CN106649909A - 一种双余度补偿式尾翼舵面故障状态控制方法 - Google Patents

一种双余度补偿式尾翼舵面故障状态控制方法 Download PDF

Info

Publication number
CN106649909A
CN106649909A CN201610752222.8A CN201610752222A CN106649909A CN 106649909 A CN106649909 A CN 106649909A CN 201610752222 A CN201610752222 A CN 201610752222A CN 106649909 A CN106649909 A CN 106649909A
Authority
CN
China
Prior art keywords
rudder face
rudder
failure
malfunction
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610752222.8A
Other languages
English (en)
Other versions
CN106649909B (zh
Inventor
赵利霞
何敏
陈斌
吕凌英
李伟
夏生林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Aircraft Industrial Group Co Ltd
Original Assignee
Chengdu Aircraft Industrial Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Aircraft Industrial Group Co Ltd filed Critical Chengdu Aircraft Industrial Group Co Ltd
Priority to CN201610752222.8A priority Critical patent/CN106649909B/zh
Publication of CN106649909A publication Critical patent/CN106649909A/zh
Application granted granted Critical
Publication of CN106649909B publication Critical patent/CN106649909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开一种双余度补偿式尾翼舵面故障状态控制方法,步骤为:故障状态物理模型建立步骤、故障状态参数化通用模型建立步骤、舵效和铰链力矩限制边界计算步骤、剩余操纵能力和安全可控飞行包线确定步骤、装订应急处置包线和在线使用。本发明优化精简了故障状态的分析范围,用最少的计算量获得最大的安全可控飞行包线;简化了数学模型;在控制模型中采用降阶插值法得到飞行过程中的漂浮舵偏角度,实现了漂浮状态舵偏角的精确计算;通过提前装订应急处置包线,为在线应急预设了安全飞行范围。本发明综合考虑舵面铰链力矩和效率对飞行器剩余操纵能力的影响,为舵面故障应急处置预设了满足安全飞行的高度、速度范围,提高了飞行器生存力。

Description

一种双余度补偿式尾翼舵面故障状态控制方法
技术领域
本发明涉及到飞行器技术领域,特别涉及一种双余度补偿式尾翼舵面故障状态控制方法。
背景技术
飞行器纵向机动是保证基本飞行安全的最重要机动控制。尾翼舵面是控制飞行器纵向机动的操纵面,为提高飞行器生存力,无人机常采用双余度尾翼舵面设计,当一组出现故障时,剩余舵面可以重新组合操纵,弥补故障舵面带来的操纵效能下降,以满足一定纵向机动要求和基本飞行安全。
公开的资料一般仅考虑舵面故障引起的舵效下降对飞行安全的影响,例如:论文《小型无人机舵面故障的控制重构设计》(发表于2011年《计算机工程与应用》)讨论了单自由度副翼、尾翼舵面不同故障状态的控制重构设计;这篇论文及公开资料均未考虑铰链力矩对补偿式尾翼舵面剩余操纵能力的影响。
当一组尾翼舵面故障时,为弥补故障舵面的气动贡献,剩余正常舵面出舵量大幅增加,往往处于大舵偏范围,此时舵效呈现为增量减小的非线性,但舵面铰链力矩非线性规律与舵效相反,呈现为增量增大的非线性,前缘补偿式舵面更为明显。如果仅考虑舵效对控制重构和飞行包线的影响,在舵效到达最大值之前舵面铰链力矩可能已达到舵机系统和结构强度极限,导致舵机破坏或舵面损失,从而导致舵面全部操纵功能丧失,危及飞行安全,降低飞行器生存力。
发明内容
本发明为了克服上述现有技术的缺陷,提出一种双余度补偿式尾翼舵面故障状态控制方法,本发明考虑尾翼舵面铰链力矩和舵面效率对飞行器剩余操纵能力的综合影响,为飞行控制专业提供可以控制的舵面故障偏度范围,为应急处置提供满足安全飞行的高度、速度范围,从而提高飞行器生存力。
本发明通过下述技术方案实现:
一种双余度补偿式尾翼舵面故障状态控制方法,其特征在于,包括如下步骤:
A、故障状态物理模型建立步骤,按照舵面故障数量、损伤程度、故障时刻建立多维物理模型;按照最低余度(单余度)、最少舵面、最低舵效的原则进行故障状态分级,获得故障状态严酷边界,见图2;
B、故障状态参数化通用模型建立步骤,根据多维物理模型建立故障状态的舵面控制模型、气动力学通用模型;
C、舵效和铰链力矩限制边界计算步骤,按照故障状态分级推进方法计算剩余舵面最大配平能力,获得满足舵效限制的速度、高度包线;按照故障状态分级推进方法计算故障舵面、剩余正常舵面的铰链力矩,获得满足舵机铰链力矩输出的速度、高度包线;
D、剩余操纵能力、安全飞行包线确定步骤,对满足飞行特性和舵面铰链力矩的剩余操纵能力、飞行包线求交集,获得舵面不同故障状态安全可控的舵偏范围和飞行包线。
E、提前装订应急处置包线,在线使用,提前装订满足尾翼舵效和铰链力矩限制的故障应急飞行包线和舵偏范围,在飞行过程中遭遇尾舵故障时,启动应急模式,在故障应急飞行包线内飞行和使用尾翼舵面。
所述的故障状态分级推进方法为:从铰链力矩最大、舵偏最大的严酷边界与过载能力要求最高的组合到故障状态边界内与过载能力降低的顺序,从外向内寻找不同故障状态可控的机动或安全飞行包线。从而实现采用最少的计算量获得满足安全飞行的最大包线范围,优化精简故障状态计算量。
所述的故障状态参数化气动力学通用模型为:
其中:Ci为气动力六分量,以飞行力学中的风轴系为例,Ci即分别代表飞行器升力、阻力、侧向力、俯仰力矩、滚转力矩、偏航力矩六个分量;
K为舵面损伤或变形系数:S舵面损失面积/S舵面总面积
S舵面变形等效面积/S舵面总面积
F(δ故障尾翼舵面)为故障尾翼舵面偏度函数,分别为:
a)无故障时,为正常舵面偏度;
b)卡滞故障时,为卡滞偏度δ故障尾翼舵面或最大舵偏δmax;
c)舵面漂浮时,为铰链力矩为0所对应的偏度;
F(t故障时间函数)为故障尾翼舵面时间函数,当故障开始取值1,无故障时取值0;
m为正常舵面数量;n为故障舵面数量。
所述故障状态参数化建模中的舵面漂浮偏度采用以下方法获得:原始数据为马赫数、高度、攻角、侧滑角、舵偏角五个因变量构成的多维铰链力矩系数矩阵,通过多维插值计算获得铰链力矩为零的原始舵偏角矩阵,在控制模型中采用降阶插值法得到飞行过程中的漂浮舵偏角度。
本发明的有益效果主要表现在:
本发明中,通过故障状态分级推进方法,优化精简了故障状态的分析范围,从而实现采用最少的计算量获得满足安全飞行的最大包线范围;建立了故障状态通用模型表征多种故障状态、简化了数学模型;采用多维铰链力矩原始系数矩阵,通过多维插值计算获得铰链力矩为零的舵偏角,在控制模型中采用降阶插值法得到飞行过程中的漂浮舵偏角度,实现了漂浮状态尾翼舵偏角的精确计算;通过舵面铰链力矩和舵效对飞行器剩余操纵能力的交集限制,确定可控的尾舵故障精确偏度范围;通过提前装订满足尾翼舵面舵效和铰链力矩限制的故障应急飞行包线和舵偏范围,为飞行过程中遭遇尾舵故障预设了应急飞行包线和尾翼舵面使用范围,从而提高了飞行器生存力。
附图说明
图1是舵效满足的配平包线范围示意图。
图2是铰链力矩满足的配平包线范围示意图。
图3是舵面故障状态安全飞行包线范围示意图。
图4是本发明流程框图。
图5是故障状态三维参数模型和故障状态分级方法示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
参见图4、图5,本发明包括五个步骤:建立故障状态物理模型和状态分级;通用气动力建模;尾翼舵效和铰链力矩限制边界确定;确定剩余操纵能力和安全可控边界;装订应急飞行包线,故障时在线启用。具体为:一种双余度补偿式尾翼舵面故障状态控制方法,包括如下步骤:
A、故障状态物理模型建立步骤。按照舵面故障数量、损伤程度、故障时刻建立多维物理模型;按照最低余度(单余度)、最少舵面、最低舵效的原则进行故障状态分级,获得故障状态严酷边界,见图2;
B、故障状态参数化通用模型建立步骤。根据多维物理模型建立故障状态的舵面控制模型、气动力学通用模型;
C、舵效和铰链力矩限制边界确定步骤。按照故障状态分级推进方法计算剩余舵面最大配平能力,获得满足舵效限制的速度、高度包线;按照故障状态分级推进方法计算故障舵面、剩余正常舵面的铰链力矩,获得满足舵机铰链力矩输出的速度、高度包线;
D、剩余操纵能力、安全飞行包线确定步骤。对满足飞行特性和舵面铰链力矩的剩余操纵能力、安全飞行包线求交集,获得舵面不同舵偏故障状态安全可控的速度、高度包线。
E、提前装订满足舵效和铰链力矩限制的故障应急飞行包线和舵偏范围,在飞行过程中遭遇尾舵故障时,启动应急模式,在故障应急飞行包线内飞行和使用尾翼舵面。
所述步骤A具体体现在:
1)按照故障数量、损伤程度、故障时刻建立尾翼舵面故障时的多维物理模型。
a)舵面故障数量分为以下情况:单块舵面故障,内或外,上或下;一组(两块)舵面故障,左右对称或不对称;多块面故障,即大于一组舵面故障;所有舵面故障。
b)舵面损伤程度分为以下情况:舵面完全失效情况,不响应控制指令,卡死和漂浮两种,其中卡死情况又包括:卡在故障位置和移动到最大舵偏处两种情况,漂浮指舵面绕轴随风飘动;舵面部分失效情况,能响应控制指令,但不能达到预期效果,例如舵面损伤或变形。
c)失效时刻。失效可以是飞行过程中的任意时刻。
2)故障状态分级
舵面故障情况的组合有很多种,但有些故障状态是边界,有些故障不是边界,因此,如果确定了边界情况,其他故障情况则是安全的。
多舵面的气动布局,由于位置差异和几何尺寸不同,每块舵面的气动贡献往往不同,效率较高的舵面出现故障,对剩余舵面的出舵需求更大,这种情况是故障边界。面积大的尾翼舵面故障是边界,面积较小的舵面故障是边界内。以此确定严重边界:
a)可控故障
单舵面失效,为严重边界内的故障情况;
一组舵面完全失效,舵效大的一组失效为可控故障的严重边界;
b)不可控故障
多块(一组以上)舵面故障,飞机不可控;
所有舵面完全失效,飞机完全失控。
所述步骤B具体体现在:
综合故障数量、损伤程度、故障时刻三个物理量,建立气动力通用模型为:
其中:Ci为气动力六分量,以飞行力学中的风轴系为例,Ci即分别代表飞行器升力、阻力、侧向力、俯仰力矩、滚转力矩、偏航力矩六个分量;
K为舵面损伤或变形系数:S舵面损失面积/S舵面总面积
S舵面变形等效面积/S舵面总面积
F(δ故障尾翼舵面)为故障尾翼舵面偏度函数,分别为:
a)无故障时,为正常舵面偏度;
b)卡滞故障时,为卡滞偏度δ故障尾翼舵面或最大舵偏δmax;
c)舵面漂浮时,为铰链力矩为0所对应的偏度;
F(t故障时间函数)为故障尾翼舵面时间函数,当故障开始取值1,无故障时取值0;
m为正常舵面数量;n为故障舵面数量。
舵面漂浮故障时,其铰链力矩为0,漂浮时的舵偏角刚好是其飞行攻角下铰链力矩为零的舵偏角,即满足以下方程:
Mj(δ=0)+Mj(δ=X)=0
其范围为正负最大结构限制舵偏,精确的漂浮偏度采用以下方法获得:原始数据为马赫数、高度、攻角、侧滑角、舵偏角五个因变量构成的多维铰链力矩系数矩阵,通过多维插值计算获得铰链力矩为零的原始舵偏角矩阵,在控制模型中采用降阶插值法得到飞行过程中的漂浮舵偏角度。
所述步骤C具体体现在:
1)故障分级步骤。按照最低余度(单余度)、最少舵面、最低舵效的原则进行故障状态分级,获得故障状态严酷边界;按照从铰链力矩最大、舵偏最大的严酷边界与过载能力要求最高的组合到故障状态边界内与过载能力降低的顺序,进行舵效和铰链力矩的限制包线评估;
2)从舵面故障严重边界开始,从饱和位置向中立位置以间隔一定角度,在原包线范围内进行评估,获得舵效满足情况下不同舵偏故障位置的配平包线范围,如图1所示,其中横坐标为马赫数、纵坐标为飞行高度;
3)从舵面故障严重边界开始,从饱和位置向中立位置以间隔一定角度,在原包线范围内,评估各故障情况下的舵面铰链力矩,获得铰链力矩满足情况下不同舵偏故障位置的配平包线范围,如图2所示,其中横坐标为马赫数、纵坐标为飞行高度;
所述步骤D具体体现在:
对满足舵效和铰链力矩的包线求交集,确定满足原飞行包线的最大舵偏故障范围和不同故障舵偏情况下的缩小包线范围,如图3最小范围即为同时满足舵效和铰链力矩的安全飞行包线,其中横坐标为马赫数、纵坐标为飞行高度。
所述步骤E具体体现在:
提前装订满足舵效和铰链力矩限制的故障应急飞行包线和舵偏范围,在飞行过程中遭遇尾舵故障时,启动应急模式,在故障应急飞行包线内飞行和使用尾翼舵面,飞控计算机控制飞机按应急航线飞行。

Claims (4)

1.一种双余度补偿式尾翼舵面故障状态控制方法,其特征在于,包括如下步骤:
A、故障状态物理模型建立步骤,按照舵面故障数量、损伤程度、故障时刻建立多维物理模型;按照最低余度(单余度)、最少舵面、最低舵效的原则进行故障状态分级,获得故障状态严酷边界,;
B、故障状态参数化通用模型建立步骤,根据多维物理模型建立故障状态的舵面控制模型、气动力学通用模型;
C、舵效和铰链力矩限制边界计算步骤,按照故障状态分级推进方法计算剩余舵面最大配平能力,获得满足舵效限制的速度、高度包线;按照故障状态分级推进方法计算故障舵面、剩余正常舵面的铰链力矩,获得满足舵机铰链力矩输出的速度、高度包线;
D、剩余操纵能力、安全飞行包线确定步骤,对满足飞行特性和舵面铰链力矩的剩余操纵能力、安全飞行包线求交集,获得舵面不同舵偏故障状态安全可控的速度、高度包线。
E、提前装订满足舵效和铰链力矩限制的故障应急飞行包线和舵偏范围,在飞行过程中遭遇尾舵故障时,启动应急模式,在故障应急飞行包线内飞行和使用尾翼舵面。
2.根据权利要求1所述一种双余度补偿式尾翼舵面故障状态控制方法,其特征在于,所述的故障状态分级推进算法,从铰链力矩最大、舵偏最大的严酷边界与过载能力要求最高的组合到故障状态边界内与过载能力降低的顺序,从外向内寻找不同故障状态可控的机动或安全飞行包线。
3.根据权利要求1所述一种双余度补偿式尾翼舵面故障状态控制方法,其特征在于,所述的故障状态参数化通用气动力模型为:
其中:Ci为气动力六分量,以飞行力学中的风轴系为例,Ci即分别代表飞行器升力、阻力、侧向力、俯仰力矩、滚转力矩、偏航力矩六个分量;
K为舵面损伤或变形系数:S舵面损失面积/S舵面总面积
S舵面变形等效面积/S舵面总面积
F(δ故障尾翼舵面)为故障尾翼舵面偏度函数,分别为:
a)无故障时,为正常舵面偏度;
b)卡滞故障时,为卡滞偏度δ故障尾翼舵面或最大舵偏δmax;
c)舵面漂浮时,为铰链力矩为0所对应的偏度;
F(t故障时间函数)为故障尾翼舵面时间函数,当故障开始取值1,无故障时取值0;
m为正常舵面数量;n为故障舵面数量。
4.根据权利要求1所述一种双余度补偿式尾翼舵面故障状态控制方法,其特征在于,所述的故障状态参数化建模中的舵面漂浮偏度获得方法,原始数据为马赫数、高度、攻角、侧滑角、舵偏角五个因变量构成的多维铰链力矩系数矩阵,通过多维插值计算获得铰链力矩为零的原始舵偏角矩阵,在控制模型中采用降阶插值法得到飞行过程中的漂浮舵偏角度。
CN201610752222.8A 2016-08-29 2016-08-29 一种双余度补偿式尾翼舵面故障状态控制方法 Active CN106649909B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610752222.8A CN106649909B (zh) 2016-08-29 2016-08-29 一种双余度补偿式尾翼舵面故障状态控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610752222.8A CN106649909B (zh) 2016-08-29 2016-08-29 一种双余度补偿式尾翼舵面故障状态控制方法

Publications (2)

Publication Number Publication Date
CN106649909A true CN106649909A (zh) 2017-05-10
CN106649909B CN106649909B (zh) 2020-04-03

Family

ID=58851862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610752222.8A Active CN106649909B (zh) 2016-08-29 2016-08-29 一种双余度补偿式尾翼舵面故障状态控制方法

Country Status (1)

Country Link
CN (1) CN106649909B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092765A (zh) * 2017-06-22 2017-08-25 洛阳瑞极光电科技有限公司 一种轴对称飞行器的计算流体力学气动数据处理方法
CN107168297A (zh) * 2017-07-03 2017-09-15 电子科技大学 一种飞行控制计算机的可靠性验证方法及平台
CN108021406A (zh) * 2017-11-03 2018-05-11 中国航空工业集团公司西安航空计算技术研究所 一种适用于机载计算机的双余度热备份cpu系统
CN109592076A (zh) * 2018-12-17 2019-04-09 南京航空航天大学 飞机操纵品质评估方法及操纵性能试验参数选定方法
CN109592064A (zh) * 2018-11-02 2019-04-09 中国航空工业集团公司西安飞机设计研究所 飞机与机械操纵系统变形差异对机动操纵影响设计方法
CN109703779A (zh) * 2018-10-26 2019-05-03 中国飞行试验研究院 一种用于民用电传飞机pio研究的控制律设计方法
CN112182773A (zh) * 2020-10-16 2021-01-05 北京航天自动控制研究所 一种基于线性调频z变换的飞行器舵机故障在线辨识方法
CN114444214A (zh) * 2022-04-07 2022-05-06 中国空气动力研究与发展中心计算空气动力研究所 一种基于舵面效率的飞行器控制方法
CN114924581A (zh) * 2022-07-21 2022-08-19 成都飞机工业(集团)有限责任公司 一种单余度无人机俯仰角失效的判定方法
CN115659521A (zh) * 2022-11-21 2023-01-31 中国空气动力研究与发展中心空天技术研究所 一种适用于前、后扰流板复杂操纵面的气动力建模方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105740525A (zh) * 2016-01-26 2016-07-06 中国航空工业集团公司沈阳飞机设计研究所 一种飞行器的气动力数据处理方法及气动力数据处理系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105740525A (zh) * 2016-01-26 2016-07-06 中国航空工业集团公司沈阳飞机设计研究所 一种飞行器的气动力数据处理方法及气动力数据处理系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张栋: "飞翼无人机多操纵面控制分配与重构技术研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
王慧娟: "双余度电动伺服舵机系统设计", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *
葛铁: "多故障的直接自修复控制", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092765A (zh) * 2017-06-22 2017-08-25 洛阳瑞极光电科技有限公司 一种轴对称飞行器的计算流体力学气动数据处理方法
CN107168297A (zh) * 2017-07-03 2017-09-15 电子科技大学 一种飞行控制计算机的可靠性验证方法及平台
CN108021406A (zh) * 2017-11-03 2018-05-11 中国航空工业集团公司西安航空计算技术研究所 一种适用于机载计算机的双余度热备份cpu系统
CN109703779B (zh) * 2018-10-26 2022-05-27 中国飞行试验研究院 一种用于民用电传飞机pio研究的控制律设计方法
CN109703779A (zh) * 2018-10-26 2019-05-03 中国飞行试验研究院 一种用于民用电传飞机pio研究的控制律设计方法
CN109592064A (zh) * 2018-11-02 2019-04-09 中国航空工业集团公司西安飞机设计研究所 飞机与机械操纵系统变形差异对机动操纵影响设计方法
CN109592064B (zh) * 2018-11-02 2022-04-19 中国航空工业集团公司西安飞机设计研究所 飞机与机械操纵系统变形差异对机动操纵影响设计方法
CN109592076A (zh) * 2018-12-17 2019-04-09 南京航空航天大学 飞机操纵品质评估方法及操纵性能试验参数选定方法
CN109592076B (zh) * 2018-12-17 2022-04-22 南京航空航天大学 飞机操纵品质评估方法及操纵性能试验参数选定方法
CN112182773A (zh) * 2020-10-16 2021-01-05 北京航天自动控制研究所 一种基于线性调频z变换的飞行器舵机故障在线辨识方法
CN114444214A (zh) * 2022-04-07 2022-05-06 中国空气动力研究与发展中心计算空气动力研究所 一种基于舵面效率的飞行器控制方法
CN114444214B (zh) * 2022-04-07 2022-06-07 中国空气动力研究与发展中心计算空气动力研究所 一种基于舵面效率的飞行器控制方法
CN114924581A (zh) * 2022-07-21 2022-08-19 成都飞机工业(集团)有限责任公司 一种单余度无人机俯仰角失效的判定方法
CN115659521A (zh) * 2022-11-21 2023-01-31 中国空气动力研究与发展中心空天技术研究所 一种适用于前、后扰流板复杂操纵面的气动力建模方法
CN115659521B (zh) * 2022-11-21 2023-03-10 中国空气动力研究与发展中心空天技术研究所 一种适用于前、后扰流板复杂操纵面的气动力建模方法

Also Published As

Publication number Publication date
CN106649909B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
CN106649909A (zh) 一种双余度补偿式尾翼舵面故障状态控制方法
Heidlauf et al. Verification Challenges in F-16 Ground Collision Avoidance and Other Automated Maneuvers.
EP2944566B1 (en) System and method for optimizing horizontal tail loads
CN106777739B (zh) 一种倾转旋翼机倾转过渡过程的求解方法
US8752789B2 (en) Horizontal tail load alleviation system
EP2052966B1 (en) Rate limited active pilot inceptor system and method
CN104898682B (zh) 一种高超声速飞行器再入姿态容错控制方法
Masarati et al. Linearized aeroservoelastic analysis of rotary-wing aircraft
CN110727198B (zh) 一种导弹多驱动状态执行机构故障的容错控制方法
EP1936466A1 (en) Multi-axis trim processing
CN109711008A (zh) 一种飞机重心包线计算方法
DE102011100481A1 (de) Flugzeug mit einer Vorrichtung zur Richtungsstabilisierung des Flugzeugs, Computerprogrammprodukt sowie Verfahren zur Richtungsstabilisierung des Flugzeugs
CN110320927A (zh) 智能变形飞行器的飞行控制方法及系统
Shah et al. Flight dynamics modeling and simulation of a damaged transport aircraft
EP3141976B1 (en) Roll attitude-dependent roll rate limit
CN109715492A (zh) 阵风荷载管理
Ouellette Flight dynamics and maneuver loads on a commercial aircraft with discrete source damage
Rafi et al. Response and recovery of an MRAC advanced flight control system to wake vortex encounters
CN115328185B (zh) 一种飞行器非线性非定常气动载荷修正系统
Lu et al. Adaptive differential thrust methodology for lateral/directional stability of an aircraft with a completely damaged vertical stabilizer
Lee et al. Sliding mode control design for a multidimensional morphing uav
Gripp et al. Configuration of aerodynamics model in flight simulator to investigate Pilot-Induced Oscillations and Loss of Control
Bramesfeld et al. Piloting strategies for controlling a transport aircraft after vertical-tail loss
Cen et al. Flight performance and stability analysis of impaired aircraft using constrained bifurcation and continuation method
Smith et al. Aerodynamic analyses in support of the spanwise adaptive wing project

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant