CN106654850A - 深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器 - Google Patents

深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器 Download PDF

Info

Publication number
CN106654850A
CN106654850A CN201510412569.3A CN201510412569A CN106654850A CN 106654850 A CN106654850 A CN 106654850A CN 201510412569 A CN201510412569 A CN 201510412569A CN 106654850 A CN106654850 A CN 106654850A
Authority
CN
China
Prior art keywords
frequency
laser
doubling
wavelength
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510412569.3A
Other languages
English (en)
Inventor
李�灿
冯兆池
金少青
张莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510412569.3A priority Critical patent/CN106654850A/zh
Publication of CN106654850A publication Critical patent/CN106654850A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器,所述脉冲激光器包括680-1040nm波长连续可调脉冲基频激光光源系统、二倍频系统、三倍频系统、四倍频系统四部分,提供覆盖170-520nm波长范围的连续可调纳秒及皮秒脉冲激光光源。二倍频系统可以实现腔外倍频和腔内倍频的在线转换。每个倍频系统均采用由单个倍频晶体或成对倍频晶体组成的激光倍频系统。激光波长的选择通过光栅自动转动和手动调节实现,激光光源的波长和功率监测通过光纤波长光谱仪光纤探头和自动功率计实现。激光光源波长区域范围宽,同时实现纳秒/皮秒光源输出,光源质量高、稳定性好,不需要更换反射镜、倍频晶体,倍频效率高,操作简单、调节方便。

