CN106654826A - 基于太阳光泵浦实现微球激光器激光输出的方法 - Google Patents
基于太阳光泵浦实现微球激光器激光输出的方法 Download PDFInfo
- Publication number
- CN106654826A CN106654826A CN201611268299.4A CN201611268299A CN106654826A CN 106654826 A CN106654826 A CN 106654826A CN 201611268299 A CN201611268299 A CN 201611268299A CN 106654826 A CN106654826 A CN 106654826A
- Authority
- CN
- China
- Prior art keywords
- laser
- microballoon
- doped fiber
- sunshine
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/0915—Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
本发明公开了一种基于太阳光泵浦实现微球激光器激光输出的方法。本发明将太阳光应用于激光器的泵浦源,微球用作谐振腔,掺铒光纤微球用作增益介质,构建了一种基于太阳光泵浦的微球激光器。太阳光杂乱无章并且频率分布范围较宽,所以本发明可以将杂乱无章的太阳光转换为单色性好的激光。以太阳能作为激光器的泵浦源具有结构简单,成本低,无污染的优点。
Description
技术领域
本发明属于激光技术领域,特别涉及一种基于太阳光泵浦实现微球激光器激光输出的方法。
背景技术
近年来,激光器及其应用飞速发展,微球激光器具有体积小、低阈值、转化效率高等优点,在科研研究中得到了广泛关注。太阳能是纯净的可再生能源,有效开采和利用太阳能具有十分重大的意义。目前,对于太阳能的利用最为广泛的是太阳能热水器以及太阳能发电。其利用方式有光-热转化和光-电转化,而以太阳能作为泵浦源可以直接实现光-光转化。由于太阳光杂乱无章并且频谱较宽所以以太阳能作为泵浦源可以将杂乱无章的太阳光转化为单色性较好的激光。以太阳光作为激光器的泵浦源实现激光输出的方法具有运行成本低、无污染、结构简单等优点。
发明内容
本发明以太阳光作为泵浦源,提出了一种基于太阳光泵浦实现微球激光器激光输出的方法。
本发明具体是:将直径为5-100厘米的聚焦透镜垂直于入射的平行太阳光;将锥形的掺铒光纤下端直径为50-300微米的掺铒光纤微球放置于该聚焦透镜的焦点位置,使得平行入射的太阳光聚焦于掺铒光纤微球;将直径为5-10厘米的聚焦透镜平行于太阳光放置,并接近掺铒光纤微球;太阳光中波长落在980nm或1480nm附近的光作为掺铒光纤微球的泵浦光,当光入射后,耦合进入微球内的光波在微球的表面不断地发生全反射,沿着微球的赤道不断发生绕行,光经过掺铒光纤微球放大后产生1550nm附近的激光。
本发明适用于光纤微球激光器技术领域,将太阳光应用于激光器的泵浦源,微球用作谐振腔,掺铒光纤微球用作增益介质,构建了一种基于太阳光泵浦的微球激光器。太阳光杂乱无章并且频率分布范围较宽,所以本发明可以将杂乱无章的太阳光转换为单色性好的激光。以太阳能作为激光器的泵浦源具有结构简单,成本低,无污染的优点。
附图说明
图1为本发明的结构示意图;
图2为本发明实施例中基于太阳光泵浦实现微球激光器激光输出光谱图。
具体实施方式
如图1所示,实现本发明的设备包括锥形的掺铒光纤2,其下端有一个直径L(100微米)的掺铒光纤微球3,在锥形的掺铒光纤基础上加工成掺铒光纤微球属于现有成熟技术;选用一个直径D(20厘米)的聚焦透镜1和直径为d(5厘米)的聚焦透镜4。将直径D(20厘米)的聚焦透镜1垂直于入射的平行太阳光;将锥形的掺铒光纤2下端的掺铒光纤微球3放置于直径D(20厘米)的聚焦透镜1的焦点位置,使得平行入射的太阳光聚焦于掺铒光纤微球3;将直径为d(5厘米)的聚焦透镜4平行于太阳光放置,并接近掺铒光纤微球3,从而收集从掺铒光纤微球3发出的激光;光谱分析仪5用于测量通过直径为d(5厘米)的聚焦透镜4收集的掺铒光纤微球激光。
太阳光的波长范围在300~2500nm之间,其波长落在980nm或1480nm附近的光可以作为掺铒光纤微球的泵浦光。掺铒光纤微球上的铒离子,在未受到太阳光的激励时铒离子处于低能级,经过太阳光的照射后,铒离子吸收光子的能量,从低能级跃迁至高能级,从而使得高能级上的粒子数大于低能级的粒子数,实现粒子数反转,然后处于高能级的铒离子产生受激辐射从高能级跃迁到低能级同时发射出一个与外来光子完全相同的光子,从而增加了太阳光光子的数量。当光入射后,耦合进入微球内的光波在微球的表面会不断的发生全反射,沿着微球的赤道不断发生绕行,太阳光中980nm或1480nm的光经过掺铒光纤微球放大后就产生了1550nm附近的激光,见图2。
该发明主要利用了太阳光中波长为980nm和1480nm附近的光作为掺铒材料的泵浦,以低阈值光纤微球作为激光器结构,从而实现了波长在1550nm附近的激光输出。由于太阳光是纯净的可再生能源,以太阳能作为激光器的泵浦源将杂乱无章的自然光经过放大后转换为单色性好的激光,具有运行成本低的优点,特别适合于外太空激光应用。
Claims (1)
1.基于太阳光泵浦实现微球激光器激光输出的方法,其特征在于该方法具体是:
将直径为5-100厘米的聚焦透镜垂直于入射的平行太阳光;将锥形的掺铒光纤下端直径为50-300微米的掺铒光纤微球放置于该聚焦透镜的焦点位置,使得平行入射的太阳光聚焦于掺铒光纤微球;将直径为5-10厘米的聚焦透镜平行于太阳光放置,并接近掺铒光纤微球;太阳光中波长落在980nm或1480nm附近的光作为掺铒光纤微球的泵浦光,当光入射后,耦合进入微球内的光波在微球的表面不断地发生全反射,沿着微球的赤道不断发生绕行,光经过掺铒光纤微球放大后产生1550nm附近的激光。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611268299.4A CN106654826A (zh) | 2016-12-31 | 2016-12-31 | 基于太阳光泵浦实现微球激光器激光输出的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611268299.4A CN106654826A (zh) | 2016-12-31 | 2016-12-31 | 基于太阳光泵浦实现微球激光器激光输出的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106654826A true CN106654826A (zh) | 2017-05-10 |
Family
ID=58838557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611268299.4A Pending CN106654826A (zh) | 2016-12-31 | 2016-12-31 | 基于太阳光泵浦实现微球激光器激光输出的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106654826A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109687272A (zh) * | 2019-03-01 | 2019-04-26 | 电子科技大学 | 基于微球腔反馈的掺铒微球激光器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101030691A (zh) * | 2006-02-28 | 2007-09-05 | 李衡 | 阳光激光器 |
CN101825493A (zh) * | 2010-05-14 | 2010-09-08 | 中国科学院上海光学精密机械研究所 | 物质光学特性的检测系统 |
CN102361211A (zh) * | 2011-10-08 | 2012-02-22 | 哈尔滨工程大学 | 基于微腔控制反馈效应的光纤激光器 |
US20140217336A1 (en) * | 2011-10-07 | 2014-08-07 | Asahi Glass Company, Limited | Solar-pumped laser device, solar-pumped amplifier and light-amplifying glass |
CN104704689A (zh) * | 2012-07-30 | 2015-06-10 | 工业研究与发展基金会有限公司 | 能量转换系统 |
CN204680898U (zh) * | 2015-06-02 | 2015-09-30 | 哈尔滨工程大学 | 可调谐液体微球激光器 |
-
2016
- 2016-12-31 CN CN201611268299.4A patent/CN106654826A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101030691A (zh) * | 2006-02-28 | 2007-09-05 | 李衡 | 阳光激光器 |
CN101825493A (zh) * | 2010-05-14 | 2010-09-08 | 中国科学院上海光学精密机械研究所 | 物质光学特性的检测系统 |
US20140217336A1 (en) * | 2011-10-07 | 2014-08-07 | Asahi Glass Company, Limited | Solar-pumped laser device, solar-pumped amplifier and light-amplifying glass |
CN102361211A (zh) * | 2011-10-08 | 2012-02-22 | 哈尔滨工程大学 | 基于微腔控制反馈效应的光纤激光器 |
CN104704689A (zh) * | 2012-07-30 | 2015-06-10 | 工业研究与发展基金会有限公司 | 能量转换系统 |
CN204680898U (zh) * | 2015-06-02 | 2015-09-30 | 哈尔滨工程大学 | 可调谐液体微球激光器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109687272A (zh) * | 2019-03-01 | 2019-04-26 | 电子科技大学 | 基于微球腔反馈的掺铒微球激光器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7403328B2 (en) | Solar-pumped laser | |
US5431742A (en) | Luminescent solar concentrators using light amplification processes | |
CN106877121B (zh) | 基于光控石墨烯啁啾布拉格光栅的脉宽可调激光器 | |
CN105403951A (zh) | 空心-实心复合的多芯光子晶体光纤及其激光放大的方法 | |
CN102082390A (zh) | 太阳光光纤组束泵浦固体激光器 | |
Guo et al. | Transversely pumped solar Nd3+-doped fiber laser | |
CN106654826A (zh) | 基于太阳光泵浦实现微球激光器激光输出的方法 | |
He et al. | Passively Q-switched cylindrical vector laser based on a black phosphorus saturable absorber | |
CN106602393A (zh) | 基于太阳光泵浦实现掺铒光纤激光器激光输出的方法 | |
CN206323002U (zh) | 基于太阳光泵浦的微球激光器 | |
Guo et al. | Side-pumped solar Nd-doped fiber laser based on off-axis parabolic mirror array | |
CN206322995U (zh) | 基于太阳光泵浦的掺铒光纤激光器 | |
EP2775230B1 (en) | Enhanced photo-thermal energy conversion | |
CN204905648U (zh) | 一种光纤-半导体泵浦固体混合激光器 | |
CN105098591A (zh) | 波长锁定ld共振泵浦连续波自拉曼激光器 | |
Christiansen | A new concept for solar pumped lasers | |
Wang et al. | Investigation of a 100 W solar-pumped disk laser with TEM00 output | |
CN103797663A (zh) | 用于变换集中的太阳能的装置 | |
CN115377781A (zh) | 一种基于单晶光纤的高功率3μm波段光纤放大器 | |
CN209282604U (zh) | 基于MoO3可饱和吸收体的被动调Q绿光脉冲激光器 | |
CN207588207U (zh) | 一种光束质量转化装置 | |
Naftali et al. | Power transmission using a solar-pumped laser | |
Qi et al. | 300-W-class side-pumped solar laser | |
CN105449500B (zh) | 一种基于高能粒子辐照的ase宽谱光源及提高平坦性的方法 | |
Zhang et al. | Theoretical analysis on threshold of solar pumped solid state lasers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170510 |