CN106650204A - Product failure behavior coupling modeling and reliability evaluation method - Google Patents
Product failure behavior coupling modeling and reliability evaluation method Download PDFInfo
- Publication number
- CN106650204A CN106650204A CN201610857496.3A CN201610857496A CN106650204A CN 106650204 A CN106650204 A CN 106650204A CN 201610857496 A CN201610857496 A CN 201610857496A CN 106650204 A CN106650204 A CN 106650204A
- Authority
- CN
- China
- Prior art keywords
- copula
- vine
- reliability
- function
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- Complex Calculations (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种产品故障行为耦合建模和可靠性评估方法,即一种基于Vine‑Copula和加速退化试验的产品故障行为耦合建模和可靠性评估方法,其步骤如下:一:退化轨迹建模;二:失效机理一致性检验;三:外推正常应力下性能参数的分布模型;四:基于Vine‑Copula的产品故障行为耦合建模;五:可靠性评估;通过以上步骤,完成了对产品的故障行为耦合建模,建立了可靠度联合分布的模型,解决了直接积分法求解可靠度函数的难题,清楚描述产品多元变量耦合关系,为具有多性能参数相关特性产品的可靠性评估提供了方法。
A product failure behavior coupling modeling and reliability evaluation method, that is, a product failure behavior coupling modeling and reliability evaluation method based on Vine-Copula and accelerated degradation tests, the steps are as follows: 1: Degradation trajectory modeling; 2 : Failure mechanism consistency test; 3: Extrapolation of the distribution model of performance parameters under normal stress; 4: Coupling modeling of product failure behavior based on Vine-Copula; 5: Reliability evaluation; through the above steps, the failure of the product is completed Behavioral coupling modeling establishes a model of joint distribution of reliability, solves the problem of solving the reliability function by direct integral method, clearly describes the coupling relationship of multiple variables of products, and provides a method for reliability evaluation of products with multi-performance parameter related characteristics.
Description
技术领域technical field
本发明提出了一种产品故障行为耦合建模和可靠性评估方法,特别是涉及一种基于藤-卡普拉(Vine-Copula)和加速退化试验的产品故障行为耦合建模和可靠性评估方法,属于可靠性技术领域中的故障行为建模。The present invention proposes a product failure behavior coupling modeling and reliability assessment method, in particular to a product failure behavior coupling modeling and reliability assessment method based on Vine-Copula and accelerated degradation tests , which belongs to fault behavior modeling in the field of reliability technology.
背景技术Background technique
航天、航空、核设备、电力网络等重大装备的安全服役对于国民经济发展和国防建设都具有重要意义,但其运行条件复杂、环境恶劣,容易导致恶性事故发生,因此正确认识故障、评估和预测其可靠性对于保证设备安全运行、提高经济效益有很大的意义。由于系统复杂度的提高以及对于故障认识的深入,针对可靠性理论的研究,已逐步从面向“故障时间”转向面向“故障过程”。基于故障过程的研究一方面是从微观的角度出发研究故障发生机理,即故障物理学。另一方面是从宏观角度出发,研究故障的发生发展及在系统中的传播,即故障的行为。该发明基于Vine-Copula和加速退化试验的产品故障行为耦合建模和可靠性评估方法是一种对具有多元变量的产品故障行为建模及可靠性评估方法。通过对现有技术的查新,国内外还没有基于Vine-Copula和加速退化试验对产品进行故障行为耦合建模和可靠性评估方面的研究。The safe service of aerospace, aviation, nuclear equipment, power network and other major equipment is of great significance to national economic development and national defense construction, but its operating conditions are complex and the environment is harsh, which can easily lead to malignant accidents. Therefore, a correct understanding of faults, assessment and prediction Its reliability is of great significance to ensure the safe operation of equipment and improve economic benefits. Due to the improvement of system complexity and the in-depth understanding of faults, the research on reliability theory has gradually shifted from "failure time" to "failure process". On the one hand, the research based on the fault process is to study the fault mechanism from a microscopic point of view, that is, fault physics. On the other hand, from a macro point of view, study the occurrence and development of faults and their propagation in the system, that is, the behavior of faults. The product failure behavior coupling modeling and reliability evaluation method based on Vine-Copula and accelerated degradation test is a method for modeling and reliability evaluation of product failure behavior with multiple variables. Through the novelty search of existing technologies, there is no research on the coupling modeling of fault behavior and reliability evaluation of products based on Vine-Copula and accelerated degradation tests at home and abroad.
发明内容Contents of the invention
针对高可靠长寿命复杂产品具有故障机理耦合的特点,在构建宏观故障行为模型进行可靠性评估的方面,提出了一种基于Vine-Copula和加速退化试验的具有多元变量产品故障行为建模及可靠性评估方法。该方法一方面可以清楚描述产品多元变量耦合关系,另一方面可以在可承受时间和成本内进行产品可靠性评估。Aiming at the characteristics of high-reliability and long-life complex products having failure mechanism coupling, in terms of constructing a macroscopic failure behavior model for reliability evaluation, a multi-variable product failure behavior modeling and reliability based on Vine-Copula and accelerated degradation tests are proposed. gender assessment method. On the one hand, this method can clearly describe the multivariate variable coupling relationship of the product, and on the other hand, it can evaluate the product reliability within an acceptable time and cost.
本发明在进行产品故障行为耦合建模和可靠度评估之前,需明确组成产品的系统的故障行为描述方法,选定描述系统故障行为的表征量。由于组成系统的部件之间的故障机理相互影响会表现在部件的状态上,一种可用的方法是采用部件的状态向量Z(t)为表征,描述系统的故障行为,构建故障行为耦合模型,从而估计系统的可靠度。其中,Z(t)=(D(t),X(t),F(t))T,D(t)是部件损伤状态变量,X(t)是部件响应变量,F(t)是部件承受的应力变量。对于系统而说,各部件间或者部件内部存在的机理竞争或者耦合问题可以用每个部件的状态向量中的损伤状态变量表示其退化损伤状况来构建产品故障行为耦合模型;而从实际角度,损伤状态变量一般从产品的监测参数上来反应,因此本发明从加速退化试验下各水平的性能参数试验数据入手,进行建模与分析,具体实施流程见附图1。In the present invention, before performing product fault behavior coupling modeling and reliability evaluation, the fault behavior description method of the system constituting the product needs to be clarified, and the characterization quantity describing the system fault behavior must be selected. Since the interaction of failure mechanisms among the components that make up the system will be manifested in the state of the components, an available method is to use the state vector Z(t) of the components as a representation to describe the fault behavior of the system and construct a fault behavior coupling model. So as to estimate the reliability of the system. Among them, Z(t)=(D(t), X(t), F(t)) T , D(t) is the component damage state variable, X(t) is the component response variable, F(t) is the component The stress variable subjected to. For the system, the mechanism competition or coupling problem among the components or within the components can use the damage state variable in the state vector of each component to represent its degeneration and damage status to build a product failure behavior coupling model; and from a practical point of view, the damage The state variables are generally reflected from the monitoring parameters of the product. Therefore, the present invention starts with the test data of performance parameters at various levels under the accelerated degradation test, and performs modeling and analysis. The specific implementation process is shown in Figure 1.
本发明是采用以下技术方案实现的,本发明一种产品故障行为耦合建模和可靠性评估方法,即一种基于Vine-Copula和加速退化试验的产品故障行为耦合建模和可靠性评估方法,其步骤如下:The present invention is realized by adopting the following technical solutions. The present invention is a product failure behavior coupling modeling and reliability evaluation method, that is, a product failure behavior coupling modeling and reliability evaluation method based on Vine-Copula and accelerated degradation tests, The steps are as follows:
步骤一:退化轨迹建模Step 1: Degradation trajectory modeling
产品的退化轨迹模型可表示为退化量与时间及所受环境应力的函数;在进行退化轨迹建模时,需The degradation trajectory model of the product can be expressed as a function of the amount of degradation, time and environmental stress; when modeling the degradation trajectory, it is necessary
1.分析退化数据特点,建立退化轨迹模型Δyt=f(t,S),Δyt表示t时刻的退化量,S表示所受环境应力水平大小;1. Analyze the characteristics of degradation data, and establish a degradation trajectory model Δy t = f(t,S), Δy t represents the amount of degradation at time t, and S represents the level of environmental stress received;
2.建立似然函数fi表示第i个退化量测试点的概率密度函数,μ,σ表示退化轨迹模型参数;2. Establish the likelihood function f i represents the probability density function of the i-th degradation test point, and μ, σ represent the parameters of the degradation trajectory model;
3.代入退化数据,利用Nelder-Mead单纯形法对似然函数的极大值问题进行求解,得到各应力水平下各性能参数退化轨迹模型的参数估计;3. Substitute the degradation data, use the Nelder-Mead simplex method to solve the maximum value problem of the likelihood function, and obtain the parameter estimation of the degradation trajectory model of each performance parameter under each stress level;
步骤二:失效机理一致性检验Step 2: Failure Mechanism Consistency Test
在加速退化试验中,为保证试验的有效性,不同加速应力水平下的同一性能参数应符合失效机理一致性检验。退化轨迹建模中模型参数与失效机理不变间存在的联系依据退化轨迹建模方法的不同而存在差别,以服从漂移布朗运动的退化轨迹建模为例:In the accelerated degradation test, in order to ensure the validity of the test, the same performance parameter under different accelerated stress levels should comply with the failure mechanism consistency test. In the degradation trajectory modeling, the relationship between the model parameters and the failure mechanism is different depending on the degradation trajectory modeling method. Take the degradation trajectory modeling subject to drifting Brownian motion as an example:
1.确定其加速机理一致性检验公式其中μi和σi分别为应力水平Si下的退化轨迹模型的漂移系数与扩散系数;1. Determine the consistency test formula of its acceleration mechanism Among them, μ i and σ i are the drift coefficient and diffusion coefficient of the degradation trajectory model under the stress level S i , respectively;
2.构建假设检验统计量T从自由度为n+m-2的t分布;其中:X服从均值为μ1方差为σ2的正态分布,Y服从均值为μ2方差为σ2的正态分布,且X1,X2,…Xn是来自总体X的样本,Y1,Y2,…Ym是取自总体Y的样本,n和m分别为样本量大小; 2. Construct hypothesis test statistics T is from a t distribution with n+m-2 degrees of freedom; where: X obeys a normal distribution with a mean of μ 1 and a variance of σ 2 , Y follows a normal distribution with a mean of μ 2 and a variance of σ 2 , and X 1 , X 2 ,...X n are samples from population X, Y 1 , Y 2 ,...Y m are samples from population Y, and n and m are sample size respectively;
3.确定拒绝域。给定显著性水平α,代入数据计算|T|,查t分布表可知:t1-α/2(n+m-2)的大小,若|T|≥t1-α/2(n+m-2),则检验结果落在拒绝域内,参数在不同应力下的失效机理不具有一致性。反之,则满足一致性检验;3. Determine the deny domain. Given the significance level α, substitute the data to calculate |T|, and look up the t distribution table to know: the size of t 1-α/2 (n+m-2), if |T|≥t 1-α/2 (n+ m-2), the test results fall within the rejection region, and the failure mechanisms of the parameters under different stresses are not consistent. Otherwise, the consistency test is satisfied;
步骤三:外推正常应力下性能参数的分布模型Step 3: Extrapolating the distribution model of performance parameters under normal stress
产品寿命特征与加速应力水平之间的关系可通过加速模型来表述,利用加速模型可推导得到正常应力下各变量的退化模型及边缘分布;本发明中,采用简化的多应力艾琳加速模型:t为特征寿命,T和RH分别表示温度与湿度变量,A、B和C为待求参数;The relationship between the product life characteristics and the accelerated stress level can be expressed by the accelerated model, and the degradation model and edge distribution of each variable under normal stress can be deduced by using the accelerated model; in the present invention, the simplified multi-stress Irene accelerated model is used: t is the characteristic life, T and RH represent the temperature and humidity variables respectively, and A, B and C are the parameters to be obtained;
1.确定加速因子1. Determine the acceleration factor
令AFi,0=t0/ti为加速应力水平Si相对于正常应力水平S0的加速因子,ti和t0分别表示产品在加速应力水平Si与正常应力水平S0下,性能参数达到相同退化量时所需要的时间;Let AF i,0 =t 0 /t i be the acceleration factor of the accelerated stress level S i relative to the normal stress level S 0 , t i and t 0 represent the products under the accelerated stress level S i and the normal stress level S 0 respectively, The time required for performance parameters to reach the same amount of degradation;
2.求解加速模型参数2. Solving acceleration model parameters
a.构建加速因子与不同应力间寿命、漂移系数、扩散系数的关系等式其中AF表示加速因子,L表示寿命,μi和σi表示在加速应力Si下性能参数退化轨迹的漂移系数和扩散系数;下标h表示较高的应力水平下,下标l表示较低的应力水平下;a. Construct the relationship equation between the acceleration factor and the life, drift coefficient and diffusion coefficient between different stresses Among them, AF represents the acceleration factor, L represents the life, μ i and σ i represent the drift coefficient and diffusion coefficient of the performance parameter degradation trajectory under the accelerated stress S i ; the subscript h represents a higher stress level, and the subscript l represents a lower under the stress level;
b.对性能参数p,在k1和k2应力水平下,构造离差平方和函数采用Nelder-Mead单纯形法对离差平方和函数的极小值问题进行求解,得到加速模型中最优模型参数B、C;b. For the performance parameter p, under the k 1 and k 2 stress levels, construct the sum of squared deviation function The Nelder-Mead simplex method is used to solve the minimum value problem of the sum of squared deviation function, and the optimal model parameters B and C in the accelerated model are obtained;
3.估计正常应力下退化轨迹模型参数3. Estimate the parameters of the degradation trajectory model under normal stress
求得加速模型中的参数之后,使用最小二乘法对正常应力下退化轨迹模型参数进行估计,得到离差平方和函数与采用单纯形法求解使离差平方和最小所对应的参数值,从而得到正常应力下退化轨迹模型参数μp0和σp0的点估计;最终正常应力下退化轨迹模型为:yp0(t)=μp0t+σp0B(t);After obtaining the parameters in the acceleration model, use the least squares method to estimate the parameters of the degradation trajectory model under normal stress, and obtain the deviation sum of squares function and The simplex method is used to solve the parameter values corresponding to the minimum sum of squared deviations, so as to obtain the point estimates of the degradation trajectory model parameters μ p0 and σ p0 under normal stress; the final degradation trajectory model under normal stress is: y p0 (t) = μ p0 t+σ p0 B(t);
步骤四:基于Vine-Copula的产品故障行为耦合建模Step 4: Coupling modeling of product failure behavior based on Vine-Copula
Copula函数是一类“连接”函数,连接的是边缘分布与联合分布。Vine-Copula的理论基础是条件概率,通过将联合分布分解成多个二元copula及相应的条件概率连乘的形式进行建模,基于Vine-Copula的产品故障行为耦合建模主要流程如下:The copula function is a kind of "connection" function, which connects the marginal distribution and the joint distribution. The theoretical basis of Vine-Copula is conditional probability, which is modeled by decomposing the joint distribution into multiple binary copulas and the corresponding multiplication of conditional probabilities. The main process of product failure behavior coupling modeling based on Vine-Copula is as follows:
1.性能参数相关性分析1. Correlation analysis of performance parameters
在进行产品的故障行为耦合建模前,对于产品的多元性能参数退化,要先进行相关性分析;用Kendall’sτ系数作为相关性度量指标,指标的绝对值越接近1表示相关性越强,且Kendall’sτ系数表示非线性相关程度;Before the coupling modeling of product failure behavior, correlation analysis should be carried out for the degradation of multiple performance parameters of the product; Kendall's τ coefficient is used as the correlation measurement index, and the closer the absolute value of the index is to 1, the stronger the correlation is. And Kendall'sτ coefficient indicates the degree of nonlinear correlation;
2.借助vine图模型将联合分布分解为合适的条件概率相乘的形式,利用copula函数构建多元相关关系模型;具体,2. Use the vine graph model to decompose the joint distribution into a form of multiplication of appropriate conditional probabilities, and use the copula function to construct a multivariate correlation model; specifically,
a.基于D-Vine的建模方法a. Modeling method based on D-Vine
1)首先,在第一层Vine图模型中,各变量作为树图中的节点,节点之间按相互关系用短线进行连接,例如,一种四维的D-vine其第一层关系如附图2所示。以cij表示连接节点i与节点j的copula函数的概率密度,则cij=cpq,p、q分别为节点i和节点j包含的变量。1) First of all, in the first layer Vine diagram model, each variable is used as a node in the tree diagram, and the nodes are connected by short lines according to their mutual relationship. For example, the first layer relationship of a four-dimensional D-vine is shown in the attached drawing 2. Let c ij represent the probability density of the copula function connecting node i and node j, then c ij =c pq , where p and q are the variables contained in node i and node j respectively.
2)Vine图中的第二层树图建立在第一层树图的基础上,以第一层树图中的连接作为第二层树图中的节点,第一层中相邻的连线在第二层的形成的元用连线进行连接,构建第二层的树图,例如附图3是以附图2中(1,2)、(2,3)、(3,4)为元建立第二层树图。仍以cij表示连接节点i与节点j的copula函数的概率密度,有cij=cpq|k,{p,k}、{q,k}分别为节点i和节点j包含的变量,其中k为两节点共有的变量。2) The second-level tree diagram in the Vine diagram is established on the basis of the first-level tree diagram, and the connections in the first-level tree diagram are used as nodes in the second-level tree diagram, and the adjacent connections in the first layer The element formed in the second layer is connected with a connecting line, and the tree diagram of the second layer is constructed. For example, accompanying drawing 3 is based on (1,2), (2,3), (3,4) in accompanying drawing 2 element to build a second-level tree diagram. Still use c ij to represent the probability density of the copula function connecting node i and node j, c ij =c pq|k , {p,k}, {q,k} are the variables contained in node i and node j respectively, where k is a variable common to both nodes.
3)第三层树图也是采用类似的方法在前一层树图基础上进行建立,以此类推,当树图中只剩下一对相关关系,即只剩一条连线时,就是最后一层的树图了。同理,第三层树图到包括最后一层树图在内的所有连接节点之间的copula函数的概率密度都有cij=cpq|k,{p,k}、{q,k}为节点i和节点j包含的变量,其中k为两节点共有的变量。3) The tree diagram of the third layer is also established on the basis of the tree diagram of the previous layer by a similar method, and so on, when there is only one pair of related relations left in the tree diagram, that is, when there is only one connection line left, it is the last one. layer tree diagram. Similarly, the probability density of the copula function between the third layer treemap and all connected nodes including the last layer treemap has c ij =c pq|k , {p,k}, {q,k} is the variable contained in node i and node j, where k is a variable shared by the two nodes.
4)将Vine图中的各条连线对应的copula函数概率密度相乘,即可得到基于Vine图的copula函数的分解结构.c=∏cij。产品可靠度联合分布概率密度函数可表示为xi表示产品的第i个性能参数,ri表示第i个参数对应的可靠度概率密度函数,至此基于Vine-Copula耦合模型已建立。4) Multiply the copula function probability densities corresponding to the lines in the Vine diagram to obtain the decomposition structure of the copula function based on the Vine diagram. c=∏c ij . The probability density function of the joint distribution of product reliability can be expressed as x i represents the i-th performance parameter of the product, r i represents the reliability probability density function corresponding to the i-th parameter, and the Vine-Copula coupling model has been established so far.
b.求解Vine-Copula耦合模型b. Solve the Vine-Copula coupling model
求解Vine-Copula耦合模型,即可靠度联合分布概率密度,要先确定可靠度联合分布概率密度r(x1,...,xn)中各个copula概率密度函数的形式及参数,即cij的形式与参数。To solve the Vine-Copula coupling model, that is, the probability density of joint reliability distribution, it is necessary to first determine the form and parameters of each copula probability density function in the joint reliability distribution probability density r(x 1 ,...,x n ), that is, c ij form and parameters.
1)确定Vine模型中第一层树图中的cij:代入第i、第j个节点对应性能参数(p、q)的退化量数据。根据备选的copula函数形式建立似然函数采用Nelder-Mead单纯形法求解似然函数的极大值及其对应的copula函数参数值,然后基于AIC准则选取最为合适的copula函数形式及对应的参数。其中,似然函数L中j表示样本编号,共m个样本,i表示测试点序号,共n个测试点,Rp(t)与Rq(t)分别表示第p和q个性能参数的可靠度分布函数。1) Determine c ij in the tree diagram of the first layer in the Vine model: Substituting the degradation data of the performance parameters (p, q) corresponding to the i-th and j-th nodes. Build likelihood functions from alternative copula functional forms The Nelder-Mead simplex method is used to solve the maximum value of the likelihood function and the corresponding copula function parameter values, and then the most appropriate copula function form and corresponding parameters are selected based on the AIC criterion. Among them, j in the likelihood function L represents the sample number, a total of m samples, i represents the test point serial number, a total of n test points, R p (t) and R q (t) represent the p and q performance parameters respectively Reliability distribution function.
2)确定Vine模型中第二层树图中的cij:令{p,k}、{q,k}分别为节点i和节点j包含的变量,则有cij=cpq|k,根据备选的copula函数形式建立似然函数采用Nelder-Mead单纯形法求解似然函数的极大值及其对应的copula函数参数值,然后基于AIC准则选取最为合适的copula函数形式及对应的参数。其中,似然函数L中j表示样本编号,共m个样本,i表示测试点序号,共n个测试点,Rp|k(t)与Rq|k(t)分别表示可靠度联合分布的条件概率表达式,其计算公式遵循:2) Determine c ij in the second layer tree diagram in the Vine model: let {p,k}, {q,k} be the variables contained in node i and node j respectively, then c ij =c pq|k , according to Alternative copula function form to build likelihood function The Nelder-Mead simplex method is used to solve the maximum value of the likelihood function and the corresponding copula function parameter values, and then the most appropriate copula function form and corresponding parameters are selected based on the AIC criterion. Among them, j in the likelihood function L represents the sample number, a total of m samples, i represents the test point serial number, a total of n test points, R p|k (t) and R q|k (t) respectively represent the joint distribution of reliability The conditional probability expression of , its calculation formula follows:
i.当k为一维变量时,即两个节点间只包含一个相同变量,此时Rp|k(t)和Rq|k(t)的值按照计算。其中R为可靠度分布函数,表示该copula函数对Rj求导。i. When k is a one-dimensional variable, that is, there is only one same variable between two nodes, the values of R p|k (t) and R q|k (t) are according to calculate. where R is the reliability distribution function, Indicates that the copula function is derived with respect to R j .
ii.当k为维数大于1的向量时,即两个节点间包含多个相同变量,此时Rp|k(t)和Rq|k(t)的值按照计算。其中v是条件向量,v=(v1,v2,...,vd),vj是v中的任意一个元素,v-j表示v除去vj得到的向量。ii. When k is a vector with a dimension greater than 1, that is, two nodes contain multiple identical variables, then the values of R p|k (t) and R q|k (t) are according to calculate. Where v is a condition vector, v=(v 1 ,v 2 ,...,v d ), v j is any element in v, and v -j represents the vector obtained by removing v j from v.
确定Vine模型中第二层树图中的cij后,以此类推,计算其他层树图的cij,直至确定Vine图中所有最优的copula函数形式为止。After determining the c ij in the second-level dendrogram in the Vine model, and so on, calculate the c ij in the other dendrograms until all optimal copula function forms in the Vine diagram are determined.
3)确定所有cij的函数形式后,对已选定的cij的参数一起进行再次估计。建立似然函数L=r(x1,...,xn),采用Nelder-Mead单纯形法方法求解似然函数的极大值,可得到对应的最优参数结果。将所有cij函数的参数回代Vine-Copula的分解式中,即得到了基于Vine-copula建立的多元相关关系模型。3) After determining the functional forms of all c ij , re-estimate the parameters of the selected c ij together. Establish the likelihood function L=r(x 1 ,...,x n ), and use the Nelder-Mead simplex method to solve the maximum value of the likelihood function, and the corresponding optimal parameter results can be obtained. Substitute the parameters of all c ij functions into the decomposition formula of Vine-Copula, and obtain the multivariate correlation model based on Vine-Copula.
步骤五:可靠性评估Step Five: Reliability Assessment
利用Vine-Copula函数完成产品故障行为耦合建模后,可以得到产品的可靠度联合分布概率密度函数。然而由于Copula函数的密度函数结构复杂多样,同时各性能参数的可靠度概率密度函数表达式也十分复杂,造成可靠度联合分布的概率密度函数的解析式不仅长而且非常复杂,很难通过直接积分的方法求解可靠度函数。对于非严格单调退化情况下的产品可靠度联合分布的精确解问题,本发明采用了条件概率分解的方法进行求解。After using the Vine-Copula function to complete the coupling modeling of product failure behavior, the probability density function of the joint distribution of product reliability can be obtained. However, due to the complex and diverse structure of the density function of the Copula function, and the expression of the reliability probability density function of each performance parameter is also very complicated, the analytical expression of the probability density function of the reliability joint distribution is not only long but also very complicated, and it is difficult to directly integrate method to solve the reliability function. For the exact solution of the joint distribution of product reliability under the condition of non-strict monotone degradation, the present invention adopts the method of conditional probability decomposition to solve the problem.
1.计算二元变量的可靠度联合分布的条件概率表达式1. Calculate the conditional probability expression of the reliability joint distribution of binary variables
其中R为可靠度分布函数,表示该copula函数对Rj求导。where R is the reliability distribution function, Indicates that the copula function is derived with respect to R j .
2.计算多元变量可靠度联合分布的条件概率表达式2. Calculate the conditional probability expression of the joint distribution of multivariate reliability
其中v是条件向量,v=(v1,v2,...,vd),vj是v中的任意一个元素,v-j表示v除去vj得到的向量,v-j=(v1,v2,...,vj-1,vj+1,...,vd)。Where v is a conditional vector, v=(v 1 ,v 2 ,...,v d ), v j is any element in v, v -j represents the vector obtained by removing v j from v, v -j =( v 1 ,v 2 ,...,v j-1 ,v j+1 ,...,v d ).
3.计算多元可靠度联合分布表达式3. Calculate the multivariate reliability joint distribution expression
其中K表示发生退化的性能参数个数,ak是性能参数的代号,v是条件向量,vj是条件向量v中的一个元素,v-j表示条件向量v中除去vj得到的向量,为vj对应的时间,为向量v-j中元素对应的时间构成的时间向量。Among them, K represents the number of degraded performance parameters, a k is the code name of the performance parameter, v is the condition vector, v j is an element in the condition vector v, and v -j represents the vector obtained by removing v j from the condition vector v, is the time corresponding to v j , is the time vector formed by the time corresponding to the elements in vector v -j .
其中,在步骤四中所述的“基于AIC准则选取最为合适的copula函数形式”是指:以AIC最小值所对应的copula认为是备选copula形式中最为适宜的选择。AIC的计算式为AIC=-2lnL+2p,其中L是极大似然函数值,p是模型参数个数,M是样本大小,对应的取值是产品的观测点个数。Wherein, "select the most suitable copula function form based on the AIC criterion" mentioned in step 4 means: the copula corresponding to the minimum value of AIC is considered to be the most suitable choice among the alternative copula forms. The calculation formula of AIC is AIC=-2lnL+2p, where L is the maximum likelihood function value, p is the number of model parameters, M is the sample size, and the corresponding value is the number of observation points of the product.
其中,在步骤五中,为便于可靠度联合分布的求解,将可靠度联合分布分解为条件概率的原则是使得最终分解结果中的各项二元Copula函数尽量都是Vine-Copula中已使用并确立的二元Copula函数,所述的“条件概率分解的方法”,可以遵循一些原则:Among them, in step 5, in order to facilitate the solution of the joint reliability distribution, the principle of decomposing the joint reliability distribution into conditional probabilities is to make the binary Copula functions in the final decomposition result as much as possible that have been used in Vine-Copula and The established binary Copula function, described in the "Conditional Probability Decomposition Method", can follow some principles:
1)分解式中首个可靠度边缘分布(即),对于D-vine宜选择第一层两端任意的端节点;1) The first marginal distribution of reliability in the decomposition formula (ie ), for D-vine, it is advisable to select any end node at both ends of the first layer;
2)分解式中第二项,即对于D-vine宜选择第二层的同侧端节点;2) The second item in the decomposition formula, namely For D-vine, it is advisable to choose the same-side end node of the second layer;
3)以此类推,对于D-vine宜选择相应的端节点。3) By analogy, it is better to select the corresponding end node for D-vine.
通过以上步骤,完成了对产品的故障行为耦合建模,建立了可靠度联合分布的模型,解决了直接积分法求解可靠度函数的难题,清楚描述产品多元变量耦合关系,提供了在可承受时间和成本内进行产品可靠性评估的方法。Through the above steps, the coupling modeling of the product's fault behavior is completed, and the model of the joint distribution of reliability is established, which solves the problem of solving the reliability function by the direct integration method, clearly describes the multivariate variable coupling relationship of the product, and provides and methods of product reliability assessment within cost.
本发明的优点在于:The advantages of the present invention are:
针对多元变量高可靠长寿命产品,基于加速退化试验数据和漂移布朗运动,在加速机理一致性检验的基础上,构建得到了正常应力水平下的变量边缘分布。基于分层思想,利用Vine-Copula方法,用二元Copula函数描述了多维联合分布的解耦问题,即对潜在的部件相关性机理进行了解耦建模,避免了多元Copula函数在高维上的数值仿真求解问题。同时,在可靠度计算方面,由于目前Copula函数的建模方法通常都是搭配严格单调退化的退化模型进行寿命评估,本发明提出的基于条件概率的求解方法使得对于非严格单调退化的情况也能求解。最后,对比多维正态分布建模方法,克服了退化参数间仅服从线性或不相关的关系,表明Vine-Copula能有效处理非线性相关下的可靠寿命估计。For multi-variable high-reliability and long-life products, based on the accelerated degradation test data and drift Brownian motion, and on the basis of the consistency test of the acceleration mechanism, the marginal distribution of variables under normal stress levels is constructed. Based on the hierarchical idea, using the Vine-Copula method, the decoupling problem of the multidimensional joint distribution is described by the binary Copula function, that is, the decoupling modeling of the underlying component correlation mechanism is carried out, and the multivariate Copula function is avoided in high dimensions. numerical simulation to solve the problem. At the same time, in terms of reliability calculation, since the current Copula function modeling method usually uses a strictly monotonic degradation degradation model for life evaluation, the solution method based on conditional probability proposed by the present invention makes it possible for non-strict monotonic degradation cases. solve. Finally, compared with the multidimensional normal distribution modeling method, it overcomes the linear or irrelevant relationship between the degradation parameters, indicating that Vine-Copula can effectively deal with reliable life estimation under nonlinear correlation.
附图说明Description of drawings
图1本发明所述方法实施流程图。Fig. 1 is a flowchart for implementing the method of the present invention.
图2四维D-vine第一层树图。Fig. 2 The tree diagram of the first layer of four-dimensional D-vine.
图3四维D-vine第二层树图。Fig. 3 The tree diagram of the second layer of four-dimensional D-vine.
图4智能电表基本误差的D-vine模型。Figure 4 D-vine model of the basic error of the smart meter.
图5智能电表四项基本误差的联合可靠度图。Fig. 5 The joint reliability diagram of the four basic errors of the smart meter.
图中序号、代号说明如下:The serial numbers and codes in the figure are explained as follows:
图2和图3中数字分别代表性能参数的代码。图4中BE1、BE5、BE9、BE10表示智能电表的四项基本误差,CE表示智能电表的累计误差。BE1BE5代表连接节点BE1与节点BE5的连线,表征性能参数BE1与BE5相关,并作为vine图中第二层的节点。BE5BE9和BE9BE10表征含义同上。BE1BE9|BE5代表连接节点BE1BE5与节点BE5BE9的连线,表征性能参数BE5既与BE1相关,又和BE9相关,并且BE1BE9|BE5作为vine图中第三层的节点。BE5BE10|BE9含义同上。BE1BE10|BE5BE9表示代表连接节点BE1BE9|BE5与节点BE5BE10|BE9的连线,表征不止性能参数BE5与BE1、BE10相关,并且有性能参数BE9与BE1、BE10相关。The numbers in Figure 2 and Figure 3 represent the codes of the performance parameters respectively. In Figure 4, BE1, BE5, BE9, and BE10 represent the four basic errors of the smart meter, and CE represents the cumulative error of the smart meter. BE1BE5 represents the connection line connecting node BE1 and node BE5, which represents the correlation between performance parameters BE1 and BE5, and serves as the second layer node in the vine graph. The meanings of BE5BE9 and BE9BE10 are the same as above. BE1BE9|BE5 represents the connection between node BE1BE5 and node BE5BE9, which represents the performance parameter BE5 is related to both BE1 and BE9, and BE1BE9|BE5 is the third layer node in the vine graph. BE5BE10|BE9 has the same meaning as above. BE1BE10|BE5BE9 represents the connection between node BE1BE9|BE5 and node BE5BE10|BE9, representing not only the performance parameter BE5 is related to BE1 and BE10, but also the performance parameter BE9 is related to BE1 and BE10.
具体实施方式detailed description
下面将结合附图和实施例对本发明作进一步的详细说明。本发明通过分析产品输出参数间的相关性来构建耦合模型进行可靠度评估,选取智能电表作为应用对象,对智能电表的输出性能参数进行退化建模,并进行电表的可靠寿命评估。智能电表是典型的具有多性能参数电子产品,能够表征智能电表退化状态的性能参数有累计误差1项,基本误差4项,分别是累计误差CE和基本误差BE1、BE5、BE9、BE10。智能电表的恒定加速退化试验共选取两种加速应力(温度和湿度)进行了三个应力水平的试验,每个应力水平8个样本,具体应力组合见表1。由加速退化试验数据可知智能电表的输出性能参数是具备退化特性的,其退化趋势逐渐上升,根据设计指标有明确的失效阈值,在试验条件下,温度和湿度是促使其发生退化的加速应力。The present invention will be further described in detail with reference to the accompanying drawings and embodiments. The invention constructs a coupling model for reliability evaluation by analyzing the correlation between product output parameters, selects a smart meter as an application object, performs degradation modeling on the output performance parameters of the smart meter, and evaluates the reliable life of the meter. Smart meters are typical electronic products with multiple performance parameters. The performance parameters that can represent the degradation state of smart meters include 1 item of cumulative error and 4 items of basic error, which are cumulative error CE and basic errors BE1, BE5, BE9, and BE10. In the constant accelerated degradation test of the smart meter, two kinds of accelerated stresses (temperature and humidity) were selected to carry out the test at three stress levels, with 8 samples for each stress level. The specific stress combinations are shown in Table 1. From the accelerated degradation test data, it can be seen that the output performance parameters of the smart meter have degradation characteristics, and its degradation trend gradually increases. According to the design index, there is a clear failure threshold. Under the test conditions, temperature and humidity are the accelerated stresses that promote its degradation.
本发明一种产品故障行为耦合建模和可靠性评估方法,即一种基于Vine-Copula和加速退化试验的产品故障行为耦合建模和可靠性评估方法,见图1所示,其具体实施步骤如下:A product failure behavior coupling modeling and reliability evaluation method of the present invention, that is, a product failure behavior coupling modeling and reliability evaluation method based on Vine-Copula and accelerated degradation tests, as shown in Figure 1, its specific implementation steps as follows:
步骤一:退化轨迹建模Step 1: Degradation trajectory modeling
通过加速退化试验获得智能电表5项关键性能参数在各应力水平下的试验数据。依据智能电表各项性能参数退化轨迹的特点,采用漂移布朗运动对性能参数退化轨迹建模。The test data of the five key performance parameters of the smart meter under various stress levels were obtained through the accelerated degradation test. According to the characteristics of the degradation trajectory of each performance parameter of the smart meter, the drift Brownian motion is used to model the degradation trajectory of the performance parameter.
1.性能参数的退化轨迹服从模型Δyt=μt+σB(t),其中t为时间,Δyt为t时刻性能参数的退化量,μ为漂移系数,σ为扩散系数,B(t)为标准布朗运动。1. The degradation trajectory of performance parameters obeys the model Δy t = μt+σB(t), where t is time, Δy t is the degradation amount of performance parameters at time t, μ is the drift coefficient, σ is the diffusion coefficient, and B(t) is Standard Brownian motion.
2.建立似然函数其中j表示第j号样本,共n个样本,i表示第i个测试点,共mj个测试点,tji表示第j号样本第i次测试的时间,为所测性能参数的退化量,μ为漂移系数,σ为扩散系数。2. Establish the likelihood function Where j represents the j-th sample, a total of n samples, i represents the i-th test point, a total of m j test points, t ji represents the time of the i-th test of the j-th sample, is the degradation amount of the measured performance parameter, μ is the drift coefficient, and σ is the diffusion coefficient.
3.利用Nelder-Mead单纯形法对似然函数的极大值问题进行求解,得到各应力水平下各性能参数退化轨迹模型的参数估计结果如表2所示。3. Using the Nelder-Mead simplex method to solve the maximum value problem of the likelihood function, the parameter estimation results of the degradation trajectory model of each performance parameter under each stress level are obtained, as shown in Table 2.
步骤二:失效机理一致性检验Step 2: Failure Mechanism Consistency Test
对于退化轨迹服从漂移布朗运动模型,以智能电表的性能参数CE为例,其失效机理一致性检验可根据For the degradation trajectory obeying the drift Brownian motion model, taking the performance parameter CE of the smart meter as an example, the consistency test of its failure mechanism can be based on
1.对于该参数在每一加速应力下的每一样本,利用Nelder-Mead单纯形法对似然函数的极大值问题进行求解,得到退化模型参数值和其中j表示第j号样本,i表示第i个测试点,共mj个测试点,tji表示第j号样本第i次测试的时间,为所测性能参数的退化量,μ为漂移系数,σ为扩散系数。1. For each sample of this parameter under each accelerated stress, use the Nelder-Mead simplex method to estimate the likelihood function Solve the maximum value problem of , and get the parameter value of the degradation model with Where j represents the j-th sample, i represents the i-th test point, a total of m j test points, t ji represents the time of the i-th test of the j-th sample, is the degradation amount of the measured performance parameter, μ is the drift coefficient, and σ is the diffusion coefficient.
2.构建假设检验统计量T服从自由度为n+m-2的t分布。令为三个加速应力下的检验样本,可得三个应力下的检验样本X1,X2,X3,如表3所示。然后逐一对任2个应力下的检验样本Xi、Xj进行T检验。2. Construct hypothesis test statistics T follows a t-distribution with n+m-2 degrees of freedom. make As the test samples under the three accelerated stresses, the test samples X 1 , X 2 , and X 3 under the three stresses can be obtained, as shown in Table 3. Then T test is carried out on the test samples Xi and X j under any two stresses one by one.
3.给定显著性水平0.05,查t分布表可知拒绝域为|T|≥t0.975(14)=2.1448,令检验样本Xi、Xj分别替换T统计量中的与并带入数据计算,对比t0.975(14)的值可知均有|T|<t0.975(14),即X1与X2与X3之间没有显著差异,该参数在三个应力下的失效机理具有一致性,检验结果见表4。3. Given a significance level of 0.05, look up the t distribution table and know that the rejection range is |T|≥t 0.975 (14) = 2.1448, so that the test samples X i and X j are respectively replaced in the T statistics and And bring it into the data calculation, comparing the value of t 0.975 (14), it can be seen that |T|<t 0.975 (14), that is, there is no significant difference between X 1 and X 2 and X 3 , and the parameters under the three stresses The failure mechanism is consistent, and the test results are shown in Table 4.
其他性能参数的失效机理一致性检验可重复步骤1、2和3,直至所有参数通过一致性检验。The failure mechanism consistency test of other performance parameters can repeat steps 1, 2 and 3 until all parameters pass the consistency test.
步骤三:外推正常应力下性能参数的分布模型Step 3: Extrapolating the distribution model of performance parameters under normal stress
在完成各应力水平下各性能参数退化轨迹建模后,需要将高应力水平下的退化模型参数外推至正常应力下。After completing the modeling of the degradation trajectory of each performance parameter at each stress level, it is necessary to extrapolate the degradation model parameters at the high stress level to the normal stress.
1.确定加速因子1. Determine the acceleration factor
根据加速试验条件,选取多应力艾琳加速模型:令为加速应力水平Sh相对于应力水平Sl的加速因子。According to the accelerated test conditions, the multi-stress Irene acceleration model is selected: make is the acceleration factor of the accelerated stress level Sh relative to the stress level S l .
2.求解加速模型参数2. Solving acceleration model parameters
对性能参数p,在k1和k2应力水平下,构造离差平方和函数采用Nelder-Mead单纯形法对离差平方和函数的极小值问题进行求解,可得到对应加速方程中的最优模型参数B、C如表5所示。For the performance parameter p, under k 1 and k 2 stress levels, construct the sum of squared deviation function Using the Nelder-Mead simplex method to solve the problem of the minimum value of the sum of squares function of the deviation, the optimal model parameters B and C in the corresponding acceleration equation can be obtained, as shown in Table 5.
3.估计正常应力下退化轨迹模型参数3. Estimate the parameters of the degradation trajectory model under normal stress
求得加速模型中的参数之后,使用最小二乘法对正常应力下(温度20℃;相对湿度45%)退化轨迹模型参数进行估计,得到离差平方和函数与采用单纯形法进行优化求解,从而得到正常应力下退化轨迹模型参数μp0和σp0的点估计,如表6所示。After obtaining the parameters in the acceleration model, use the least squares method to estimate the parameters of the degradation trajectory model under normal stress (temperature 20°C; relative humidity 45%), and obtain the dispersion sum of squares function and The simplex method is used to optimize the solution, so as to obtain the point estimates of the degradation trajectory model parameters μ p0 and σ p0 under normal stress, as shown in Table 6.
通过以上步骤,最终得到正常应力下退化轨迹模型为:yp0(t)=μp0t+σp0B(t)。Through the above steps, the degradation trajectory model under normal stress is finally obtained: y p0 (t) = μ p0 t + σ p0 B(t).
步骤四:基于Vine-Copula的产品故障行为耦合建模Step 4: Coupling modeling of product failure behavior based on Vine-Copula
1.相关性分析1. Correlation analysis
基于各加速应力下相关关系保持不变的假设,可仅选择其中一个加速应力水平下的试验数据进行相关性分析,此处选择第三组应力水平下试验数据。利用相关性度量指标Kendall’sτ系数计算样本关键性能参数之间的相关性见表7,得到结论如下:Based on the assumption that the correlation relationship remains unchanged under each accelerated stress level, only the test data under one of the accelerated stress levels can be selected for correlation analysis. Here, the test data under the third set of stress levels is selected. Using the correlation measurement index Kendall’sτ coefficient to calculate the correlation between the key performance parameters of the samples is shown in Table 7, and the conclusions are as follows:
1)累计误差CE与基本误差BE之间不具有相关性1) There is no correlation between the cumulative error CE and the basic error BE
2)基本误差BE1、BE5、BE9、BE10存在较强非线性相关性。2) The basic errors BE1, BE5, BE9, and BE10 have a strong nonlinear correlation.
2.借助vine图模型将联合分布分解为合适的条件概率相乘的形式,利用copula构建多元相关关系模型。2. Use the vine graph model to decompose the joint distribution into a form of multiplication of appropriate conditional probabilities, and use copula to build a multivariate correlation model.
a.基于D-Vine的建模方法a. Modeling method based on D-Vine
由分析可知智能电表四项基本误差之间的相关性较为密切,可建立四项基本误差BE之间的D-vine模型,如图4所示。It can be seen from the analysis that the correlation between the four basic errors of the smart meter is relatively close, and the D-vine model among the four basic errors BE can be established, as shown in Figure 4.
1)首先,在第一层Vine图模型中,依次对智能电表四项基本误差BE1、BE5、BE9、BE10编码为1、2、3、4,将四项基本误差作为树图中的节点,节点之间按相互关系用短线进行连接,如图2所示。以cij表示连接节点i与节点j的copula函数的概率密度,有cij={c12,c23,c34}1) First, in the Vine graph model of the first layer, the four basic errors BE1, BE5, BE9, and BE10 of the smart meter are coded as 1, 2, 3, and 4 in sequence, and the four basic errors are used as nodes in the tree diagram. Nodes are connected by short lines according to their relationship, as shown in Figure 2. Let c ij represent the probability density of the copula function connecting node i and node j, there is c ij ={c 12 ,c 23 ,c 34 }
2)Vine图中的第二层树图建立在第一层树图的基础上,以第一层树图中的连接(1,2)、(2,3)、(3,4)作为第二层树图中的节点,用连线进行连接,构建第二层的树图,以图3所示。仍以cij表示连接节点i与节点j的copula函数的概率密度,有cij={c13|2,c24|3}2) The second-level tree diagram in the Vine diagram is based on the first-level tree diagram, and the connections (1,2), (2,3), and (3,4) in the first-level tree diagram are used as the first-level tree diagram. The nodes in the two-layer tree diagram are connected by connecting lines to construct the tree diagram of the second layer, as shown in Figure 3. Still using c ij to represent the probability density of the copula function connecting node i and node j, there is c ij ={c 13|2 ,c 24|3 }
3)Vine图中的第三层树图建立在第二层树图的基础上,以第二层树图中的连接(13|2)、(24|3)作为第三层树图中的节点,用连线进行连接。仍以cij表示连接节点i与节点j的copula函数的概率密度,有cij={c14|23}3) The third-level tree diagram in the Vine diagram is established on the basis of the second-level tree diagram, and the connections (13|2) and (24|3) in the second-level tree diagram are used as the connections in the third-level tree diagram Nodes are connected by lines. Still using c ij to represent the probability density of the copula function connecting node i and node j, there is c ij ={c 14|23 }
根据D-vine模型可得智能电表四项基本误差可靠度联合分布概率密度函数为:According to the D-vine model, the joint distribution probability density function of the four basic error reliability of the smart meter is:
r(x1,x2,x3,x4)=c12·c23·c34·c13|2·c24|3·c14|23·r1·r2·r3·r4 r(x 1 ,x 2 ,x 3 ,x 4 )=c 12 ·c 23 ·c 34 ·c 13|2 ·c 24|3 ·c 14|23 ·r 1 ·r 2 ·r 3 ·r 4
其中,变量x1,x2,x3,x4分别代表基本误差BE1、BE5、BE9、BE10,c为对应copula函数的概率密度,ri表示第i个性能参数的可靠度分布概率密度函数。Among them, the variables x 1 , x 2 , x 3 , and x 4 represent the basic errors BE1, BE5, BE9, and BE10 respectively; c is the probability density of the corresponding copula function; r i represents the reliability distribution probability density function of the i-th performance parameter .
b.求解Vine-Copula耦合模型b. Solve the Vine-Copula coupling model
确定智能电表的可靠度联合分布函数需要首先确定公式r(x1,x2,x3,x4)中各个Copula函数的形式及参数。本发明中Copula函数备选集为:Gaussian Copula,FrankCopula,Ali-Mikhail-Haq Copula,Clayton Copula。To determine the reliability joint distribution function of smart meters, it is necessary to determine the form and parameters of each Copula function in the formula r(x 1 , x 2 , x 3 , x 4 ). The alternative sets of Copula functions in the present invention are: Gaussian Copula, Frank Copula, Ali-Mikhail-Haq Copula, and Clayton Copula.
1)确定Vine模型中第一层树图中的cij:cij={c12,c23,c34},根据备选的copula函数形式利用Nelder-Mead单纯形法求解似然函数的极大值,得到copula函数的参数估计以及极大似然函数值,然后基于AIC准则选取最为合适的copula函数形式及对应的参数。其中,(k1,k2)=(1|2,3|2),根据计算结果(见表8),可以确定c12、c23、c34的最优选择均是Frank Copula。1) Determine the c ij in the first layer tree diagram in the Vine model: c ij ={c 12 ,c 23 ,c 34 }, and use the Nelder-Mead simplex method to solve the likelihood function according to the alternative copula function form The maximum value of the copula function is obtained, and the parameter estimation and the maximum likelihood function value of the copula function are obtained, and then the most suitable copula function form and corresponding parameters are selected based on the AIC criterion. Among them, (k1, k2)=(1|2,3|2), according to the calculation results (see Table 8), it can be determined that the optimal choice of c 12 , c 23 , and c 34 is Frank Copula.
2)完成Vine图第一层的copula函数的优选后,确定Vine模型中第二层树图中的cij:cij={c13|2,c24|3}根据备选的copula函数形式建立似然函数采用Nelder-Mead单纯形法求解似然函数的极大值及其对应的copula函数参数值,然后基于AIC准则选取最为合适的copula函数形式及对应的参数。其中,(p|k,q|k)={(1|2,3|2),(2|3,4|3)},经确定c13|2的最优选择是Frank Copula,c24|3的最优选择是Clayton Copula。以此类推,对c14|23进行函数形式选择,可知,c14|23的最优选择是Frank Copula,至此完成了对式r(x1,x2,x3,x4)各copula函数形式的优选,得到结果2) After completing the optimization of the copula function in the first layer of the Vine graph, determine c ij in the second layer tree diagram in the Vine model: c ij = {c 13|2 ,c 24|3 } according to the alternative copula function form Create a likelihood function The Nelder-Mead simplex method is used to solve the maximum value of the likelihood function and the corresponding copula function parameter values, and then the most appropriate copula function form and corresponding parameters are selected based on the AIC criterion. Among them, (p|k, q|k)={(1|2,3|2), (2|3,4|3)}, it is determined that the best choice of c 13|2 is Frank Copula, c 24 The best choice for |3 is the Clayton Copula. By analogy, to select the function form of c 14|23 , it can be known that the optimal choice of c 14|23 is Frank Copula, so far the copula functions of the formula r(x 1 ,x 2 ,x 3 ,x 4 ) have been completed Optimizing the form, getting the result
r(x1,x2,x3,x4)=cFrank(α12,R1,R2)·cFrank(α23,R2,R3)·cFrank(α34,R3,R4)r(x 1 ,x 2 ,x 3 ,x 4 )=c Frank (α 12 ,R 1 ,R 2 )·c Frank (α 23 ,R 2 ,R 3 )·c Frank (α 34 ,R 3 , R 4 )
·cFrank(α13|2,R1|2R3|2)·cClayton(α24|3,R2|3,R4|3)·c Frank (α 13|2 ,R 1|2 R 3|2 )·c Clayton (α 24|3 ,R 2|3 ,R 4|3 )
·cFrank(α14|23,R1|23,R4|23)·r1·r2·r3·r4 ·c Frank (α 14|23 ,R 1|23 ,R 4|23 )·r 1 ·r 2 ·r 3 ·r 4
其中,R1|2,R2|3,R1|23可根据多元变量可靠度联合分布的条件概率表达式求得。Among them, R 1|2 , R 2|3 , and R 1|23 can be obtained according to the conditional probability expression of the joint distribution of multivariate reliability.
3)确定所有的copula函数形式后,对已选定的copula函数的参数一起进行再次估计,建立似然函数L=r(x1,x2,x3,x4),采用了Nelder-Mead单纯形法方法求解极大似然函数,可得到最优参数结果见表9,将所有copula函数的参数回代vine-copula的分解式中,即得到了基于Vine-Copula建立的多元相关关系模型。3) After determining all the copula function forms, re-estimate the parameters of the selected copula functions together, and establish the likelihood function L=r(x 1 ,x 2 ,x 3 ,x 4 ), using Nelder-Mead The simplex method solves the maximum likelihood function, and the optimal parameter results can be obtained as shown in Table 9. Substitute the parameters of all copula functions into the decomposition formula of vine-copula, and obtain the multivariate correlation model based on Vine-Copula .
步骤五:可靠度求解Step 5: Reliability solution
1.计算二元变量的可靠度联合分布的条件概率表达式1. Calculate the conditional probability expression of the reliability joint distribution of binary variables
2.计算多元变量可靠度联合分布的条件概率表达式2. Calculate the conditional probability expression of the joint distribution of multivariate reliability
3.根据多元可靠度联合分布表达式,可得到四项基本误差耦合的可靠度联合分布为:3. According to the multivariate reliability joint distribution expression, the joint reliability distribution of the four basic error couplings can be obtained as:
RBEs(t)=R1234(t1,t2,t3,t4)R BEs (t)=R 1234 (t 1 ,t 2 ,t 3 ,t 4 )
=R4(t4)·R3|4(t3|t4)·R2|34(t2|t3,t4)·R1|234(t1|t2,t3,t4)=R 4 (t 4 )·R 3|4 (t 3 |t 4 )·R 2|34 (t 2 |t 3 ,t 4 )·R 1|234 (t 1 |t 2 ,t 3 ,t 4 )
其中R3|4,R2|34,R1|234的值为可根据Rhj(xh|xj)与Rx|v(x|v)计算。Among them, the values of R 3|4 , R 2|34 , and R 1|234 can be calculated according to R hj (x h |x j ) and R x|v (x|v).
最终其四项基本误差可靠度联合分布函数图见图5所示。通过分析智能电表加速退化试验数据建模结果可知,当多个性能参数间存在相关性时,若退化建模时不考虑相关性仅以串联模型进行建模,得到的可靠度函数曲线及寿命评估结果会显得保守。相比之下,考虑相关关系的建模方法能在一定程度上给出有充分依据的但不过分激进的评估结果。因此当性能参数间存在相关性时,在退化建模过程中考虑相关关系的作用是有必要的。Finally, the joint distribution function graph of the four basic error reliability is shown in Figure 5. By analyzing the modeling results of the smart meter accelerated degradation test data, it can be seen that when there is correlation among multiple performance parameters, if the correlation is not considered in the degradation modeling and only the series model is used for modeling, the obtained reliability function curve and life evaluation The result will appear conservative. In contrast, modeling approaches that consider correlations can give somewhat well-founded but not overly aggressive assessment results. Therefore, when there is correlation between performance parameters, it is necessary to consider the role of correlation in the process of degradation modeling.
针对产品高可靠长寿命特点以及故障机理耦合表征在性能参数相关的问题,本发明研究了基于Vine-Copula和加速退化试验的具有多元变量产品故障行为建模及可靠性评估方法。基于Vine-Copula的建模方法借助Vine-Copula灵活多变的结构,对多种复杂的相关性情况都有各自适用的Vine模型可供用于分析、建立相关性模型,并且无论性能参数退化量之间是线性或非线性关系,都能很好的适用,解决了多元变量可靠性模型中两两变量相关关系表征的问题。Aiming at the high reliability and long life characteristics of products and the problems related to performance parameters of failure mechanism coupling characterization, the present invention studies the failure behavior modeling and reliability evaluation method of products with multivariate variables based on Vine-Copula and accelerated degradation tests. The modeling method based on Vine-Copula takes advantage of the flexible structure of Vine-Copula, and has its own applicable Vine models for analysis and establishment of correlation models for a variety of complex correlation situations, and regardless of the amount of degradation of performance parameters It can be well applied if the relationship is linear or nonlinear, and it solves the problem of characterization of the relationship between two variables in the multivariate reliability model.
本发明中涉及所有表格如下:All forms involved in the present invention are as follows:
表1各性能参数退化轨迹模型参数估计结果Table 1 Parameter estimation results of the degradation trajectory model for each performance parameter
表2各性能参数加速应力下退化轨迹模型参数估计Table 2 Parameter estimation of degradation trajectory model under accelerated stress for each performance parameter
表3各产品CE参数估计值及检验样本Table 3 CE parameter estimates and test samples of each product
表4CE参数一致性检验结果Table 4 CE parameter consistency test results
表5各性能参数加速模型参数估计结果Table 5 Parameter estimation results of each performance parameter acceleration model
表6正常应力下各性能参数退化轨迹模型参数Table 6 Model parameters of degradation trajectory of each performance parameter under normal stress
表7性能参数之间相关性计算结果Table 7 Correlation calculation results between performance parameters
表8各copula函数形式及参数估计Table 8 Function forms and parameter estimation of each copula
表9Copula函数优选结果Table 9 Copula function optimization results
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610857496.3A CN106650204A (en) | 2016-09-27 | 2016-09-27 | Product failure behavior coupling modeling and reliability evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610857496.3A CN106650204A (en) | 2016-09-27 | 2016-09-27 | Product failure behavior coupling modeling and reliability evaluation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106650204A true CN106650204A (en) | 2017-05-10 |
Family
ID=58854621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610857496.3A Pending CN106650204A (en) | 2016-09-27 | 2016-09-27 | Product failure behavior coupling modeling and reliability evaluation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106650204A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107239622A (en) * | 2017-06-07 | 2017-10-10 | 西北工业大学 | Aircraft latch mechanism component wear is degenerated and functional deterioration competing failure analysis method |
CN107506337A (en) * | 2017-10-12 | 2017-12-22 | 中国人民解放军海军航空工程学院 | Reliability statistics estimating method based on polynary acceleration degraded data |
CN108399278A (en) * | 2018-01-24 | 2018-08-14 | 航天科工防御技术研究试验中心 | A kind of multifactor accelerated factor computational methods of electronics |
CN108459948A (en) * | 2018-03-26 | 2018-08-28 | 华北电力大学(保定) | The determination method of fail data distribution pattern in Reliability evaluation |
CN108595736A (en) * | 2018-02-05 | 2018-09-28 | 西北工业大学 | A kind of mechanism reliability modeling method |
CN108763627A (en) * | 2018-04-13 | 2018-11-06 | 西北工业大学 | Structural mechanism failure probability sensitivity decomposition method, computational methods and application |
WO2019148857A1 (en) * | 2018-01-30 | 2019-08-08 | 中国矿业大学 | Coupling failure correlation modeling method for key component of deep well hoist under incomplete information condition |
CN110196855A (en) * | 2019-05-07 | 2019-09-03 | 中国人民解放军海军航空大学岸防兵学院 | The consistency check method of Performance Degradation Data and fault data based on sum of ranks |
CN110334951A (en) * | 2019-07-05 | 2019-10-15 | 华北电力大学 | An intelligent evaluation method and system for high temperature derating status of wind turbines |
CN110889083A (en) * | 2018-09-10 | 2020-03-17 | 湖南银杏可靠性技术研究所有限公司 | Accelerated storage and natural storage degradation data consistency checking method based on window spectrum estimation |
CN111160713A (en) * | 2019-12-06 | 2020-05-15 | 中国南方电网有限责任公司超高压输电公司广州局 | Composite insulator reliability assessment method based on multidimensional joint distribution theory |
CN111506998A (en) * | 2020-04-15 | 2020-08-07 | 哈尔滨工业大学 | A method for constructing a sample library of parameter drift fault features in the manufacturing process of electromechanical products |
CN112836366A (en) * | 2021-01-28 | 2021-05-25 | 北京科技大学 | A System Reliability Parameter Estimation Method Based on Dependent Life Data |
CN113312755A (en) * | 2021-05-10 | 2021-08-27 | 南京理工大学 | Multi-parameter related accelerated degradation test method for spring for bullet |
CN114089264A (en) * | 2021-11-26 | 2022-02-25 | 国网冀北电力有限公司计量中心 | Method and device for evaluating reliability of electric energy meter |
CN116432844A (en) * | 2023-04-12 | 2023-07-14 | 北京航空航天大学 | Lithium battery fault replacement spare part demand prediction method and system for new energy vehicle |
CN116522674A (en) * | 2023-05-22 | 2023-08-01 | 北京理工大学 | Accelerated degradation modeling evaluation method based on multi-stress comprehensive effect |
CN119740408A (en) * | 2025-03-06 | 2025-04-01 | 吉林大学 | A method for modeling and reliability assessment of accelerated grease degradation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102778240A (en) * | 2012-07-13 | 2012-11-14 | 北京航空航天大学 | Physical model-based gyroscope storage life acceleration test scheme determining method |
CN103308723A (en) * | 2013-07-04 | 2013-09-18 | 北京航空航天大学 | Product service life rapid test method based on physical model |
CN104615866A (en) * | 2015-01-21 | 2015-05-13 | 北京航空航天大学 | Service life prediction method based on physical statistic model |
-
2016
- 2016-09-27 CN CN201610857496.3A patent/CN106650204A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102778240A (en) * | 2012-07-13 | 2012-11-14 | 北京航空航天大学 | Physical model-based gyroscope storage life acceleration test scheme determining method |
CN103308723A (en) * | 2013-07-04 | 2013-09-18 | 北京航空航天大学 | Product service life rapid test method based on physical model |
CN104615866A (en) * | 2015-01-21 | 2015-05-13 | 北京航空航天大学 | Service life prediction method based on physical statistic model |
Non-Patent Citations (6)
Title |
---|
DAN XU等: "Multivariate Degradation Modeling of Smart Electricity Meter with Multiple Performance Characteristics via Vine Copulas", 《QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL》 * |
张国龙等: "电子装备多应力加速退化试验技术及可靠性评估方法研究", 《航空学报》 * |
徐云琴等: "采用藤Copula 构建风电场风速相依模型", 《电力系统及其自动化学报》 * |
王浩伟等: "基于退化模型的失效机理一致性检验方法", 《航空学报》 * |
王浩伟等: "融合加速退化和现场实测退化数据的剩余寿命预测方法", 《航空学报》 * |
赵志草等: "加速退化试验与加速寿命试验相结合的产品可靠性评估", 《系统工程理论与实践》 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107239622A (en) * | 2017-06-07 | 2017-10-10 | 西北工业大学 | Aircraft latch mechanism component wear is degenerated and functional deterioration competing failure analysis method |
CN111832184A (en) * | 2017-06-07 | 2020-10-27 | 西北工业大学 | A competitive failure analysis method for wear degradation and functional degradation of aircraft door upper lock mechanism components |
CN107239622B (en) * | 2017-06-07 | 2020-08-18 | 西北工业大学 | Competitive failure analysis method for wear degradation and functional degradation of aircraft lock mechanism components |
CN111832184B (en) * | 2017-06-07 | 2022-03-15 | 西北工业大学 | Method for analyzing competition failure of wear degradation and function degradation of upper lock mechanism component of airplane cabin door |
CN107506337A (en) * | 2017-10-12 | 2017-12-22 | 中国人民解放军海军航空工程学院 | Reliability statistics estimating method based on polynary acceleration degraded data |
CN108399278B (en) * | 2018-01-24 | 2021-11-30 | 航天科工防御技术研究试验中心 | Electronic equipment multi-factor acceleration factor calculation method |
CN108399278A (en) * | 2018-01-24 | 2018-08-14 | 航天科工防御技术研究试验中心 | A kind of multifactor accelerated factor computational methods of electronics |
WO2019148857A1 (en) * | 2018-01-30 | 2019-08-08 | 中国矿业大学 | Coupling failure correlation modeling method for key component of deep well hoist under incomplete information condition |
RU2714852C1 (en) * | 2018-01-30 | 2020-02-19 | Чайна Юниверсити Оф Майнинг Энд Текнолоджи | Method of correlation modeling of breaking connection of critical components of an elevator for a deep well in conditions of incomplete information |
AU2018374073B2 (en) * | 2018-01-30 | 2021-06-17 | China University Of Mining And Technology | Correlation modeling method for coupling failure of critical components of deep well hoist under incomplete information condition |
CN113673120B (en) * | 2018-02-05 | 2024-01-30 | 西北工业大学 | Mechanism reliability modeling method comprising degradation model |
CN108595736A (en) * | 2018-02-05 | 2018-09-28 | 西北工业大学 | A kind of mechanism reliability modeling method |
CN108595736B (en) * | 2018-02-05 | 2021-10-15 | 西北工业大学 | A Mechanism Reliability Modeling Method |
CN113673120A (en) * | 2018-02-05 | 2021-11-19 | 西北工业大学 | Mechanism reliability modeling method comprising degradation model |
CN108459948A (en) * | 2018-03-26 | 2018-08-28 | 华北电力大学(保定) | The determination method of fail data distribution pattern in Reliability evaluation |
CN108763627A (en) * | 2018-04-13 | 2018-11-06 | 西北工业大学 | Structural mechanism failure probability sensitivity decomposition method, computational methods and application |
CN110889083A (en) * | 2018-09-10 | 2020-03-17 | 湖南银杏可靠性技术研究所有限公司 | Accelerated storage and natural storage degradation data consistency checking method based on window spectrum estimation |
CN110196855B (en) * | 2019-05-07 | 2023-03-10 | 中国人民解放军海军航空大学岸防兵学院 | Consistency checking method of performance degradation data and fault data based on rank sum |
CN110196855A (en) * | 2019-05-07 | 2019-09-03 | 中国人民解放军海军航空大学岸防兵学院 | The consistency check method of Performance Degradation Data and fault data based on sum of ranks |
CN110334951A (en) * | 2019-07-05 | 2019-10-15 | 华北电力大学 | An intelligent evaluation method and system for high temperature derating status of wind turbines |
CN110334951B (en) * | 2019-07-05 | 2022-02-08 | 华北电力大学 | Intelligent evaluation method and system for high-temperature capacity reduction state of wind turbine generator |
CN111160713A (en) * | 2019-12-06 | 2020-05-15 | 中国南方电网有限责任公司超高压输电公司广州局 | Composite insulator reliability assessment method based on multidimensional joint distribution theory |
CN111506998A (en) * | 2020-04-15 | 2020-08-07 | 哈尔滨工业大学 | A method for constructing a sample library of parameter drift fault features in the manufacturing process of electromechanical products |
CN112836366B (en) * | 2021-01-28 | 2024-04-02 | 北京科技大学 | System reliability parameter estimation method based on component dependent life data |
CN112836366A (en) * | 2021-01-28 | 2021-05-25 | 北京科技大学 | A System Reliability Parameter Estimation Method Based on Dependent Life Data |
CN113312755A (en) * | 2021-05-10 | 2021-08-27 | 南京理工大学 | Multi-parameter related accelerated degradation test method for spring for bullet |
CN113312755B (en) * | 2021-05-10 | 2023-03-17 | 南京理工大学 | Multi-parameter related accelerated degradation test method for spring for bullet |
CN114089264A (en) * | 2021-11-26 | 2022-02-25 | 国网冀北电力有限公司计量中心 | Method and device for evaluating reliability of electric energy meter |
CN116432844A (en) * | 2023-04-12 | 2023-07-14 | 北京航空航天大学 | Lithium battery fault replacement spare part demand prediction method and system for new energy vehicle |
CN116432844B (en) * | 2023-04-12 | 2024-04-02 | 北京航空航天大学 | A method and system for predicting the demand for faulty replacement spare parts of lithium batteries for new energy vehicles |
CN116522674A (en) * | 2023-05-22 | 2023-08-01 | 北京理工大学 | Accelerated degradation modeling evaluation method based on multi-stress comprehensive effect |
CN116522674B (en) * | 2023-05-22 | 2024-10-11 | 北京理工大学 | Accelerated degradation modeling evaluation method based on multi-stress comprehensive effect |
CN119740408A (en) * | 2025-03-06 | 2025-04-01 | 吉林大学 | A method for modeling and reliability assessment of accelerated grease degradation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106650204A (en) | Product failure behavior coupling modeling and reliability evaluation method | |
Nannapaneni et al. | Performance evaluation of a manufacturing process under uncertainty using Bayesian networks | |
Mishra | Uncertainty and sensitivity analysis techniques for hydrologic modeling | |
Haghbin et al. | A new generalized odd log-logistic family of distributions | |
Rocchetta et al. | Do we have enough data? Robust reliability via uncertainty quantification | |
CN108960303A (en) | An LSTM-based anomaly detection method for UAV flight data | |
Bousquet et al. | Bayesian gamma processes for optimizing condition‐based maintenance under uncertainty | |
CN107273609A (en) | One kind is based on Kriging model gear drive reliability estimation methods | |
Lazarova-Molnar et al. | Data-driven fault tree modeling for reliability assessment of cyber-physical systems | |
CN104463331B (en) | Accelerated degradation experiment modeling method based on fuzzy theory | |
Li et al. | Hydrostatic seasonal state model for monitoring data analysis of concrete dams | |
Veloso et al. | Dynamic linear degradation model: Dealing with heterogeneity in degradation paths | |
Djeziri et al. | Fault diagnosis and prognosis based on physical knowledge and reliability data: Application to MOS Field-Effect Transistor | |
CN104156612B (en) | Fault forecasting method based on particle filter forward and reverse direction prediction errors | |
Eliassi et al. | Application of Bayesian networks in composite power system reliability assessment and reliability‐based analysis | |
Ji et al. | Data‐Driven Battery Characterization and Prognosis: Recent Progress, Challenges, and Prospects | |
Sajjad et al. | Probabilistic generation of time‐coupled aggregate residential demand patterns | |
Bartram et al. | Integration of heterogeneous information in SHM models | |
Wu et al. | Multi-sensor information fusion-based prediction of remaining useful life of nonlinear Wiener process | |
CN103678886A (en) | Satellite Bayesian Network health determination method based on ground test data | |
Xi et al. | Remaining useful life prediction for multivariable stochastic degradation systems with non‐Markovian diffusion processes | |
Chen et al. | Data-driven distribution network topology identification considering correlated generation power of distributed energy resource | |
Oakes et al. | Examining model qualities and their impact on digital twins | |
Zhang et al. | Degradation-based state reliability modeling for components or systems with multiple monitoring positions | |
Jiang et al. | Sensor self-diagnosis method based on a graph neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170510 |