Description

深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器
技术领域
本发明涉及一种深紫外-可见区(170-520nm)波长连续可调的纳秒及皮秒脉冲激光器,主要由可见-近红外区波长连续可调纳秒及皮秒脉冲基频激光光源系统、二倍频系统、三倍频系统、四倍频系统部分构成,提供波长范围覆盖170-520nm深紫外-可见区内波长连续可调的纳秒及皮秒脉冲激光光源。
背景技术
现代光谱技术的发展日新月异,人们对用于光谱研究的激发光源提出了越来越高的要求。同时实现纳秒和皮秒脉冲光源输出或单独纳秒脉冲光源、皮秒脉冲光源输出,质量高、稳定性好、波长覆盖范围广、操作简单、调节方便的激光光源,越来越受到人们的关注,然而由于非线性倍频晶体及当前技术的限制,通常需要多块晶体实现倍频输出,因此需要经常更换非线性倍频晶体,这使得宽波段内激光的输出变得非常困难。比如,目前的一些激光器,实现350-480nm波长连续输出通常需要三块倍频晶体,而实现240-320nm波长连续输出也需要三块倍频晶体。对于更短的紫外、深紫外区波段,实现206-240nm波长连续输出需要三块倍频晶体,而且目前商品化的193-206nm波长连续输出需要二块倍频晶体,并且还是通过更难以调节的和频技术实现的,效率低,使用也极不方便。总的说来,当前的波长可调激光光源还不能完全覆盖深紫外-可见区,并且需要频繁地更换倍频晶体、更换反射镜,且光路调节繁杂,操作和使用困难,这对激光光源的质量、稳定性也带来了较大的影响。因此,发展纳秒及皮秒脉冲宽度、宽波长覆盖范围、不需要更换倍频晶体和反射镜、质量高、稳定性好、操作简单、调节方便的激光光源具有很大的实用价值。
发明内容
为了克服以上的不足,本发明提供一种深紫外-可见区(170-520nm)波长连续可调的纳秒及皮秒脉冲激光器,主要由可见-近红外区波长连续可调纳秒及皮秒脉冲基频激光光源系统(680-1040nm)、二倍频系统(340-520nm)、三倍频系统(240-340nm)、四倍频系统(170-240nm)四部分构成,实现波长范围170-520nm深紫外-可见区全覆盖高效率地输出。每个倍频系统均采用由单个倍频晶体或成对倍频晶体组成的激光倍频系统。通过光栅自动转动和手动调节光栅和倍频晶体角度实现激光光源的选择,通过光纤波长光谱仪光纤探头和自动功率计分别实现激光光源的波长和功率监测。不需要更换倍频晶体和反射镜,倍频效率高。对于激光光源波长的改变,操作简单、调节方便,大大提高了激光光源的稳定性,保障了激光光源高质量、高功率的稳定输出。
技术方案
所述脉冲激光器包括680-1040nm波长连续可调脉冲基频激光光源系统、二倍频系统、三倍频系统、四倍频系统四部分,提供覆盖170-520nm波长范围的连续可调纳秒及皮秒脉冲激光光源。将680-1040nm波长连续可调脉冲基频激光光源通过二倍频系统后得到340-520nm范围内波长连续可调的二倍频脉冲激光光源,二倍频脉冲激光光源和基频脉冲激光光源经过三倍频系统得到240-340nm范围内波长连续可调的三倍频脉冲激光光源,二倍频激光光源经过四倍频系统得到170-240nm范围内波长连续可调的纳秒及皮秒四倍频激光光源。
每个倍频系统均采用单个倍频晶体组成激光倍频系统,或利用二块晶体对称放置组成一套倍频晶体系统,以进一步提高倍频效率和倍频光光束质量,同时使倍频后的激光输出光路变化很小,以利于光路的调节;二倍频系统中的倍频晶体Ⅰ为LBO或BBO晶体;三倍频系统中的倍频晶体Ⅱ为BBO或LBO晶体;四倍频系统中的倍频晶体Ⅲ为KBBF或BBO晶体。
二倍频系统为腔外二倍频系统,或腔内二倍频系统,或折叠腔腔内二倍频系统,或折叠腔腔内二倍频系统和腔外二倍频系统的组合;二倍频系统为腔外二倍频系统时,包括透镜和倍频晶体Ⅰ,由激光输出耦合镜输出的680-1040nm范围内所需波长的基频激光经透镜聚焦到倍频晶体Ⅰ上,倍频输出340-520nm的二倍频激光;二倍频系统为腔内二倍频系统时,包括透镜和倍频晶体Ⅰ,透过掺Ti蓝宝石后的所需波长的基频光经透镜聚焦到倍频晶体Ⅰ上进行倍频,再经激光输出耦合镜输出340-520nm的二倍频激光和680-1040nm的基频激光;二倍频系统为折叠腔腔内二倍频系统时,包括凹面反射镜和倍频晶体Ⅰ,透过掺Ti蓝宝石后的所需波长的基频光经凹面反射镜聚焦到倍频晶体Ⅰ上进行倍频,再经激光输出耦合镜输出340-520nm的二倍频激光和680-1040nm的基频激光;二倍频系统为折叠腔腔内二倍频系统和腔外二倍频系统的组合时,通过提拉或折叠或平移折叠腔腔内二倍频系统中的凹面反射镜进行折叠腔腔内与腔外二倍频系统的转换。
680-1040nm波长连续可调脉冲基频激光系统包括527nm纳秒和/或527nm皮秒泵浦激光器,527nm纳秒和/或527nm皮秒泵浦激光器发出的527nm激光经527nm高反射680-1040nm高透射的反射镜反射至掺Ti蓝宝石上,激发掺Ti蓝宝石发射出680-1040nm的基频光,基频光透过527nm高反射680-1040nm高透射的反射镜后照射到光栅上,经光栅选出所需波长的基频光,所需波长的基频光再透过527nm高反射680-1040nm高透射的反射镜和掺Ti蓝宝石由激光输出耦合镜输出680-1040nm范围内的所需波长的基频激光。
二倍频系统的二倍频激光由倍频晶体Ⅰ倍频基频激光产生;四倍频系统包括透镜和倍频晶体Ⅲ,由倍频晶体Ⅰ倍频输出的二倍频激光经透镜聚焦到倍频晶体Ⅲ上,倍频输出170-240nm的四倍频激光。倍频晶体Ⅲ置于一抽真空或充氮气的光学腔中,倍频晶体Ⅲ为KBBF晶体时输出170-240nm的四倍频激光,倍频晶体Ⅲ为BBO晶体时输出206-240nm的四倍频激光。
三倍频系统包括二个340-520nm高反射680-1040nm高透射的反射镜、半波片、透镜、倍频晶体Ⅱ,由倍频晶体Ⅰ输出的二倍频激光和基频激光照射到第一个340-520nm高反射680-1040nm高透射的反射镜上,分为二路,第一路是经第一个340-520nm高反射680-1040nm高透射的反射镜反射的二倍频激光再经二个反射镜反射至第二个340-520nm高反射680-1040nm高透射的反射镜的反射面上,第二路是透过第一个340-520nm高反射680-1040nm高透射的反射镜的基频激光经半波片和透镜聚焦后透过第二个340-520nm高反射680-1040nm高透射的反射镜,第一路与第二路光于第二个340-520nm高反射680-1040nm高透射的反射镜的反射面汇聚后再照射到倍频晶体Ⅱ上进行倍频,输出240-340nm的三倍频激光。
由倍频晶体Ⅰ输出的二倍频激光和基频激光经可移动反射镜进行二倍频激光输出、三倍频系统激光输入、四倍频系统激光输入三条光路间的切换。
纳秒、皮秒脉冲宽度的脉冲泵浦源的输出波长为400-600nm;激光光源的波长和功率监测通过光纤波长光谱仪光纤探头和自动功率计实现;通过计算机控制光栅转动或手动调节光栅和倍频晶体的角度实现激光光源波长的选择。
本发明所述的脉冲激光器应用于拉曼光谱、荧光光谱、紫外可见吸收光谱、圆二色光谱、光电子能谱、光电子发射显微镜以及时间分辨光谱的激发光源。有益效果
本发明涉及一种深紫外-可见区(170-520nm)波长连续可调的纳秒及皮秒脉冲激光器,其中,二倍频系统可以实现腔外二倍频和腔内二倍频的在线转换,每个倍频系统均采用由单个倍频晶体或成对倍频晶体组成的激光倍频系统。激光光源的选择通过光栅自动转动和手动调节实现,激光光源的波长和功率监测通过光纤波长光谱仪光纤探头和自动功率计实现,本发明激光光源波长范围宽,实现170-520nm范围内纳秒及皮秒脉冲激光输出。
该脉冲激光器不需要更换倍频晶体和反射镜,倍频效率高,对于激光光源波长的改变,操作简单、调节方便,大大提高了激光光源的稳定性,保障了激光光源高质量、高功率的稳定输出。
本发明提供的脉冲激光器由于具有激光质量高、稳定性好、波长覆盖范围广、操作简单、方便调节等特点,能够作为拉曼光谱、荧光光谱、紫外可见吸收光谱、圆二色光谱、光电子能谱、光电子发射显微镜及时间分辨光谱的激发光源,用于拉曼光谱、荧光光谱、紫外可见吸收光谱、圆二色光谱、光电子能谱、光电子发射显微成像以及时间分辨光谱的研究,推动和促进这些研究领域的发展。
附图说明
图1为采用腔外倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器的示意图。
图2为采用腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器的示意图。
图3为采用折叠腔腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器的示意图。
图4为采用腔外、折叠腔腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器的示意图。
图5为采用其他泵浦光源的腔外倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器的示意图。
图6为采用其他泵浦光源的折叠腔腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器的示意图。
图7为采用腔外、折叠腔腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的皮秒脉冲激光器的示意图。
图8为采用腔外、折叠腔腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒脉冲激光器的示意图。
图9为深紫外-可见区波长连续可调的纳秒脉冲激光器的二倍频转化效率曲线。
图10为深紫外-可见区波长连续可调的纳秒脉冲激光器的三倍频转化效率曲线。
图11为深紫外-可见区波长连续可调的纳秒脉冲激光器的四倍频转化效率曲线。
具体实施方式
下述实施例结合附图对本发明进行描述,所述实施例不限制本发明所要保护的范围。
实施例1 采用腔外倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲宽度的脉冲激光器。
一种深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调纳秒及皮秒脉冲宽度的脉冲激光器,包括可见-近红外区波长连续可调纳秒及皮秒脉冲基频激光光源系统、二倍频系统、三倍频系统、四倍频系统四部分。
527nm纳秒和/或527nm皮秒泵浦激光器发出的527nm激光经反射镜、527nm高反射680-1040nm高透射的反射镜反射至掺Ti蓝宝石上,激发掺Ti蓝宝石发射出680-1040nm的基频光,基频光透过527nm高反射680-1040nm高透射的反射镜后照射到光栅上,经光栅选出所需波长的基频光,所需波长的基频光再透过527nm高反射680-1040nm高透射的反射镜和掺Ti蓝宝石由激光输出耦合镜输出680-1040nm范围内的所需波长的基频激光。其波长的准确读数通过光纤波长光谱仪光纤探头获得,相应的功率通过自动功率计读出。680-1040nm范围内的基频激光经反射镜、透镜聚焦到倍频晶体Ⅰ上,倍频产生二倍频激光,经可移动反射镜、反射镜反射输出,其功率通过自动功率计读出。由倍频晶体Ⅰ输出的二倍频激光和基频激光照射到第一个340-520nm高反射680-1040nm高透射的反射镜上,分为二路,第一路是经第一个340-520nm高反射680-1040nm高透射的反射镜反射的二倍频激光再经二个反射镜反射至第二个340-520nm高反射680-1040nm高透射的反射镜的反射面上,第二路是透过第一个340-520nm高反射680-1040nm高透射的反射镜的基频激光经半波片和透镜聚焦后透过第二个340-520nm高反射680-1040nm高透射的反射镜,第一路与第二路光于第二个340-520nm高反射680-1040nm高透射的反射镜的反射面汇聚后再照射到倍频晶体Ⅱ上进行倍频,输出240-340nm的三倍频激光,其功率通过自动功率计读出。340-520nm范围内的二倍频激光经可移动反射镜、反射镜以及透镜聚焦到倍频晶体Ⅲ上,倍频输出170-240nm的四倍频激光。倍频晶体Ⅲ置于一抽真空或充氮气的光学腔中,倍频晶体Ⅲ为KBBF晶体时输出170-240nm的四倍频激光,倍频晶体Ⅲ为BBO晶体时输出206-240nm的四倍频激光,其功率通过自动功率计读出。
实施例2 采用腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器。
结构同实施例1,图2与图1的区别在于,图2为在原基频激光器腔内加入透镜、倍频晶体Ⅰ一起构成腔内倍频激光器系统。
结构同实施例1,图3与图1的区别在于,图3在原基频激光器腔内加入由凹面反射镜、倍频晶体Ⅰ、激光输出耦合镜一起构成新的折叠腔腔内倍频激光器系统;腔内基频光入射到非线性倍频晶体上,得到更高倍频效率的340-520nm范围内波长连续可调的腔内二倍频脉冲激光光源。再利用二倍频脉冲激光光源和基频脉冲激光光源经过三倍频系统可以高效率地得到240-340nm范围内波长连续可调三倍频脉冲激光光源。同时腔内二倍频激光光源再经过四倍频系统,在170-240nm范围内可得到倍频效率更高的波长连续可调纳秒及皮秒四倍频激光光源。
实施例3 采用腔外、腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调纳秒及皮秒脉冲宽度的脉冲激光器。
结构同实施例1,图4与图1的区别在于,在图4中,二倍频系统为折叠腔腔内二倍频系统和腔外二倍频系统的组合,通过提拉或折叠或平移折叠腔腔内的凹面反射镜,实现折叠腔腔内二倍频、腔外二倍频激光器系统相互转换。进行腔内倍频时,通过提拉或折叠或平移将凹面反射镜和可移动反射镜3放置于光路中即可;进行腔外倍频时,通过提拉或折叠或平移将凹面反射镜和可移动反射镜3从光路中移开,通过提拉或折叠或平移将可移动反射镜2放置于光路中。腔外、腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器采用共同的三倍频、四倍频系统。
实施例4 采用其他泵浦光源的腔外、腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒及皮秒脉冲激光器。
结构同实施例1,图5与图1的区别在于,在图5中,二倍频系统为腔外二倍频系统,泵浦光源为488nm的其他泵浦光源;结构同实施例1,图6与图1的区别在于,在图6中,二倍频系统为折叠腔腔内二倍频系统,泵浦光源为488nm的其他泵浦光源。
实施例5 采用腔外、腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的皮秒脉冲激光器。
结构同实施例3,图7与图3的区别在于,在图7中,泵浦光源为527nm的皮秒脉冲激光光源。
实施例6 采用腔外、腔内倍频技术的深紫外-可见区(170-240nm,240-340nm,340-520nm)波长连续可调的纳秒脉冲激光器。
结构同实施例3,图8与图3的区别在于,在图8中,泵浦光源为527nm的纳秒脉冲激光光源。
实施例7 深紫外-可见区(170-520nm)波长连续可调的纳秒脉冲激光器的波长功率曲线。
如图9,10,11所示,深紫外-可见区波长连续可调的纳秒脉冲激光器提供的波长范围可以覆盖170-520nm:二倍频的最大转换效率为62%(1680mW 812nm的基频转化为1040mW 406nm的二倍频);三倍频的最大转换效率为11.7%(1680mW 812nm的基频转化为196mW 270.7nm的三倍频);四倍频的最大转换效率为13.1%(660mW 434nm的二倍频转化为86mW 217nm的四倍频)。因此,深紫外-可见区波长连续可调的纳秒脉冲激光器能够作为拉曼光谱、荧光光谱、紫外可见吸收光谱、圆二色光谱、光电子能谱、光电子发射显微镜及时间分辨光谱的激发光源,用于拉曼光谱、荧光光谱、紫外可见吸收光谱、圆二色光谱、光电子能谱、光电子发射显微成像以及时间分辨光谱的研究,推动和促进这些研究领域的发展。

Claims (9)

1.一种深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器,其特征在于:所述脉冲激光器包括680-1040nm波长连续可调脉冲基频激光光源系统、二倍频系统、三倍频系统、四倍频系统四部分;所述二倍频系统的二倍频激光由倍频晶体Ⅰ倍频基频激光产生;所述四倍频系统包括透镜和倍频晶体Ⅲ,由倍频晶体Ⅰ倍频输出的二倍频激光经透镜聚焦到倍频晶体Ⅲ上,倍频输出170-240nm的四倍频激光,所述倍频晶体Ⅲ置于一抽真空或充氮气的光学腔中,所述倍频晶体Ⅲ为KBBF晶体输出170-240nm的四倍频激光,或所述倍频晶体Ⅲ为BBO晶体输出206-240nm的四倍频激光;所述脉冲激光器提供170-520nm、680-1040nm范围内波长连续可调的纳秒及皮秒脉冲激光光源。
2.按权利要求1所述的脉冲激光器,其特征在于:将680-1040nm波长连续可调脉冲基频激光光源通过二倍频系统后得到340-520nm范围内波长连续可调的二倍频脉冲激光光源;二倍频脉冲激光光源和基频脉冲激光光源经过三倍频系统得到240-340nm范围内波长连续可调的三倍频脉冲激光光源;二倍频激光光源经过四倍频系统得到170-240nm范围内波长连续可调的纳秒及皮秒四倍频激光光源。
3.按权利要求1所述的脉冲激光器,其特征在于:每个倍频系统均采用单个倍频晶体组成激光倍频系统,或利用二块晶体对称放置组成一套倍频晶体系统,以进一步提高倍频效率和倍频光光束质量,同时使倍频后的激光输出光路变化很小,以利于光路的调节;所述二倍频系统中的倍频晶体Ⅰ为LBO或BBO晶体;所述三倍频系统中的倍频晶体Ⅱ为BBO或LBO晶体;所述四倍频系统中的倍频晶体Ⅲ为KBBF或BBO晶体。
4.按权利要求1所述的脉冲激光器,其特征在于:所述二倍频系统为腔外二倍频系统,或腔内二倍频系统,或折叠腔腔内二倍频系统,或折叠腔腔内二倍频系统和腔外二倍频系统的组合;所述二倍频系统为腔外二倍频系统,包括透镜和倍频晶体Ⅰ,由激光输出耦合镜输出的680-1040nm范围内所需波长的基频激光经透镜聚焦到倍频晶体Ⅰ上,倍频输出340-520nm的二倍频激光;或者,所述二倍频系统为腔内二倍频系统,包括透镜和倍频晶体Ⅰ,透过掺Ti蓝宝石后的所需波长的基频光经透镜聚焦到倍频晶体Ⅰ上进行倍频,再经激光输出耦合镜输出340-520nm的二倍频激光和680-1040nm的基频激光;或者,所述二倍频系统为折叠腔腔内二倍频系统,包括凹面反射镜和倍频晶体Ⅰ,透过掺Ti蓝宝石后的所需波长的基频光经凹面反射镜聚焦到倍频晶体Ⅰ上进行倍频,再经激光输出耦合镜输出340-520nm的二倍频激光和680-1040nm的基频激光;或者,所述二倍频系统为折叠腔腔内二倍频系统和腔外二倍频系统的组合,通过提拉或折叠或平移折叠腔腔内二倍频系统中的凹面反射镜进行折叠腔腔内与腔外二倍频系统的转换。
5.按权利要求1所述的脉冲激光器,其特征在于:680-1040nm波长连续可调脉冲基频激光系统包括527nm纳秒和/或527nm皮秒泵浦激光器,527nm纳秒和/或527nm皮秒泵浦激光器发出的527nm激光经527nm高反射680-1040nm高透射的反射镜反射至掺Ti蓝宝石上,激发掺Ti蓝宝石发射出680-1040nm的基频光,基频光透过527nm高反射680-1040nm高透射的反射镜后照射到光栅上,经光栅选出所需波长的基频光,所需波长的基频光再透过527nm高反射680-1040nm高透射的反射镜和掺Ti蓝宝石由激光输出耦合镜输出680-1040nm范围内的所需波长的基频激光。
6.按权利要求1所述的脉冲激光器,其特征在于:所述三倍频系统包括二个340-520nm高反射680-1040nm高透射的反射镜、半波片、透镜、倍频晶体Ⅱ,由倍频晶体Ⅰ输出的二倍频激光和基频激光照射到第一个340-520nm高反射680-1040nm高透射的反射镜上,分为二路,第一路是经第一个340-520nm高反射680-1040nm高透射的反射镜反射的二倍频激光再经二个反射镜反射至第二个340-520nm高反射680-1040nm高透射的反射镜的反射面上,第二路是透过第一个340-520nm高反射680-1040nm高透射的反射镜的基频激光经半波片和透镜聚焦后透过第二个340-520nm高反射680-1040nm高透射的反射镜,第一路与第二路光于第二个340-520nm高反射680-1040nm高透射的反射镜的反射面汇聚后再照射到倍频晶体Ⅱ上进行倍频,输出240-340nm的三倍频激光。
7.按权利要求1所述的脉冲激光器,其特征在于:由倍频晶体Ⅰ输出的二倍频激光和基频激光经可移动反射镜进行二倍频激光输出、三倍频系统激光输入、四倍频系统激光输入三条光路间的切换。
8.按权利要求1所述的脉冲激光器,其特征在于:纳秒、皮秒脉冲宽度的脉冲泵浦源的输出波长为400-600nm;激光光源的波长和功率监测通过光纤波长光谱仪光纤探头和自动功率计实现;通过计算机控制光栅转动或手动调节光栅和倍频晶体的角度实现激光光源波长的选择。
9.按权利要求1、2、3、4、5、6、7或8所述脉冲激光器,其特征在于:提供脉冲激光光源,用于拉曼光谱、荧光光谱、紫外可见吸收光谱、圆二色光谱、光电子能谱、光电子发射显微镜或时间分辨光谱的研究。
CN201510412569.3A 2015-07-14 2015-07-14 深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器 Pending CN106654850A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510412569.3A CN106654850A (zh) 2015-07-14 2015-07-14 深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510412569.3A CN106654850A (zh) 2015-07-14 2015-07-14 深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器

Publications (1)

Publication Number Publication Date
CN106654850A true CN106654850A (zh) 2017-05-10

Family

ID=58815006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510412569.3A Pending CN106654850A (zh) 2015-07-14 2015-07-14 深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器

Country Status (1)

Country Link
CN (1) CN106654850A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293483A (zh) * 2017-06-09 2017-10-24 苏晋苗 一种激光芯片平坦化加工装置及方法
CN110098552A (zh) * 2019-04-30 2019-08-06 北京镓族科技有限公司 基于氧化镓晶体的皮秒全固态紫外激光器
CN111604582A (zh) * 2020-06-05 2020-09-01 青岛昆仑天峰航空科技有限公司 一种三波段激光双聚焦头激光加工系统和方法
CN113258427A (zh) * 2020-02-10 2021-08-13 北京科益虹源光电技术有限公司 一种213nm紫外光的输出方法及系统
CN113258426A (zh) * 2020-02-10 2021-08-13 北京科益虹源光电技术有限公司 一种213nm激光器
CN114374139A (zh) * 2021-11-30 2022-04-19 天津大学佐治亚理工深圳学院 基于补偿板产生飞秒深紫外激光的方法及激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059083A1 (en) * 1999-03-26 2000-10-05 Photonics Industries International, Inc. Fourth harmonic generation apparatus
CN101414726A (zh) * 2008-09-09 2009-04-22 北京航空航天大学 皮秒脉冲光纤激光器
CN101598882A (zh) * 2008-06-04 2009-12-09 中国科学院物理研究所 和频不同超短激光脉冲产生新波长激光的装置
CN201373964Y (zh) * 2008-12-26 2009-12-30 北京工业大学 激光腔外倍频系统
CN102709801A (zh) * 2012-06-04 2012-10-03 中国科学院半导体研究所 一种同时输出纳秒和皮秒脉冲的激光器
CN104348073A (zh) * 2013-08-09 2015-02-11 中国科学院物理研究所 可调谐窄线宽深紫外激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059083A1 (en) * 1999-03-26 2000-10-05 Photonics Industries International, Inc. Fourth harmonic generation apparatus
CN101598882A (zh) * 2008-06-04 2009-12-09 中国科学院物理研究所 和频不同超短激光脉冲产生新波长激光的装置
CN101414726A (zh) * 2008-09-09 2009-04-22 北京航空航天大学 皮秒脉冲光纤激光器
CN201373964Y (zh) * 2008-12-26 2009-12-30 北京工业大学 激光腔外倍频系统
CN102709801A (zh) * 2012-06-04 2012-10-03 中国科学院半导体研究所 一种同时输出纳秒和皮秒脉冲的激光器
CN104348073A (zh) * 2013-08-09 2015-02-11 中国科学院物理研究所 可调谐窄线宽深紫外激光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光粒网: ""自动光参量放大器SpiritTM-OPA"", 《WWW.DIODELASER.COM.CN/HTM/FZPTTJ/5232.HTML》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293483A (zh) * 2017-06-09 2017-10-24 苏晋苗 一种激光芯片平坦化加工装置及方法
CN110098552A (zh) * 2019-04-30 2019-08-06 北京镓族科技有限公司 基于氧化镓晶体的皮秒全固态紫外激光器
CN113258427A (zh) * 2020-02-10 2021-08-13 北京科益虹源光电技术有限公司 一种213nm紫外光的输出方法及系统
CN113258426A (zh) * 2020-02-10 2021-08-13 北京科益虹源光电技术有限公司 一种213nm激光器
CN111604582A (zh) * 2020-06-05 2020-09-01 青岛昆仑天峰航空科技有限公司 一种三波段激光双聚焦头激光加工系统和方法
CN114374139A (zh) * 2021-11-30 2022-04-19 天津大学佐治亚理工深圳学院 基于补偿板产生飞秒深紫外激光的方法及激光器

Similar Documents

Publication Publication Date Title
CN106654850A (zh) 深紫外-可见区波长连续可调的纳秒及皮秒脉冲激光器
Cerullo et al. Ultrafast optical parametric amplifiers
Riedle et al. Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR
CN103633537B (zh) 一种载波包络相移频率可控的低噪声光纤激光频率梳装置
CN102244354B (zh) 基于光学超晶格的超量子转换极限中红外激光器及构造方法
US3947688A (en) Method of generating tunable coherent ultraviolet light at wavelengths below 2500 A
CA2785243A1 (en) Ultrafast raman laser systems and methods of operation
CN104779516B (zh) 中红外单频光学参量振荡器
Eichmann et al. Generation of short-pulse tunable xuv radiation by high-order frequency mixing
Mani et al. Pumping picosecond optical parametric oscillators by a pulsed Nd: YAG laser mode locked using a nonlinear mirror
CN105428988A (zh) 一种飞秒绿光同步泵浦的飞秒光学参量振荡器
CN114185223A (zh) 一种参量光的产生方法及应用
US10642127B1 (en) Single Crystal optical parametric amplifier
Meltzer et al. Tunable IR difference-frequency generation in LiIO3
CN110048298A (zh) 一种轻小型长波红外激光产生装置
CN102200670B (zh) 一种使用多纵模激光器实现差频产生太赫兹波的装置
CN100570464C (zh) 载波包络相位稳定的双波长输出光学参量放大激光系统
CN103337785A (zh) 采用拉曼频率变换产生多波长拉曼激光的方法及其装置
US6804044B2 (en) Narrow bandwidth, pico-second, beta barium borate-master oscillator power amplifier system and method of operation of same
CN115954752A (zh) 一种基于光参量振荡器的可见光波段窄线宽激光装置及其工作方法
Decker et al. Difference frequency generation by optical mixing of two dye lasers in proustite
CN213602178U (zh) 一种参量振荡光学系统
Kuhl et al. Efficient second-harmonic and sum-frequency generation from a flashlamp-pumped dye laser
CN201252335Y (zh) 载波包络相位稳定的双波长输出光学参量放大激光系统
CN107104355A (zh) 一种基于单块kdp晶体级联光学变频的激光器及其工作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication