CN106651637A - 一种电能消纳分配方案制定方法及制定系统 - Google Patents

一种电能消纳分配方案制定方法及制定系统 Download PDF

Info

Publication number
CN106651637A
CN106651637A CN201610886245.8A CN201610886245A CN106651637A CN 106651637 A CN106651637 A CN 106651637A CN 201610886245 A CN201610886245 A CN 201610886245A CN 106651637 A CN106651637 A CN 106651637A
Authority
CN
China
Prior art keywords
power transmission
power
receiving end
transmission passage
electric energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610886245.8A
Other languages
English (en)
Inventor
郑宽
闫晓卿
张富强
张晋芳
王耀华
黄瀚
田丰
元博
华龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Energy Research Institute Co Ltd
Original Assignee
State Grid Energy Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Energy Research Institute Co Ltd filed Critical State Grid Energy Research Institute Co Ltd
Priority to CN201610886245.8A priority Critical patent/CN106651637A/zh
Publication of CN106651637A publication Critical patent/CN106651637A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请公开了一种电能消纳分配方案制定方法及制定系统,其中,电能消纳分配方案制定方法通过建立以总经济效益最大为目标函数,受送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束的送电通道电能消纳模型,在将所有送电通道的起点的上网电价和终点的落地电价输入送电通道电能消纳模型后,即可获得在满足这些约束的基础前提下,满足经济效应最大化目标的每条送电通道的送电量分配方案以及受端的电能分配状态。从而实现综合考虑多受端和多送端的电力分配与经济效益的目的,使得各个送电通道受端地区实现接受外来输电的经济效益的最大化,以及各个送电通道送端地区实现送电的经济效益的最大化。

Description

一种电能消纳分配方案制定方法及制定系统
技术领域
本申请涉及能源分配技术领域,更具体地说,涉及一种电能消纳分配方案制定方法及制定系统。
背景技术
我国能源资源与经济发展具有逆向分布的特点,具体表现为东部、沿海等地区经济发展迅速,能源资源无法满足经济发展要求;而西北部等地区能源资源丰富,但经济规模和经济发展较为缓慢,这样使得“西电东送”战略成为我国优化电源开发布局的重要内容。建设大容量输电通道,增强向我国东部、中部等大区电网输送优质、清洁的外来电能,可以有效缓解大区电网内供电不足、大气污染严重等问题。加强区外输电通道建设可以促进电网发展,利用区间输电通道使区域电网之间相互支持,有利于我国西北部地区丰富的可再生资源的开发和改善东部、中部等地区的环境压力。但输电通道的建设也面临着如何解决输电通道的电能消纳和资源优化位置问题。
目前国内对输电通道的电能的消纳分配方案的制定主要遵循以下三个原则:1、兼顾输电通道各参与方的利益,即在送端地区,上网电价满足发电企业的基本收益率要求;在受端地区,落地电价不高于火电发电上网电价;电网企业投资建设输电通道,能够获得基本收益率报账;2、考虑受端地区的电力市场空间情况;3、考虑受端地区的节能减排要求。在输电通道的电能消纳分配方法制定时,分别依据上述三个原则设计三种输电通道的电能消纳分配方案,然后测算各方案下的电力平衡缺口和供电经济性,然后选择根据测算结果选择一种输电通道的电能消纳方案作为推荐方案。
然而随着跨区输电需求的不断增加,将出现多条输电通道向某一大区的多个受端同时送电的情况,现有技术中针对一个受端和一个送端制定电能消纳分配方案的方式在对多送端和多受端进行电能消纳分配方案的制定时,只能考虑单一受端和单一送端的经济效益和用电市场空间,不能综合考虑多受端和多送端的电力分配与经济效益问题。
发明内容
为解决上述技术问题,本发明提供了一种电能消纳分配方案制定方法及制定系统,以实现综合考虑多受端和多送端的电力分配与经济效益的目的。
为实现上述技术目的,本发明实施例提供了如下技术方案:
一种电能消纳分配方案制定方法,包括:
计算多个受端地区的用电市场空间;
获取多个送端地区的配套电源及网汇电力外送能力;
根据所述多个受端地区和多个受端地区建立多个送电通道,并测算每条所述送电通道的起点的上网电价和终点的落地电价,所述送电通道的起点为该送电通道的送端地区,终点为该送电通道的受端地区;
建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量分配方案以及所述受端的电能分配状况;所述送电通道电能消纳模型以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束。
可选的,所述送电通道电能消纳模型包括:
目标函数:Maxz=CTX;
其中,z为总经济效益;X为所述送电通道终点的各落点的电能分配矩阵,C为各输电通道不同落点的落地电价与起点的上网电价差矩阵;
约束条件:0≤xi,j≤Tfj
其中,xi,j表示第i条送电通道在第j个落点所分配的送电量;Tfj表示第i条送电通道在第j个落点的总变电容量;表示第i条送电通道的终点的所有N个落点的分配电力之和,即通道i向受端地区的送电量;Tsi表示第i条送电通道的输电能力;表示所有M条送电通道向落点j的分配电力之和;Pgj表示落点j的用电市场空间;Psi表示第i条通道的配套电源及网汇送出的电量之和。
可选的,所述建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量以及所述受端的电能分配状况之后还包括:
根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰。
可选的,所述根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰包括:
根据每条所述送电通道的起点的总送电量随季节或丰枯水期的变化关系,以及该送电通道的终点的用电市场空间随季节或丰枯水期的变化关系对该送电通道的总送电量进行调峰。
可选的,所述计算受端地区的用电市场空间包括:
获取受端地区的用电总量;
获取所述受端地区的发电能力;
利用所述受端地区的用电总量减去该受端地区的发电能力,获得所述受端地区的用电市场空间。
可选的,所述受端地区的发电能力包括:
规划建设的水电、核电、气电、风电和太阳能发电能力;
在建及核准的煤电及可再生能源发电能力。
一种电能消纳分配方案制定系统,包括:
计算模块,用于计算多个受端地区的用电市场空间;
获取模块,用于获取多个送端地区的配套电源及网汇电力外送能力;
通道建立模块,用于根据所述多个受端地区和多个受端地区建立多个送电通道,并测算每条所述送电通道的起点的上网电价和终点的落地电价,所述送电通道的起点为该送电通道的送端地区,终点为该送电通道的受端地区;
匹配模块,用于建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量以及所述受端的电能分配状况;所述送电通道电能消纳模型以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束。
可选的,所述送电通道电能消纳模型包括:
目标函数:Maxz=CTX;
其中,z为总经济效益;X为所述送电通道终点的各落点的电能分配矩阵,C为各输电通道不同落点的落地电价与起点的上网电价差矩阵;
约束条件:0≤xi,j≤Tfj
其中,xi,j表示第i条送电通道在第j个落点所分配的送电量;Tfj表示第i条送电通道在第j个落点的总变电容量;表示第i条送电通道的终点的所有N个落点的分配电力之和,即通道i向受端地区的送电量;Tsi表示第i条送电通道的输电能力;表示所有M条送电通道向落点j的分配电力之和;Pgj表示落点j的用电市场空间;Psi表示第i条通道的配套电源及网汇送出的电量之和。
可选的,还包括:
调峰模块,用于根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰。
可选的,所述时间段为季节或丰枯水期。
可选的,所述计算模块包括:
用电量获取单元,用于获取受端地区的用电总量;
发电量获取单元,用于获取所述受端地区的发电能力;
计算单元,用于利用所述受端地区的用电总量减去该受端地区的发电能力,获得所述受端地区的用电市场空间。
可选的,所述受端地区的发电能力包括:
规划建设的水电、核电、气电、风电和太阳能发电能力;
在建及核准的煤电及可再生能源发电能力。
从上述技术方案可以看出,本发明实施例提供了一种电能消纳分配方案制定方法及制定系统,其中,所述电能消纳分配方案制定方法通过建立以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束的送电通道电能消纳模型,在将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型后,即可获得在满足所述送电通道的容量约束、电源汇集点及终点的各落点变电容量和受端及送端电力平衡的基础前提下,满足经济效应最大化目标的每条所述送电通道的送电量分配方案以及所述受端的电能分配状态。从而实现综合考虑多受端和多送端的电力分配与经济效益的目的,使得各个送电通道受端地区实现接受外来输电的经济效益的最大化,以及各个送电通道送端地区实现送电的经济效益的最大化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请的一个实施例提供的一种电能消纳分配方案制定方法的流程示意图;
图2为本申请的另一个实施例提供的一种电能消纳分配方案制定方法的流程示意图;
图3为本申请的又一个实施例提供的一种电能消纳分配方案制定方法的流程示意图;
图4为本申请的一个实施例提供的一种电能消纳分配方案制定系统的流程示意图;
图5为本申请的一个优选实施例提供的一种电能消纳分配方案制定系统的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种电能消纳分配方案制定方法,如图1所示,包括:
S101:计算多个受端地区的用电市场空间。
具体地,本申请的一个实施例提供了一种计算多个受端地区的用电市场空间的具体流程,如图2所示,包括:
S1011:获取受端地区的用电总量;
S1012:获取所述受端地区的发电能力;
S1013:利用所述受端地区的用电总量减去该受端地区的发电能力,获得所述受端地区的用电市场空间。
需要说明的是,所述受端地区的发电能力包括规划建设的水电、核电、气电、风电和太阳能发电能力;
在建及核准的煤电及可再生能源发电能力。
所述可再生能源发电能力包括但不限于太阳能发电、水电、核电、气电和风电发电能力。
S102:获取多个送端地区的配套电源及网汇电力外送能力。
同样的,每个所述送端地区的配套电源及网汇电力外送能力需要将该送端地区的所需用电量排除,并留有一定裕量后,剩余的煤电发电能力即为该送端地区的配套电源及网汇电力外送能力。
具体地,在计算所述多个送端地区的配套电源及网汇电力外送能力时,需要考虑受端地区的电网的备用率,比如水电比重较大的电网的可用装机受季节性来水影响变化很大,其备用率就会高于火电比重较大的电网;另外电网规模越大,备用率越低。2017年,各省的装机备用率预计在13%-17%之间。到2020年,随着电网规模的进一步扩大,以及联网的进一步加强,备用率应会略有下降,各省的装机备用率在10%-15%之间。
S103:根据所述多个受端地区和多个受端地区建立多个送电通道,并测算每条所述送电通道的起点的上网电价和终点的落地电价,所述送电通道的起点为该送电通道的送端地区,终点为该送电通道的受端地区。
需要说明的是,所述送电通道的终点的落地电价在测算时需要考虑的因素包括特高压交直流输电工程及其配套电源的投资定额,具体地,需要分别测算配套电源的上网电价与特高压交直流输电工程的输电费,并且考虑所述特高压交直流输电工程线损和配套电源的汇集线损、各个特高压交直流输电工程的电网投资回收情况,综合分析到不同受端地区的落地电价。
S104:建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量分配方案以及所述受端的电能分配状况;所述送电通道电能消纳模型以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束。
需要说明的是,所述送电通道的送电量分配方案是指所述送电通道的起点向所述受端的各个落点的送电量的分配比例;所述受端的电能分配状况是指所述受端的各个落点接收的所述送端的送电量的消纳分配状况。
在计算参与电力平衡装机容量时,热电、燃气和小火电机组受阻容量、煤电、燃气、核电、抽蓄、生物质发电100%参与电力平衡,当年投产机组按一定比例(比如50%)容量参与当年受端地区电力电量平衡计算;退役机组和太阳能发电量不参与当年受端地区的电力电量平衡计算;风电按装机容量的5%-10%参与受端地区的电力电量平衡计算;水电参与电力平衡的容量根据丰枯水期水文出力情况确定。其中,太阳能发电量不参与当年受端地区电力电量平衡计算的原因是在现在情况下,太阳能发电量的有效出力较小,因此不对其进行考虑。
在上述实施例的基础上,本申请的一个具体实施例提供了一种送电通道电能消纳模型的具体形式,包括:
目标函数:Maxz=CTX;
其中,z为总经济效益;X为所述送电通道终点的各落点的电能分配矩阵,C为各输电通道不同落点的落地电价与起点的上网电价差矩阵。
约束条件:0≤xi,j≤Tfj
其中,xi,j表示第i条送电通道在第j个落点所分配的送电量;Tfj表示第i条送电通道在第j个落点的总变电容量;表示第i条送电通道的终点的所有N个落点的分配电力之和,即通道i向受端地区的送电量;Tsi表示第i条送电通道的输电能力;表示所有M条送电通道向落点j的分配电力之和;Pgj表示落点j的用电市场空间;Psi表示第i条通道的配套电源及网汇送出的电量之和。
需要说明的是,一般情况下每条所述送电通道的终点包括多个落点,在本实施例中,假设每条所述送电通道的终点的落点数量为N,N为正整数;假设所有的送电通道的数量为M,M为正整数。在所述送电通道电能消纳模型中,所述配套电源是指每条所述送电通道建设时的送端建设的电源,所述网汇送出的电量是指所述送电通道的送端的现有的电源送出的电量。
还需要说明的是,单纯形法是求解线性规划问题的通用方法,该方法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。
通用的利用单纯形法求解线性规划问题的步骤如下:
步骤一:根据线性规划问题的标准型,寻找到初始可行基矩阵B0和可行基变量组计算B0的逆矩阵求出初始解:
并求出初始目标函数值为然后计算出单纯形乘子并记
步骤二:计算非基变量组XN的检验数向量 已经得到最优解,停止运算。若σj>0(j是非基变量的编号),进行下一步。
步骤三:根据所对应的非基变量xk,决定xk为入基变量。同时计算B-1Pk,若B-1Pk≤0,线性规划问题无解,停止计算。否则,进行下一步。
步骤四:根据θ原则,求出
它对应的基变量是xl,确定xl为离基变量。若xk为入基变量,而xl为离基变量,则称alk是新一轮变换的枢元。这样就得到一组新的可行基变量以及新的可行基矩阵B1
步骤五:计算新的可行基矩阵B1的逆矩阵求出以及新单纯形乘子重复步骤二到步骤五。
在上述实施例的基础上,在本申请的一个优选实施例中,如图3所示,所述建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量以及所述受端的电能分配状况之后还包括:
S105:根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰。
需要说明的是,每条所述送电通道的起点的总送电量中的可再生能源送电量一般会随着时间段的变化而发生变化,具体地,水电的发电量会随着丰枯水期的不同而发生较大的变化,风电的发电量会随着一年之中风力随着季节的变化而变化。同样的,每条所述送电通道的终点的用电市场空间也会由于当地的可再生能源发电能力的变化而变化,因此在本实施例中,增加步骤S105的目的是避免这种变化对受端地区的电力平衡造成的影响。
相应的,本申请实施例还提供了一种电能消纳分配方案制定系统,如图4所示,包括:
计算模块100,用于计算多个受端地区的用电市场空间;
获取模块200,用于获取多个送端地区的配套电源及网汇电力外送能力;
通道建立模块300,用于根据所述多个受端地区和多个受端地区建立多个送电通道,并测算每条所述送电通道的起点的上网电价和终点的落地电价,所述送电通道的起点为该送电通道的送端地区,终点为该送电通道的受端地区;
匹配模块400,用于建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量分配方案以及所述受端的电能分配状况;所述送电通道电能消纳模型以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束。
需要说明的是,所述送电通道的送电量分配方案是指所述送电通道的起点向所述受端的各个落点的送电量的分配比例;所述受端的电能分配状况是指所述受端的各个落点接收的所述送端的送电量的消纳分配状况。
所述受端地区的发电能力包括规划建设的水电、核电、气电、风电和太阳能发电能力;
在建及核准的煤电及可再生能源发电能力。
所述可再生能源发电能力包括但不限于太阳能发电、水电、核电、气电和风电发电能力。
同样的,每个所述送端地区的配套电源及网汇电力外送能力需要将该送端地区的所需用电量排除,并留有一定裕量后,剩余的煤电发电能力即为该送端地区的配套电源及网汇电力外送能力。
具体地,在计算所述多个送端地区的配套电源及网汇电力外送能力时,需要考虑受端地区的电网的备用率,比如水电比重较大的电网的可用装机受季节性来水影响变化很大,其备用率就会高于火电比重较大的电网;另外电网规模越大,备用率越低。2017年,各省的装机备用率预计在13%-17%之间。到2020年,随着电网规模的进一步扩大,以及联网的进一步加强,备用率应会略有下降,各省的装机备用率在10%-15%之间。
所述送电通道的终点的落地电价在测算时需要考虑的因素包括特高压交直流输电工程及其配套电源的投资定额,具体地,需要分别测算配套电源的上网电价与特高压交直流输电工程的输电费,并且考虑所述特高压交直流输电工程线损和配套电源的汇集线损、各个特高压交直流输电工程的电网投资回收情况,综合分析到不同受端地区的落地电价。
在计算参与电力平衡装机容量时,热电、燃气和小火电机组受阻容量、煤电、燃气、核电、抽蓄、生物质发电100%参与电力平衡的受端地区的电力电量平衡计算,当年投产机组按一定比例(比如50%)容量参与当年受端地区的电力电量平衡计算;退役机组和太阳能发电量不参与当年受端地区的电力电量平衡计算;风电按装机容量的5%-10%参与受端地区的电力电量平衡计算;水电参与电力平衡的容量根据丰枯水期水文出力情况确定。其中,太阳能发电量不参与当年受端地区的电力电量平衡计算的原因是在现在情况下,太阳能发电量的有效出力较小,因此不对其进行考虑。
在上述实施例的基础上,本申请的一个具体实施例提供了一种送电通道电能消纳模型的具体形式,包括:
目标函数:Maxz=CTX;
其中,z为总经济效益;X为所述送电通道终点的各落点的电能分配矩阵,C为各输电通道不同落点的落地电价与起点的上网电价差矩阵。
约束条件:0≤xi,j≤Tfj
其中,xi,j表示第i条送电通道在第j个落点所分配的送电量;Tfj表示第i条送电通道在第j个落点的总变电容量;表示第i条送电通道的终点的所有N个落点的分配电力之和,即通道i向受端地区的送电量;Tsi表示第i条送电通道的输电能力;表示所有M条送电通道向落点j的分配电力之和;Pgj表示落点j的用电市场空间;Psi表示第i条通道的配套电源及网汇送出的电量之和。
需要说明的是,一般情况下每条所述送电通道的终点包括多个落点,在本实施例中,假设每条所述送电通道的终点的落点数量为N,N为正整数;假设所有的送电通道的数量为M,M为正整数。在所述送电通道电能消纳模型中,所述配套电源是指每条所述送电通道建设时的送端建设的电源,所述网汇送出的电量是指所述送电通道的送端的现有的电源送出的电量。
还需要说明的是,单纯形法是求解线性规划问题的通用方法,该方法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。
通用的利用单纯形法求解线性规划问题的步骤如下:
步骤一:根据线性规划问题的标准型,寻找到初始可行基矩阵B0和可行基变量组计算B0的逆矩阵求出初始解:
并求出初始目标函数值为然后计算出单纯形乘子并记
步骤二:计算非基变量组XN的检验数向量 已经得到最优解,停止运算。若σj>0(j是非基变量的编号),进行下一步。
步骤三:根据所对应的非基变量xk,决定xk为入基变量。同时计算B-1Pk,若B-1Pk≤0,线性规划问题无解,停止计算。否则,进行下一步。
步骤四:根据θ原则,求出
它对应的基变量是xl,确定xl为离基变量。若xk为入基变量,而xl为离基变量,则称alk是新一轮变换的枢元。这样就得到一组新的可行基变量以及新的可行基矩阵B1
步骤五:计算新的可行基矩阵B1的逆矩阵求出以及新单纯形乘子重复步骤二到步骤五。
还需要说明的是,在计算参与电力平衡装机容量时,热电、燃气和小火电机组受阻容量、煤电、燃气、核电、抽蓄、生物质发电100%参与受端地区的电力电量平衡计算,当年投产机组按一定比例(比如50%)容量参与当年受端地区的电力电量平衡计算;退役机组和太阳能发电量不参与当年受端地区的电力电量平衡计算;风电按照装机容量的5%-10%参与受端地区的电力电量平衡计算;水电参与电力平衡的容量根据丰枯水期水文出力情况确定。其中,太阳能发电量不参与当年受端地区的电力电量平衡计算的原因是在现在情况下,太阳能发电量的有效出力较小,因此不对其进行考虑。
在上述实施例的基础上,在本申请的一个优选实施例中,如图5所示,所述电能消纳分配方案制定系统还包括:
调峰模块500,用于根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰。
需要说明的是,每条所述送电通道的起点的总送电量中的可再生能源送电量一般会随着时间段的变化而发生变化,具体地,水电的发电量会随着丰枯水期的不同而发生较大的变化,风电的发电量会随着一年之中风力随着季节的变化而变化。同样的,每条所述送电通道的终点的用电市场空间也会由于当地的可再生能源发电能力的变化而变化,因此在本实施例中,增加所述调峰模块500的目的是避免这种变化对受端地区的电力平衡造成的影响。
在上述实施例的基础上,在本申请的一个实施例中,所述计算模块100包括:
用电量获取单元,用于获取受端地区的用电总量;
发电量获取单元,用于获取所述受端地区的发电能力;
计算单元,用于利用所述受端地区的用电总量减去该受端地区的发电能力,获得所述受端地区的用电市场空间。
综上所述,本申请实施例提供了一种电能消纳分配方案制定方法及制定系统,其中,所述电能消纳分配方案制定方法利用线性规划法通过建立以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束的送电通道电能消纳模型,在将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型后,即可获得在满足所述送电通道的容量约束、电源汇集点及终点的各落点变电容量和受端及送端电力平衡的基础前提下,满足经济效应最大化目标的每条所述送电通道的送电量分配方案以及所述受端的电能分配状态。从而实现综合考虑多受端和多送端的电力分配与经济效益的目的,使得各个送电通道受端地区实现接受外来输电的经济效益的最大化,以及各个送电通道送端地区实现送电的经济效益的最大化。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

1.一种电能消纳分配方案制定方法,其特征在于,包括:
计算多个受端地区的用电市场空间;
获取多个送端地区的配套电源及网汇电力外送能力;
根据所述多个受端地区和多个受端地区建立多个送电通道,并测算每条所述送电通道的起点的上网电价和终点的落地电价,所述送电通道的起点为该送电通道的送端地区,终点为该送电通道的受端地区;
建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量分配方案以及所述受端的电能分配状况;所述送电通道电能消纳模型以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束。
2.根据权利要求1所述的电能消纳分配方案制定方法,其特征在于,所述送电通道电能消纳模型包括:
目标函数:Maxz=CTX;
其中,z为总经济效益;X为所述送电通道终点的各落点的电能分配矩阵,C为各输电通道不同落点的落地电价与起点的上网电价差矩阵;
约束条件:0≤xi,j≤Tfj
0 ≤ Σ j = 1 N x i , j ≤ Ts i
Σ i = 1 M x i , j = Pg j
Σ i = 1 N x i , j = Ps i
其中,xi,j表示第i条送电通道在第j个落点所分配的送电量;Tfj表示第i条送电通道在第j个落点的总变电容量;表示第i条送电通道的终点的所有N个落点的分配电力之和,即通道i向受端地区的送电量;Tsi表示第i条送电通道的输电能力;表示所有M条送电通道向落点j的分配电力之和;Pgj表示落点j的用电市场空间;Psi表示第i条通道的配套电源及网汇送出的电量之和。
3.根据权利要求1所述的电能消纳分配方案制定方法,其特征在于,所述建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量以及所述受端的电能分配状况之后还包括:
根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰。
4.根据权利要求3所述的电能消纳分配方案制定方法,其特征在于,所述根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰包括:
根据每条所述送电通道的起点的总送电量随季节或丰枯水期的变化关系,以及该送电通道的终点的用电市场空间随季节或丰枯水期的变化关系对该送电通道的总送电量进行调峰。
5.根据权利要求1所述的电能消纳分配方案制定方法,其特征在于,所述计算受端地区的用电市场空间包括:
获取受端地区的用电总量;
获取所述受端地区的发电能力;
利用所述受端地区的用电总量减去该受端地区的发电能力,获得所述受端地区的用电市场空间。
6.根据权利要求5所述的电能消纳分配方案制定方法,其特征在于,所述受端地区的发电能力包括:
规划建设的水电、核电、气电、风电和太阳能发电能力;
在建及核准的煤电及可再生能源发电能力。
7.一种电能消纳分配方案制定系统,其特征在于,包括:
计算模块,用于计算多个受端地区的用电市场空间;
获取模块,用于获取多个送端地区的配套电源及网汇电力外送能力;
通道建立模块,用于根据所述多个受端地区和多个受端地区建立多个送电通道,并测算每条所述送电通道的起点的上网电价和终点的落地电价,所述送电通道的起点为该送电通道的送端地区,终点为该送电通道的受端地区;
匹配模块,用于建立送电通道电能消纳模型,将所有所述送电通道的起点的上网电价和终点的落地电价输入所述送电通道电能消纳模型中,确定每条所述送电通道的送电量以及所述受端的电能分配状况;所述送电通道电能消纳模型以总经济效益最大为目标函数,受所述送电通道的容量约束、电源汇集点及终点的各落点变电容量约束和受端及送端电力平衡约束。
8.根据权利要求7所述的电能消纳分配方案制定系统,其特征在于,所述送电通道电能消纳模型包括:
目标函数:Maxz=CTX;
其中,z为总经济效益;X为所述送电通道终点的各落点的电能分配矩阵,C为各输电通道不同落点的落地电价与起点的上网电价差矩阵;
约束条件:0≤xi,j≤Tfj
0 ≤ Σ j = 1 N x i , j ≤ Ts i
Σ i = 1 M x i , j = Pg j
Σ i = 1 N x i , j = Ps i
其中,xi,j表示第i条送电通道在第j个落点所分配的送电量;Tfj表示第i条送电通道在第j个落点的总变电容量;表示第i条送电通道的终点的所有N个落点的分配电力之和,即通道i向受端地区的送电量;Tsi表示第i条送电通道的输电能力;表示所有M条送电通道向落点j的分配电力之和;Pgj表示落点j的用电市场空间;Psi表示第i条通道的配套电源及网汇送出的电量之和。
9.根据权利要求7所述的电能消纳分配方案制定系统,其特征在于,还包括:
调峰模块,用于根据每条所述送电通道的起点的总送电量随时间段的变化关系,以及该送电通道的终点的用电市场空间随时间段的变化关系对该送电通道的总送电量进行调峰。
10.根据权利要求9所述的电能消纳分配方案制定系统,其特征在于,所述时间段为季节或丰枯水期。
11.根据权利要求7所述的电能消纳分配方案制定系统,其特征在于,所述计算模块包括:
用电量获取单元,用于获取受端地区的用电总量;
发电量获取单元,用于获取所述受端地区的发电能力;
计算单元,用于利用所述受端地区的用电总量减去该受端地区的发电能力,获得所述受端地区的用电市场空间。
12.根据权利要求11所述的电能消纳分配方案制定系统,其特征在于,所述受端地区的发电能力包括:
规划建设的水电、核电、气电、风电和太阳能发电能力;
在建及核准的煤电及可再生能源发电能力。
CN201610886245.8A 2016-10-11 2016-10-11 一种电能消纳分配方案制定方法及制定系统 Pending CN106651637A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610886245.8A CN106651637A (zh) 2016-10-11 2016-10-11 一种电能消纳分配方案制定方法及制定系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610886245.8A CN106651637A (zh) 2016-10-11 2016-10-11 一种电能消纳分配方案制定方法及制定系统

Publications (1)

Publication Number Publication Date
CN106651637A true CN106651637A (zh) 2017-05-10

Family

ID=58854479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610886245.8A Pending CN106651637A (zh) 2016-10-11 2016-10-11 一种电能消纳分配方案制定方法及制定系统

Country Status (1)

Country Link
CN (1) CN106651637A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899927A (zh) * 2018-05-17 2018-11-27 华北电力大学 一种基于风电集群接入电网的多元分区协调控制优化方法
CN110571861A (zh) * 2018-06-06 2019-12-13 电力规划总院有限公司 一种发电机组的输出电量的确定方法及装置
CN112001576A (zh) * 2020-06-30 2020-11-27 广州电力交易中心有限责任公司 可再生能源电力消纳量核算方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326503A1 (en) * 2009-07-31 2012-12-27 Mogens Birkelund Method and apparatus for managing transmission of power in a power transmission network
CN103854066A (zh) * 2012-12-05 2014-06-11 国网能源研究院 多能源电力远距离输送的数据优化处理方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120326503A1 (en) * 2009-07-31 2012-12-27 Mogens Birkelund Method and apparatus for managing transmission of power in a power transmission network
CN103854066A (zh) * 2012-12-05 2014-06-11 国网能源研究院 多能源电力远距离输送的数据优化处理方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
闫晓卿等: ""十三五"电力流及电源规划方案研究", 《中国电力》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899927A (zh) * 2018-05-17 2018-11-27 华北电力大学 一种基于风电集群接入电网的多元分区协调控制优化方法
CN110571861A (zh) * 2018-06-06 2019-12-13 电力规划总院有限公司 一种发电机组的输出电量的确定方法及装置
CN110571861B (zh) * 2018-06-06 2021-03-30 电力规划总院有限公司 一种发电机组的输出电量的确定方法及装置
CN112001576A (zh) * 2020-06-30 2020-11-27 广州电力交易中心有限责任公司 可再生能源电力消纳量核算方法

Similar Documents

Publication Publication Date Title
Zhuo et al. Transmission expansion planning test system for AC/DC hybrid grid with high variable renewable energy penetration
Kong et al. Pumped storage power stations in China: The past, the present, and the future
Liu et al. Coordinated operation of multi-integrated energy system based on linear weighted sum and grasshopper optimization algorithm
CN110110913A (zh) 大型园区综合能源系统能源站优化配置方法
Jin et al. Game theoretical analysis on capacity configuration for microgrid based on multi-agent system
CN105977991A (zh) 一种考虑价格型需求响应的独立型微网优化配置方法
CN106786790A (zh) 一种含水气煤核电的省级电网长期多电源协调调度方法
CN103426032A (zh) 一种热电联产机组的经济优化调度方法
CN106099993A (zh) 一种适应新能源大规模接入的电源规划方法
CN109149651A (zh) 一种计及调压辅助服务收益的光储系统优化运行方法
CN104915790A (zh) 一种促进风电消纳的峰谷电价优化方法
CN110930188A (zh) 一种考虑资源互补特性的新能源与火电打捆交易定价方法
Jiang et al. Study of future power interconnection scheme in ASEAN
CN106651637A (zh) 一种电能消纳分配方案制定方法及制定系统
CN105976067A (zh) 基于竞价策略的梯级水电站群长期发电调度方法
Xiang et al. Distributed dispatch of multiple energy systems considering carbon trading
CN115660343A (zh) 面向碳中和的城市综合能源发展规划方法
Ali Development and Improvement of Renewable Energy Integrated with Energy Trading Schemes based on Advanced Optimization Approaches
CN117096864A (zh) 一种区域综合能源系统-主配电网博弈优化调度方法
CN103955773A (zh) 一种水电减弃增发交易管理方法及系统
CN103761680B (zh) 具有风电场的交直流互联大电网网省调度方法及系统
CN109829559A (zh) 一种促进清洁能源消纳的调峰权交易方法
CN109038655A (zh) 限电要求下大型光伏电站的配套储能容量计算方法
CN106203742A (zh) 一种基于节能回报率的电网设备节能评价及选型方法
Cao et al. Optimal Capacity Configuration of Battery Storage System for Zero Energy Office Building on Campus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 102209 Beijing, Beiqijia Town, the future of science and Technology Park, North District, Power Grid Corp A329 room

Applicant after: National Grid Energy Research Institute Co., Ltd.

Address before: 102209 Beijing, Beiqijia Town, the future of science and Technology Park, North District, Power Grid Corp A329 room

Applicant before: State Grid Energy Research Institute

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication