CN106650615B - 一种图像处理方法及终端 - Google Patents
一种图像处理方法及终端 Download PDFInfo
- Publication number
- CN106650615B CN106650615B CN201610982791.1A CN201610982791A CN106650615B CN 106650615 B CN106650615 B CN 106650615B CN 201610982791 A CN201610982791 A CN 201610982791A CN 106650615 B CN106650615 B CN 106650615B
- Authority
- CN
- China
- Prior art keywords
- feature
- msub
- target signature
- mrow
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/161—Detection; Localisation; Normalisation
- G06V40/164—Detection; Localisation; Normalisation using holistic features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
本发明实施例提供了一种图像处理方法及终端,所述方法包括:获取待处理图像;计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;基于所述n层,构造所述特征金字塔;在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到所述K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;根据所述K组第一目标特征确定所述K组第二目标特征;采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数。通过本发明实施例可快速检测到人脸位置。
Description
技术领域
本发明涉及图像处理技术领域,具体涉及一种图像处理方法及终端。
背景技术
随着信息技术的快速发展,人脸识别技术在视频监控领域得到了广泛应用。在人脸识别应用领域,人脸检测作为第一个环节,其准确性对人脸识别的性能有很大影响。人脸检测需要具有很强的鲁棒性,因为在实际应用中,人脸图片会受到多种因素的影响,例如光照、遮挡、姿态变化等。人脸检测在人脸识别过程调用的频次最高,需要能够被高效地执行。人脸检测技术主要采用基于手工设计的特征实现,例如Haar特征、LBP(局部二值模式直方图)特征、HOG(梯度方向直方图)特征等,这些特征的计算时间可接受,在实际的应用中也能取得较为满意的结果,因而得到广泛的应用,但是,现有技术中,人脸检测计算算法较为复杂,因而,人脸检测效率较低。
发明内容
本发明实施例提供了一种图像处理方法及终端,以期快速检测到人脸位置。
本发明实施例第一方面提供了一种图像处理方法,包括:
获取待处理图像;
计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;
基于所述n层,构造所述特征金字塔;
在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到所述K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;
根据所述K组第一目标特征确定所述K组第二目标特征;
采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数。
结合第一方面,在第一方面的第一种可能的实施方式中,所述计算所述待处理图像的特征金字塔的层数,得到n层,包括:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
其中,n表示所述特征金字塔的层数,kup是所述待处理图像上采样的倍数,wimg、himg分别表示所述待处理图像的宽度和高度,wm、hm分别所述预设人脸检测模型的宽度和高度,noctave指所述特征金字塔中每两倍尺寸之间的图像的层数。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述基于所述N层,构造所述特征金字塔,包括:
确定所述N层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
对所述P个实特征层进行特征提取,得到第三目标特征;
根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第三种可能的实施方式中,所述根据所述K组第一目标特征确定所述K组第二目标特征,包括:
从所述K组第一目标特征中分别提取颜色特征,得到所述K组颜色特征;
对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第四种可能的实施方式中,所述采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,包括:
在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
根据所述X个人脸框合并为所述目标人脸框的大小和位置。
本发明实施例第二方面提供了一种终端,包括:
获取单元,用于获取待处理图像;
计算单元,用于计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;
构造单元,用于基于所述n层,构造所述特征金字塔;
提取单元,用于在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到所述K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;
确定单元,用于根据所述K组第一目标特征确定所述K组第二目标特征;
决策单元,用于采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数。
结合第二方面,在第二方面的第一种可能的实施方式中,所述计算单元具体用于:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
其中,n表示所述特征金字塔的层数,kup是所述待处理图像上采样的倍数,wimg、himg分别表示所述待处理图像的宽度和高度,wm、hm分别所述预设人脸检测模型的宽度和高度,noctave指所述特征金字塔中每两倍尺寸之间的图像的层数。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第二种可能的实施方式中,所述构造单元包括:
第一确定模块,用于确定所述N层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
第一提取模块,用于对所述P个实特征层进行特征提取,得到第三目标特征;
第二确定模块,用于根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
构造模块,用于将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第三种可能的实施方式中,所述确定单元包括:
第二提取模块,用于从所述K组第一目标特征中分别提取颜色特征,得到所述K组颜色特征;
第一训练模块,用于对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
第二训练模块,用于通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
组合模块,用于将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
结合第二方面或第二方面的第一种可能的实施方式,在第二方面的第四种可能的实施方式中,所述决策单元包括:
决策模块,用于在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
合并模块,用于根据所述X个人脸框合并为所述目标人脸框的大小和位置。
实施本发明实施例,具有如下有益效果:
通过本发明实施例,获取待处理图像,计算待处理图像的特征金字塔的层数,得到n层,n为大于或等于1的整数,基于n层,构造所述特征金字塔,在特征金字塔上,对K个预设检测窗口进行特征提取,得到K组第一目标特征,其中,每一组预设检测窗口对应一组第一目标特征,K为大于或等于1的整数,根据K组第一目标特征确定K组第二目标特征,采用M个指定决策树对K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,M为大于或等于1的整数。从而,可快速检测到人脸位置。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种图像处理方法的实施例流程示意图;
图2a是本发明实施例提供的一种终端的第一实施例结构示意图;
图2b是本发明实施例提供的图2a所描述的终端的构造单元的结构示意图;
图2c是本发明实施例提供的图2a所描述的终端的确定单元的结构示意图;
图2d是本发明实施例提供的图2a所描述的终端的确定单元的结构示意图;
图3是本发明实施例提供的一种终端的第二实施例结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置展示该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明实施例所描述的终端可以包括智能手机(如Android手机、iOS手机、Windows Phone手机等)、平板电脑、掌上电脑、笔记本电脑、移动互联网设备(MID,MobileInternet Devices)或穿戴式设备等,上述终端仅是举例,而非穷举,包含但不限于上述终端。
请参阅图1,为本发明实施例提供的一种图像处理方法的实施例流程示意图。本实施例中所描述的图像处理方法,包括以下步骤:
101、获取待处理图像。
其中,待处理图像为包含人脸的图像,当然,待处理图像至少包含一个人脸。
可选地,终端可获取原始图像,若该原始图像为灰度图像,则需将图像转化成RGB图像,即将原始图像的灰度信息,复制到R通道、G通道和B通道上。当然,若原始图像为彩色图像,若该原始图像不是RGB图像,可将其转化为RGB图像,若该原始图像为RGB图像,直接将其作为待处理图像。
102、计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数。
可选地,上述计算所述待处理图像的特征金字塔的层数,得到n层,可按照如下方式实施:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
其中,n表示特征金字塔的层数,kup是待处理图像上采样的倍数,wimg、himg分别表示待处理图像的宽度和高度,wm、hm分别预设人脸检测模型的宽度和高度,noctave指特征金字塔中每两倍尺寸之间的图像的层数。其中,在确定了待处理图像之后,其尺寸可为已知量,而预设人脸模型的尺寸也为已知量。上述kup可由用户指定,或者系统默认。上述noctave可由用户指定,或者系统默认。
可选地,当在对待处理图像进行特征提取后,得到的特征可形成特征金字塔。例如,对待处理图像进行拉普拉斯金字塔变换,可得到特征金字塔。而本发明实施例中的特征金字塔的层数并非由用户指定,而是根据待处理图像的尺寸和预设人脸检测模型的尺寸计算得到,因而,不同尺寸的待处理图像,其确定的特征金字塔的层数不一样,从而,本发明实施例确定的特征金字塔的层数更加贴切于图像的尺寸。
当然,本发明实施例中可使用至少一个预设人脸检测模型,在预设人脸检测模型的个数为多个时,则所有的预设人脸检测模型的尺寸可一样。
103、基于所述N层,构造所述特征金字塔。
可选地,上述基于所述N层,构造所述特征金字塔,可包括如下步骤:
31)、确定所述N层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
32)、对所述P个实特征层进行特征提取,得到第三目标特征;
33)、根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
34)、将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
需要说明的是,本发明实施例中,与传统人脸检测方法不同的是,传统方法,一般是先计算图像的特征金字塔,再基于特征金字塔的每层图像,计算相应的特征。本发明中,仅计算少量图像层的特征,称作实特征层。其他层图像的特征,是基于实特征插值得出的,称作近似特征层。由用户指定或者系统默认指定金字塔中的实特征层,其他的层则为近似特征层,它们由与其距离最近的实特征层插值得到。
其中,步骤32中可对实特征层进行特征提取,例如,提取颜色特征、梯度幅值特征、方向直方图特征。颜色特征可以为RGB、LUV、HSV、GRAY,梯度幅值特征、方向直方图特征相当于HOG特征的一种特殊形式,即block中cell的数目为1。具体地,提取颜色特征、梯度幅值特征、方向直方图特征可参考现有技术,在此不再赘述。
其中,步骤33中可基于实特征层,计算近似特征层的特征。近似特征层可由实特征层插值得到,插值时需要将特征值乘以一个系数,其计算方法可参照如下公式:
其中,s指近似特征层相对于实特征层的比例,λΩ对一种特征来说为常数,可以采用以下方式估计λΩ的值。估计时,由kμs来代替ks,其中指对图像Ii按比例s进行缩放,fμΩ(I)指对图像I求特征Ω,并将这些特征取平均,N指参与估计的图片数目。本发明中,将s为N取50000,利用最小二乘法求得λΩ。
104、在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到所述K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数。
其中,预设检测窗口可由系统默认或者用户自行设置。预设检测窗口可包括窗口大小和窗口位置。对K个预设检测窗口中每一预设检测窗口进行特征提取,可分别得到一组第一目标特征,于是,可得到K组第一目标特征,上述K为大于或等于1的整数。
可选地,在上述特征金字塔上,预设检测窗口的位置、窗口的大小是固定的,在特征提取过程中,每次可沿x、y方向移动一个步长。
105、根据所述K组第一目标特征确定所述K组第二目标特征。
可选地,上述根据所述K组第一目标特征确定所述K组第二目标特征,包括:
51)、从所述K组第一目标特征中分别提取颜色特征,得到所述K组颜色特征;
52)、对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
53)、通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
54)、将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
其中,上述步骤52和步骤53中提取像素比较特征的方法可参考如下公式:
其中,I表示图像I,li、lj为图像I中不同位置的像素点,I(li)、I(lj)分别指图像I中li、lj位置处的像素值,比较I(li)、I(lj)的像素值大小即可得到两像素的比较特征。
可选地,为了提高比较特征鲁棒性和全局性,还可以将待处理图像分为若干个互不重叠的区域bin,区域的尺寸为b×b,以bin为单位的比较特征定义如下公式。
其中,li∈bini、lj∈binj,fcb指待处理图像中两个不同区域的像素比较特征。利用上述提到的颜色特征、梯度幅值特征、方向直方图特征,对待处理图像进行逐像素计算得到的,因而,当模型的尺寸固定后,不会因为训练过程的不同,而决定某特征是否计算。比较特征则不一样,依赖于模型训练过程。为了更好地融合颜色、梯度幅值、方向直方图特征与像素比较特征。
首先,仅使用像素比较特征训练第一预设人脸模型,第一预设人脸模型的大小为n×n像素。则训练时,有(n/b)2×((n/b)2-1)/2种比较特征。使用adaboost方法进行训练,决策树的深度为5,个数为500。
其次,训练之后,从第一预设人脸模型中挑选出的像素比较特征将大幅减少,该像素比较特征(即第五目标特征)的数目控制在10000以内。
然后,联合使用像第五目标特征以及第一目标特征(即:颜色特征、梯度幅值、方向直方图特征)训练第二预设人脸模型。仍然使用adaboost方法进行训练,决策树的深度为5,个数为500,并从训练后的第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
最后,将第一目标特征和第六目标特征组合为第二目标特征。
因此,本发明联合使用了融合多通道特征与像素比较特征,克服了仅使用融合多通道特征时的人脸框位置不准确的问题,并进一步提高了逆光情况下的人脸的检出率。
106、采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数。
其中,本发明实施例可采用M个指定决策树,其中,M为大于或等于1的整数,指定决策树将预设检测窗口内第二目标特征送入,对该第二目标特征进行决策,获取分数并累加得分,若得分低于某一阈值,则直接淘汰该窗口。若得分高于阈值,则在下一棵决策树上继续进行分类,获取分数并累加得分,直至遍历完所有决策树,将该窗口的位置坐标、宽、高信息转换到待处理图像上输出人脸框,包括人脸框的位置和大小。例如,检测完1个窗口后,可转到1.5进行下一个窗口的检测,直至遍历完特征金字塔的所有层,因而,可将最后得到的所有人脸框进行合并,于是得到目标人脸框,进而,确定目标人脸框的位置和大小。如此,可进一步在识别到人脸的基础上,进行人脸识别。
可选地,上述采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,包括:
61)、在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
62)、根据所述X个人脸框合并为所述目标人脸框的大小和位置。
其中,步骤61
其中,步骤62中,终端可利用非极大值抑制算法(Non-Maximum Suppression,NMS)算法将位置重叠的人脸框合并,输出最终的人脸框。
可以看出,通过本发明实施例,获取待处理图像,计算待处理图像的特征金字塔的层数,得到n层,n为大于或等于1的整数,基于n层,构造所述特征金字塔,在特征金字塔上,对K个预设检测窗口进行特征提取,得到K组第一目标特征,其中,每一组预设检测窗口对应一组第一目标特征,K为大于或等于1的整数,根据K组第一目标特征确定K组第二目标特征,采用M个指定决策树对K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,M为大于或等于1的整数。从而,可快速检测到人脸位置。
与上述一致地,以下为实施上述图像处理方法的装置,具体如下:
请参阅图2a,为本发明实施例提供的一种终端的第一实施例结构示意图。本实施例中所描述的终端,包括:获取单元201、计算单元202、构造单元203、提取单元204、确定单元205和决策单元206,具体如下:
获取单元201,用于获取待处理图像;
计算单元202,用于计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;
构造单元203,用于基于所述n层,构造所述特征金字塔;
提取单元204,用于在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到所述K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;
确定单元205,用于根据所述K组第一目标特征确定所述K组第二目标特征;
决策单元206,用于采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数。
可选地,上述计算单元202具体用于:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
其中,n表示所述特征金字塔的层数,kup是所述待处理图像上采样的倍数,wimg、himg分别表示所述待处理图像的宽度和高度,wm、hm分别所述预设人脸检测模型的宽度和高度,noctave指所述特征金字塔中每两倍尺寸之间的图像的层数。
可选地,如图2b,图2b中所描述的终端的构造单元可包括:第一确定模块2031、第一提取模块2032、第二确定模块2033和构造模块2034,具体如下:
第一确定模块2031,用于确定所述N层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
第一提取模块2032,用于对所述P个实特征层进行特征提取,得到第三目标特征;
第二确定模块2033,用于根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
构造模块2034,用于将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
可选地,如图2c,图2c中所描述的终端的确定单元205可包括:第二提取模块2051、第一训练模块2052、第二训练模块2053和组合模块2054,具体如下:
第二提取模块2051,用于从所述K组第一目标特征中分别提取颜色特征,得到所述K组颜色特征;
第一训练模块2052,用于对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
第二训练模块2053,用于通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
组合模块2054,用于将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
可选地,如图2d,图2a中所描述的终端的决策单元206可包括:决策模块2061和合并模块2062,具体如下:
决策模块2061,用于在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
合并模块2062,用于根据所述X个人脸框合并为所述目标人脸框的大小和位置。
可以看出,通过本发明实施例所描述的终端,获取待处理图像,计算待处理图像的特征金字塔的层数,得到n层,n为大于或等于1的整数,基于n层,构造所述特征金字塔,在特征金字塔上,对K个预设检测窗口进行特征提取,得到K组第一目标特征,其中,每一组预设检测窗口对应一组第一目标特征,K为大于或等于1的整数,根据K组第一目标特征确定K组第二目标特征,采用M个指定决策树对K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,M为大于或等于1的整数。从而,可快速检测到人脸位置。
与上述一致地,请参阅图3,为本发明实施例提供的一种终端的第二实施例结构示意图。本实施例中所描述的终端,包括:至少一个输入设备1000;至少一个输出设备2000;至少一个处理器3000,例如CPU;和存储器4000,上述输入设备1000、输出设备2000、处理器3000和存储器4000通过总线5000连接。
其中,上述输入设备1000具体可为触控面板、物理按键或者鼠标。
上述输出设备2000具体可为显示屏。
上述存储器4000可以是高速RAM存储器,也可为非易失存储器(non-volatilememory),例如磁盘存储器。上述存储器4000用于存储一组程序代码,上述输入设备1000、输出设备2000和处理器3000用于调用存储器4000中存储的程序代码,执行如下操作:
上述处理器3000,用于:
获取待处理图像;
计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;
基于所述n层,构造所述特征金字塔;
在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到所述K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;
根据所述K组第一目标特征确定所述K组第二目标特征;
采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数。
可选地,上述处理器3000计算所述待处理图像的特征金字塔的层数,得到n层,包括:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
其中,n表示所述特征金字塔的层数,kup是所述待处理图像上采样的倍数,wimg、himg分别表示所述待处理图像的宽度和高度,wm、hm分别所述预设人脸检测模型的宽度和高度,noctave指所述特征金字塔中每两倍尺寸之间的图像的层数。
可选地,上述处理器3000基于所述N层,构造所述特征金字塔,包括:
确定所述N层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
对所述P个实特征层进行特征提取,得到第三目标特征;
根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
可选地,上述处理器3000根据所述K组第一目标特征确定所述K组第二目标特征,包括:
从所述K组第一目标特征中分别提取颜色特征,得到所述K组颜色特征;
对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
可选地,上述处理器3000采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,包括:
在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
根据所述X个人脸框合并为所述目标人脸框的大小和位置。
本发明实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何一种图像处理方法的部分或全部步骤。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本发明是参照本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (8)
1.一种图像处理方法,其特征在于,包括:
获取待处理图像;
计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;
基于所述n层,构造所述特征金字塔;
在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;
根据所述K组第一目标特征确定K组第二目标特征;
采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数;
其中,所述根据所述K组第一目标特征确定K组第二目标特征,包括:
从所述K组第一目标特征中分别提取颜色特征,得到K组颜色特征;
对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
2.根据权利要求1所述的方法,其特征在于,所述计算所述待处理图像的特征金字塔的层数,得到n层,包括:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
<mrow>
<mi>n</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>log</mi>
<mn>2</mn>
</msub>
<msub>
<mi>k</mi>
<mrow>
<mi>u</mi>
<mi>p</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>log</mi>
<mn>2</mn>
</msub>
<mi>m</mi>
<mi>i</mi>
<mi>n</mi>
<mo>(</mo>
<mrow>
<mfrac>
<msub>
<mi>w</mi>
<mrow>
<mi>i</mi>
<mi>m</mi>
<mi>g</mi>
</mrow>
</msub>
<msub>
<mi>w</mi>
<mi>m</mi>
</msub>
</mfrac>
<mo>,</mo>
<mfrac>
<msub>
<mi>h</mi>
<mrow>
<mi>i</mi>
<mi>m</mi>
<mi>g</mi>
</mrow>
</msub>
<msub>
<mi>h</mi>
<mi>m</mi>
</msub>
</mfrac>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
<mo>&times;</mo>
<msub>
<mi>n</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>t</mi>
<mi>a</mi>
<mi>v</mi>
<mi>e</mi>
</mrow>
</msub>
</mrow>
其中,n表示所述特征金字塔的层数,kup是所述待处理图像上采样的倍数,wimg、himg分别表示所述待处理图像的宽度和高度,wm、hm分别所述预设人脸检测模型的宽度和高度,noctave指所述特征金字塔中每两倍尺寸之间的图像的层数。
3.根据权利要求1或2任一项所述的方法,其特征在于,所述基于所述n层,构造所述特征金字塔,包括:
确定所述n层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
对所述P个实特征层进行特征提取,得到第三目标特征;
根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
4.根据权利要求1或2任一项所述的方法,其特征在于,所述采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,包括:
在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
根据所述X个人脸框合并为所述目标人脸框的大小和位置。
5.一种终端,其特征在于,包括:
获取单元,用于获取待处理图像;
计算单元,用于计算所述待处理图像的特征金字塔的层数,得到n层,所述n为大于或等于1的整数;
构造单元,用于基于所述n层,构造所述特征金字塔;
提取单元,用于在所述特征金字塔上,对K个预设检测窗口进行特征提取,得到K组第一目标特征,其中,每一组所述预设检测窗口对应一组第一目标特征,所述K为大于或等于1的整数;
确定单元,用于根据所述K组第一目标特征确定K组第二目标特征;
决策单元,用于采用M个指定决策树对所述K组第二目标特征进行决策,得到目标人脸框的大小和位置,其中,所述M为大于或等于1的整数;
其中,所述确定单元包括:
第二提取模块,用于从所述K组第一目标特征中分别提取颜色特征,得到K组颜色特征;
第一训练模块,用于对第i组颜色特征计算像素比较特征,基于所述计算像素比较特征训练第一预设人脸模型,并从训练后的所述第一预设人脸模型提取第一目标像素比较特征,得到第五目标特征,其中,所述第i组颜色特征为所述K组颜色特征中的任一组颜色特征;
第二训练模块,用于通过所述第五目标特征和所述第一目标特征训练第二预设人脸模型,并从训练后的所述第二预设人脸模型提取第二像素比较特征,得到第六目标特征;
组合模块,用于将所述第一目标特征和所述第六目标特征组合为所述第二目标特征。
6.根据权利要求5所述的终端,其特征在于,所述计算单元具体用于:
根据所述待处理图像的尺寸和预设人脸检测模型的尺寸计算特征金字塔的层数,如下公式所示:
<mrow>
<mi>n</mi>
<mo>=</mo>
<mrow>
<mo>(</mo>
<msub>
<mi>log</mi>
<mn>2</mn>
</msub>
<msub>
<mi>k</mi>
<mrow>
<mi>u</mi>
<mi>p</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>log</mi>
<mn>2</mn>
</msub>
<mi>m</mi>
<mi>i</mi>
<mi>n</mi>
<mo>(</mo>
<mrow>
<mfrac>
<msub>
<mi>w</mi>
<mrow>
<mi>i</mi>
<mi>m</mi>
<mi>g</mi>
</mrow>
</msub>
<msub>
<mi>w</mi>
<mi>m</mi>
</msub>
</mfrac>
<mo>,</mo>
<mfrac>
<msub>
<mi>h</mi>
<mrow>
<mi>i</mi>
<mi>m</mi>
<mi>g</mi>
</mrow>
</msub>
<msub>
<mi>h</mi>
<mi>m</mi>
</msub>
</mfrac>
</mrow>
<mo>)</mo>
<mo>)</mo>
</mrow>
<mo>&times;</mo>
<msub>
<mi>n</mi>
<mrow>
<mi>o</mi>
<mi>c</mi>
<mi>t</mi>
<mi>a</mi>
<mi>v</mi>
<mi>e</mi>
</mrow>
</msub>
</mrow>
其中,n表示所述特征金字塔的层数,kup是所述待处理图像上采样的倍数,wimg、himg分别表示所述待处理图像的宽度和高度,wm、hm分别所述预设人脸检测模型的宽度和高度,noctave指所述特征金字塔中每两倍尺寸之间的图像的层数。
7.根据权利要求5或6任一项所述的终端,其特征在于,所述构造单元包括:
第一确定模块,用于确定所述n层包含P个实特征层和Q个近似特征层,所述P为大于或等于1的整数,所述Q为大于或等于0的整数;
第一提取模块,用于对所述P个实特征层进行特征提取,得到第三目标特征;
第二确定模块,用于根据所述P个实特征层,确定所述Q个近似特征层的第四目标特征;
构造模块,用于将所述第三目标特征和所述第四目标特征构成所述特征金字塔。
8.根据权利要求5或6任一项所述的终端,其特征在于,所述决策单元包括:
决策模块,用于在所述特征金字塔上,采用M个指定决策树对所述K组第二目标特征进行决策,得到X个人脸框,其中,所述X为大于或等于1的整数;
合并模块,用于根据所述X个人脸框合并为所述目标人脸框的大小和位置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610982791.1A CN106650615B (zh) | 2016-11-07 | 2016-11-07 | 一种图像处理方法及终端 |
PCT/CN2017/087702 WO2018082308A1 (zh) | 2016-11-07 | 2017-06-09 | 一种图像处理方法及终端 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610982791.1A CN106650615B (zh) | 2016-11-07 | 2016-11-07 | 一种图像处理方法及终端 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106650615A CN106650615A (zh) | 2017-05-10 |
CN106650615B true CN106650615B (zh) | 2018-03-27 |
Family
ID=58806382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610982791.1A Active CN106650615B (zh) | 2016-11-07 | 2016-11-07 | 一种图像处理方法及终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106650615B (zh) |
WO (1) | WO2018082308A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106650615B (zh) * | 2016-11-07 | 2018-03-27 | 深圳云天励飞技术有限公司 | 一种图像处理方法及终端 |
CN108229297B (zh) * | 2017-09-30 | 2020-06-05 | 深圳市商汤科技有限公司 | 人脸识别方法和装置、电子设备、计算机存储介质 |
CN109727188A (zh) * | 2017-10-31 | 2019-05-07 | 比亚迪股份有限公司 | 图像处理方法及其装置、安全驾驶方法及其装置 |
CN108090417A (zh) * | 2017-11-27 | 2018-05-29 | 上海交通大学 | 一种基于卷积神经网络的人脸检测方法 |
CN109918969B (zh) * | 2017-12-12 | 2021-03-05 | 深圳云天励飞技术有限公司 | 人脸检测方法及装置、计算机装置和计算机可读存储介质 |
WO2020056688A1 (zh) * | 2018-09-20 | 2020-03-26 | 华为技术有限公司 | 提取图像关键点的方法及装置 |
US11755959B2 (en) | 2018-12-12 | 2023-09-12 | Paypal, Inc. | Binning for nonlinear modeling |
CN109902576B (zh) * | 2019-01-25 | 2021-05-18 | 华中科技大学 | 一种头肩图像分类器的训练方法及应用 |
CN109871829B (zh) * | 2019-03-15 | 2021-06-04 | 北京行易道科技有限公司 | 一种基于深度学习的检测模型训练方法和装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105512638A (zh) * | 2015-12-24 | 2016-04-20 | 黄江 | 一种基于融合特征的人脸检测与对齐方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101271514B (zh) * | 2007-03-21 | 2012-10-10 | 株式会社理光 | 一种快速目标检测和目标输出的图像检测方法及装置 |
CN101567048B (zh) * | 2008-04-21 | 2012-06-06 | 夏普株式会社 | 图像辨别装置及图像检索装置 |
CN102831411B (zh) * | 2012-09-07 | 2016-05-04 | 云南晟邺科技有限公司 | 一种快速人脸检测方法 |
CN103049751A (zh) * | 2013-01-24 | 2013-04-17 | 苏州大学 | 一种改进的加权区域匹配高空视频行人识别方法 |
CN103778430B (zh) * | 2014-02-24 | 2017-03-22 | 东南大学 | 一种基于肤色分割和AdaBoost相结合的快速人脸检测方法 |
CN106650615B (zh) * | 2016-11-07 | 2018-03-27 | 深圳云天励飞技术有限公司 | 一种图像处理方法及终端 |
-
2016
- 2016-11-07 CN CN201610982791.1A patent/CN106650615B/zh active Active
-
2017
- 2017-06-09 WO PCT/CN2017/087702 patent/WO2018082308A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105512638A (zh) * | 2015-12-24 | 2016-04-20 | 黄江 | 一种基于融合特征的人脸检测与对齐方法 |
Non-Patent Citations (2)
Title |
---|
Local appearance based face recognition method using block based steerable pyramid transform;Mohamed El Aroussi 等;《Signal Processing》;20111231;第38页-50页 * |
采用LBP金字塔的人脸描述与识别;王玮 等;《计算机辅助设计与图形学学报》;20090131;第21卷(第1期);第94页-100页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106650615A (zh) | 2017-05-10 |
WO2018082308A1 (zh) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106650615B (zh) | 一种图像处理方法及终端 | |
CN110097051B (zh) | 图像分类方法、装置及计算机可读存储介质 | |
CN108229277B (zh) | 手势识别、手势控制及多层神经网络训练方法、装置及电子设备 | |
CN107529650B (zh) | 闭环检测方法、装置及计算机设备 | |
US8750573B2 (en) | Hand gesture detection | |
US8792722B2 (en) | Hand gesture detection | |
CN106650740B (zh) | 一种车牌识别方法及终端 | |
CN106373095B (zh) | 一种图像处理方法及终端 | |
CN106845331B (zh) | 一种图像处理方法及终端 | |
CN106845406A (zh) | 基于多任务级联卷积神经网络的头肩检测方法及装置 | |
CN108446694B (zh) | 一种目标检测方法及装置 | |
US20220406090A1 (en) | Face parsing method and related devices | |
CN112102164B (zh) | 一种图像处理方法、装置、终端及存储介质 | |
CN110751195B (zh) | 一种基于改进YOLOv3的细粒度图像分类方法 | |
CN107169458A (zh) | 数据处理方法、装置及存储介质 | |
CN110852311A (zh) | 一种三维人手关键点定位方法及装置 | |
CN112016502B (zh) | 安全带检测方法、装置、计算机设备及存储介质 | |
CN106845520A (zh) | 一种图像处理方法及终端 | |
CN111126250A (zh) | 一种基于ptgan的行人重识别方法及装置 | |
CN114612709A (zh) | 图像金字塔特征指导的多尺度目标检测方法 | |
CN111160240B (zh) | 图像对象的识别处理方法、装置及智能设备、存储介质 | |
CN106874835B (zh) | 一种图像处理方法及装置 | |
CN108694398A (zh) | 一种图像分析方法及装置 | |
WO2020224244A1 (zh) | 一种景深图获取方法及装置 | |
CN109165583B (zh) | 多尺寸融合人脸检测方法、装置及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |