定所接收到的评论中的哪些评论将在所述显示设备的第二部分处被呈现;呈现所确定的评论;在所述显示设备的第三部分中接收用户输入的文本作为评论;以及经由所述网络将所接收到的评论和与所接收到的内容有关的信息发送到评论/内容链接设备。
结语
虽然已经用对结构特征和/或方法动作专用的语言描述了各项技术,但是应该理解,所附权利要求不必限于所述的特征或动作。相反,这些特征和动作是作为实现这些技术的示例形式而描述的。
示例过程的操作在单独的框中示出,并且参考这些框来概括。这些过程被示为逻辑框流,其每个框可表示可用硬件、软件或其组合实现的一个或多个操作。在软件的上下文中,这些操作表示存储在一个或多个计算机可读介质上的计算机可执行指令,这些指令在由一个或多个处理器执行时使得一个或多个处理器执行既定操作。一般而言,计算机可执行指令包括执行特定功能或实现特定抽象数据类型的例程、程序、对象、模块、组件、数据结构等。描述操作的次序并不旨在解释为限制,并且任何数量的所述操作可以按任何次序执行、按任何次序进行组合、细分成多个子操作、和/或并行执行,以实现所描述的过程。可由与一个或多个设备相关联的资源(诸如一个或多个内部或外部CPU或GPU)和/或硬件逻辑的一个或多个片段(诸如FPGA、DSP或其他类型的加速器)来执行所描述的过程。
上述所有方法和过程可以用由一个或多个通用计算机或处理器执行的软件代码模块来具体化,并且可经由这些软件代码模块来完全自动化。这些代码模块可以存储在任何类型的计算机可执行存储介质或其他计算机存储设备中。这些算法中的某些或全部可另选地用专用计算机硬件来具体化。
本文所述和/或附图中描述的流程图中任何例行描述、元素或框应理解成潜在地表示包括用于实现该例程中具体逻辑功能或元素的一个或多个可执行指令的代码的模块、片段或部分。替换实现被包括在本文描述的示例的范围内,其中各元素或功能可被删除,或与所示出或讨论的顺序不一致地执行,包括基本上同步地执行或按相反顺序执行,这取决于所涉及的功能,如本领域技术人也将理解的。所有这样的修改和变型本文旨在被包括在本公开的范围内并且由所附权利要求书保护。

Claims (20)

1.一种计算机实现的方法,包括:
在连接到网络的计算设备处接收包括文本的内容,所述内容源自连接到所述网络的一个或多个内容源;
在所述计算设备处接收先前与所述内容相关联的一个或多个评论,所述评论源自连接到所述网络的所述计算设备或其他计算设备之一;
在所述计算机设备的显示设备的第一部分中呈现所接收到的内容的至少一部分;
至少基于当前呈现在所述显示设备的所述第一部分中的所述接收到的内容的部分来确定将呈现所接收到的评论中的哪些评论,所述确定包括:
从所述评论和所述内容中的各语句获得一组评论-语句对;
标识每个评论-语句对的主题向量;
基于所述主题向量来提取特征,产生每个评论-语句对中的评论和语句的特征向量;以及
确定最佳匹配的评论-语句对;以及
在所述显示设备的第二部分中呈现所确定的评论。
2.如权利要求1所述的计算机实现的方法,其特征在于,进一步包括:
在所述显示设备的第三部分中接收用户输入的文本作为评论;以及
经由所述网络将所接收到的评论和与所述内容有关的信息发送到评论/内容链接设备。
3.如权利要求1所述的计算机实现的方法,其特征在于,所述内容包括新闻文章网页或帖子网页。
4.如权利要求3所述的计算机实现的方法,其特征在于,所述一个或多个内容源包括与新闻服务相关联的服务器。
5.如权利要求1所述的计算机实现的方法,其特征在于,进一步包括:
标识所述内容中具有先前经链接的评论的语句;以及
以区分于所述内容中没有任何经链接的评论的语句的方式呈现所述内容中被标识为具有经链接的评论的语句。
6.如权利要求5所述的计算机实现的方法,其特征在于,呈现被标识为具有经链接的评论的内容包括突出显示所述内容中具有所述经链接的评论的语句的至少一部分。
7.如权利要求1所述的计算机实现的方法,其特征在于,进一步包括:
响应于确定所接收到的评论中的哪些评论将被呈现,确定将被呈现的评论的数目是否超过阈值数目;以及
如果评论的数目超过所述阈值数目,则在所述第二部分内自动滚动所述评论。
8.如权利要求7所述的计算机实现的方法,其特征在于,所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
9.如权利要求1所述的计算机实现的方法,其特征在于,进一步包括:
响应于确定所述评论中的哪些评论将被呈现,确定待呈现的评论中的文本或字符量是否超过阈值数目;以及
如果文本或字符量超过所述阈值数目,则在所述第二部分内自动滚动所述评论。
10.如权利要求9所述的计算机实现的方法,其特征在于,所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
11.一种计算设备,包括:
处理器;
显示设备;以及
与所述处理器通信的计算机可读存储介质,所述计算机可读存储介质上存储有计算机可执行指令,所述计算机可执行指令在被所述处理器执行时使得所述计算机:
接收包括文本的内容,所述内容源自连接到网络的一个或多个内容源;
接收先前与所述内容相关联的一个或多个评论,所述评论源自连接到所述网络的所述计算设备或其他计算设备之一;
在所述计算机设备的显示设备的第一部分中呈现所接收到的内容的至少一部分;
至少基于当前呈现在所述显示设备的所述第一部分中的所接收到的内容的所确定的部分来确定将呈现所接收到的评论中的哪些评论,所述确定包括:
从所述评论和所述内容中的各语句获得一组评论-语句对;
标识每个评论-语句对的主题向量;
基于所述主题向量来提取特征,产生每个评论-语句对中的评论和语句的特征向量;以及
确定最佳匹配的评论-语句对;以及
在所述显示设备的第二部分处呈现所确定的评论。
12.如权利要求11所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:
在所述显示设备的第三部分中接收用户输入的文本作为评论;以及
经由所述网络将所接收到的评论和与所接收到的内容有关的信息发送到评论/内容链接设备。
13.如权利要求11所述的计算设备,其特征在于,所述内容包括新闻文章或帖子。
14.如权利要求13所述的计算设备,其特征在于,所述一个或多个内容源包括新闻服务器。
15.如权利要求11所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:
标识所述内容中具有经链接的评论的语句;以及
以区分于所述内容中没有任何经链接的评论的语句的方式呈现所述内容中被标识为具有经链接的评论的语句。
16.如权利要求15所述的计算设备,其特征在于,呈现被标识为具有经链接的评论的内容包括突出显示所述内容中具有所述经链接的评论的语句的至少一部分。
17.如权利要求11所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:
响应于确定所接收到的评论中的哪些评论将在所述第二部分处被呈现,确定将被呈现的评论的数目是否超过阈值数目;以及
如果评论的数目超过所述阈值数目,则在所述第二部分内自动滚动所述评论,
其中所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
18.如权利要求11所述的计算设备,其特征在于,所述计算机可读存储介质上还存储有使所述计算机执行以下的计算机可执行指令:
响应于确定所述评论中的哪些评论将在所述第二部分处被呈现,确定待呈现的评论中的文本或字符量是否超过阈值数目;以及
如果文本或字符量超过所述阈值数目,则在所述第二部分内自动滚动所述评论。
19.如权利要求18所述的计算设备,其特征在于,所述滚动包括在所述第二部分内水平或垂直滚动所呈现的评论中的至少一个。
20.一种其上存储有计算机可执行指令的计算机可读存储介质,所述计算机可执行指令在由计算机执行时使所述计算机:
接收包括文本的内容,所述内容源自连接到网络的一个或多个内容源;
接收先前与所述内容相关联的一个或多个评论,所述评论源自连接到所述网络的所述计算设备或其他计算设备之一;
在移动设备的显示设备的第一部分中呈现所接收到的内容的至少一部分;
至少基于当前呈现在所述显示设备的所述第一部分中的所接收到的内容的所确定的部分来确定所接收到的评论中的哪些评论将在所述显示设备的第二部分处被呈现,包括:
从所述评论和所述内容中的各语句获得一组评论-语句对;
标识每个评论-语句对的主题向量;
基于所述主题向量来提取特征,产生每个评论-语句对中的评论和语句的特征向量;以及
确定最佳匹配的评论-语句对;
呈现所确定的评论;
在所述显示设备的第三部分中接收用户输入的文本作为评论;以及
经由所述网络将所接收到的评论和与所接收到的内容有关的信息发送到评论/内容链接设备。
CN201580043166.4A 2015-05-29 2015-05-29 以评论为中心的新闻阅读器 Active CN106663123B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/080222 WO2016191912A1 (en) 2015-05-29 2015-05-29 Comment-centered news reader

Publications (2)

Publication Number Publication Date
CN106663123A CN106663123A (zh) 2017-05-10
CN106663123B true CN106663123B (zh) 2020-11-24

Family

ID=57439893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580043166.4A Active CN106663123B (zh) 2015-05-29 2015-05-29 以评论为中心的新闻阅读器

Country Status (4)

Country Link
US (1) US10699078B2 (zh)
EP (1) EP3304342A4 (zh)
CN (1) CN106663123B (zh)
WO (1) WO2016191912A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016191913A1 (en) 2015-05-29 2016-12-08 Microsoft Technology Licensing, Llc Systems and methods for providing a comment-centered news reader
CN106649345A (zh) 2015-10-30 2017-05-10 微软技术许可有限责任公司 用于新闻的自动会话创建器
CN108804481A (zh) * 2017-05-05 2018-11-13 广州市动景计算机科技有限公司 评论显示方法、装置、电子设备和可读存储介质
US11030395B2 (en) * 2018-05-30 2021-06-08 Microsoft Technology Licensing, Llc Top-align comments: just-in-time highlights and automatic scrolling
CN111460769B (zh) * 2020-03-27 2023-06-30 北京字节跳动网络技术有限公司 文章发布方法、装置、存储介质和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765840A (zh) * 2006-09-15 2010-06-30 埃克斯比布里奥公司 纸质与电子文档中的注释的捕获及显示
CN103853761A (zh) * 2012-12-03 2014-06-11 腾讯科技(深圳)有限公司 网页内容的评论显示、添加方法及装置
US8819719B1 (en) * 2006-12-06 2014-08-26 Google Inc. Real-time video commenting

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512609A (ja) * 2003-11-21 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 文書構造化のためのテキストセグメンテーション及びトピック注釈付け
US20070118794A1 (en) * 2004-09-08 2007-05-24 Josef Hollander Shared annotation system and method
US8806320B1 (en) * 2008-07-28 2014-08-12 Cut2It, Inc. System and method for dynamic and automatic synchronization and manipulation of real-time and on-line streaming media
US9176943B2 (en) 2008-05-12 2015-11-03 Adobe Systems Incorporated Comment presentation in electronic documents
KR20120099836A (ko) 2011-03-02 2012-09-12 삼성전자주식회사 이동통신 단말기에서 댓글을 공유하기 위한 장치 및 방법
CA2832909C (en) * 2011-06-22 2016-12-20 Rogers Communications Inc. System and method for matching comment data to text data
US20130073545A1 (en) * 2011-09-15 2013-03-21 Yahoo! Inc. Method and system for providing recommended content for user generated content on an article
US9141595B2 (en) 2011-10-05 2015-09-22 Adobe Systems Incorporated Contextual commenting on the web
CN103051513B (zh) 2011-10-11 2015-10-07 深圳市快播科技有限公司 一种消息实时交互方法及系统
US20130332841A1 (en) * 2012-06-10 2013-12-12 Apple Inc. Integrated tools for creating and sharing image streams
US20140052540A1 (en) * 2012-08-20 2014-02-20 Giridhar Rajaram Providing content using inferred topics extracted from communications in a social networking system
CN103581280B (zh) 2012-08-30 2017-02-15 网易传媒科技(北京)有限公司 一种基于微博平台的界面交互方法和设备
US20140094241A1 (en) 2012-09-28 2014-04-03 Wms Gaming Inc. Wagering game with progressive jackpot award driven by social communications
US9935910B2 (en) 2012-12-21 2018-04-03 Google Llc Recipient location aware notifications in response to related posts
US9817556B2 (en) * 2012-12-26 2017-11-14 Roovy, Inc. Federated commenting for digital content
US9386107B1 (en) * 2013-03-06 2016-07-05 Blab, Inc. Analyzing distributed group discussions
US9152675B2 (en) 2013-03-15 2015-10-06 Facebook, Inc. Selection and ranking of comments for presentation to social networking system users
US20140298201A1 (en) 2013-04-01 2014-10-02 Htc Corporation Method for performing merging control of feeds on at least one social network, and associated apparatus and associated computer program product
US9509758B2 (en) * 2013-05-17 2016-11-29 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Relevant commentary for media content
US9231909B2 (en) * 2013-05-20 2016-01-05 International Business Machines Corporation Communication system employing subnet or prefix to determine connection to same network segment
CN103412920B (zh) 2013-08-09 2018-11-30 宇龙计算机通信科技(深圳)有限公司 终端、服务器和信息显示方法
JP6122768B2 (ja) * 2013-11-19 2017-04-26 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置、表示方法およびコンピュータプログラム
US9767439B2 (en) * 2013-11-25 2017-09-19 Yahoo Holdings Inc. Automatic draft email notification
US20160171111A1 (en) * 2014-12-16 2016-06-16 Yahoo! Inc. Method and system to detect use cases in documents for providing structured text objects
CN104571818B (zh) 2014-12-26 2018-12-28 网易(杭州)网络有限公司 一种显示文章评论的方法及装置
CN104504131A (zh) 2014-12-31 2015-04-08 广州爱书旗信息技术有限公司 基于划线实现用户评论的方法、装置、终端设备及系统
US20160246769A1 (en) 2015-02-19 2016-08-25 Christian Screen System and method for user collaboration in a business intelligence software tool
US20160269345A1 (en) 2015-03-02 2016-09-15 Mordechai Weizman Systems and Method for Reducing Biases and Clutter When Ranking User Content and Ideas
CN104820704A (zh) 2015-05-12 2015-08-05 东南大学 一种网络文本的行内标注式评论的新建方法及其浏览方法
WO2016191913A1 (en) 2015-05-29 2016-12-08 Microsoft Technology Licensing, Llc Systems and methods for providing a comment-centered news reader
CN106649345A (zh) 2015-10-30 2017-05-10 微软技术许可有限责任公司 用于新闻的自动会话创建器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765840A (zh) * 2006-09-15 2010-06-30 埃克斯比布里奥公司 纸质与电子文档中的注释的捕获及显示
US8819719B1 (en) * 2006-12-06 2014-08-26 Google Inc. Real-time video commenting
CN103853761A (zh) * 2012-12-03 2014-06-11 腾讯科技(深圳)有限公司 网页内容的评论显示、添加方法及装置

Also Published As

Publication number Publication date
US20180150450A1 (en) 2018-05-31
US10699078B2 (en) 2020-06-30
CN106663123A (zh) 2017-05-10
EP3304342A4 (en) 2019-01-16
EP3304342A1 (en) 2018-04-11
WO2016191912A1 (en) 2016-12-08

Similar Documents

Publication Publication Date Title
US10891322B2 (en) Automatic conversation creator for news
US11645314B2 (en) Interactive information retrieval using knowledge graphs
US9923860B2 (en) Annotating content with contextually relevant comments
US20230076387A1 (en) Systems and methods for providing a comment-centered news reader
US9626622B2 (en) Training a question/answer system using answer keys based on forum content
US9720904B2 (en) Generating training data for disambiguation
US10108698B2 (en) Common data repository for improving transactional efficiencies of user interactions with a computing device
WO2018045646A1 (zh) 基于人工智能的人机交互方法和装置
Castellanos et al. LCI: a social channel analysis platform for live customer intelligence
WO2019037258A1 (zh) 信息推荐的装置、方法、系统及计算机可读存储介质
CN106663123B (zh) 以评论为中心的新闻阅读器
CN107861948B (zh) 一种标签提取方法、装置、设备和介质
US20160188569A1 (en) Generating a Table of Contents for Unformatted Text
US20180285448A1 (en) Producing personalized selection of applications for presentation on web-based interface
CN111813993A (zh) 视频内容的拓展方法、装置、终端设备及存储介质
CN116796730A (zh) 基于人工智能的文本纠错方法、装置、设备及存储介质
WO2020052060A1 (zh) 用于生成修正语句的方法和装置
WO2010132062A1 (en) System and methods for sentiment analysis
US9946765B2 (en) Building a domain knowledge and term identity using crowd sourcing
KR102519955B1 (ko) 토픽 키워드의 추출 장치 및 방법
CN110147488B (zh) 页面内容的处理方法、处理装置、计算设备及存储介质
US11520839B2 (en) User based network document modification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant