CN106649755A - 一种多维度实时变电设备数据的阈值自适应设置异常检测方法 - Google Patents

一种多维度实时变电设备数据的阈值自适应设置异常检测方法 Download PDF

Info

Publication number
CN106649755A
CN106649755A CN201611221222.1A CN201611221222A CN106649755A CN 106649755 A CN106649755 A CN 106649755A CN 201611221222 A CN201611221222 A CN 201611221222A CN 106649755 A CN106649755 A CN 106649755A
Authority
CN
China
Prior art keywords
converting equipment
real
time
data
running status
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611221222.1A
Other languages
English (en)
Other versions
CN106649755B (zh
Inventor
丁书耕
张建辉
陈亮
王刚
李秀芬
李倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Luruan Digital Technology Co Ltd
Original Assignee
Shandong Luneng Software Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Luneng Software Technology Co Ltd filed Critical Shandong Luneng Software Technology Co Ltd
Priority to CN201611221222.1A priority Critical patent/CN106649755B/zh
Publication of CN106649755A publication Critical patent/CN106649755A/zh
Application granted granted Critical
Publication of CN106649755B publication Critical patent/CN106649755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

一种多维度实时变电设备数据的阈值自适应设置异常检测方法,包括选取变电设备在正常和非正常运行状态下的历史数据进行处理后得到野值滤除阈值,实时获取变电设备运行状态多维度实时测点数据并去除野值处理,变电设备测点数据处理及异常阈值确定及变电设备异常判断等步骤,采用了多种归一化方式进行数据处理,并且对采集的实时测点数据首先进行多重的去野值判断,提高了数据的有效性和处理效率,解决了变电设备状态参数异常检测阈值区间较多依赖变电设备专家离线计算及主观经验,而无法根据设备运行实时状态自适应方式变化的问题。

Description

一种多维度实时变电设备数据的阈值自适应设置异常检测 方法
技术领域
本发明涉及输变电设备检测领域,具体涉及一种多维度实时变电设备数据的阈值自适应设置异常检测方法。
背景技术
众所周知,设备的运行状态对于电厂生产影响巨大,设备在正常工况运行过程中体现出来的功能特征、表象特征以及电气特征与异常状态下的特征是有差异的。根据设备状态预警,做出检修计划,将节省电厂巨大的人力、物力、财力,具有非常大的经济潜力。
目前,在设备状态预警方面,设备生产厂商根据制造工艺设定各个部件不同预警级别的阈值方法,现有设备异常检测方法采用静态阈值设置的方法,即以现有数据平均值为基准,上下分别以均值的固定百分比(例如150%、300%)作为上下阈值,进行数据异常检测。
上下阈值之间的区域为“正常”区域,上下阈值之外的区域为“异常”区域。静态阈值设置无法反映数据的动态实时特点。阈值上下界设置采用业务专家的主观经验,无法反映数据客观规律。阈值的确定直接影响了对于变电设备的检测精度以及数据处理的效率,然而目前静态阈值的方式已经无法满足日趋复杂的变电设备检测。
发明内容
本发明的目的在于克服现有技术的不足,提供一种多维度实时变电设备数据的阈值自适应设置异常检测方法,解决变电设备状态参数异常检测阈值区间较多依赖变电设备专家离线计算及主观经验,而无法根据设备运行实时状态自适应方式变化的问题,采用了多种归一化方式进行数据处理,并且对采集的实时测点数据首先进行多重的去野值判断,提高了数据的有效性和处理效率。
本发明提供了一种多维度实时变电设备数据的阈值自适应设置异常检测方法,依次包括如下步骤:
步骤1:在变电系统数据库里,找到变电设备的所有历史指标信息,选取一段时间内变电设备在正常运行状态下和非正常运行状态下的历史数据;
步骤2:
A.对选取的变电设备的正常运行状态下的历史数据按照如下公式进行归一化处理:
其中,hn1为h1归一化后的值,hmax1和hmin1分别为变电设备正常运行状态下的历史数据的最大值和最小值,h1为变电设备正常运行状态下的历史数据;
B.对选取的变电设备的非正常运行状态下的历史数据按照如下公式进行归一化处理:
其中,hn2为h2归一化后的值,hmax2和hmin2分别为变电设备非正常运行状态下的历史数据的最大值和最小值,h2为变电设备非正常运行状态下的历史数据;
步骤3:
A:将归一化后的hn1做平均值计算,得到平均值H1,并且设置阈值补偿参数L1,设置正常状态下初始野值滤除阈值的下限值为H1-L1,上限值为H1+L1,;
B:将归一化后的hn2做平均值计算,得到平均值H2,计算ΔH=|H1-H2|,并且设置误差阈值补偿参数L2,设置非正常状态下初始野值滤除误差阈值的下限值为ΔH-L2,上限值为ΔH+L2;
步骤4:
A.将正常状态下初始野值滤除阈值的下限值为H-L,上限值为H+L分别利用如下公式进行还原,得到还原后的初始野值滤除阈值的上、下限值:
B.将非正常状态下初始野值滤除误差阈值的下限值为ΔH-L2,上限值为ΔH+L2分别利用如下公式进行还原,得到还原后的初始野值滤除误差阈值的上、下限值:
步骤5:实时获取变电设备运行状态多维度实时测点数据,判断:
A:比较实时测点数据和初始野值滤除阈值的上、下限值的差值,如果差值没有落入初始野值滤除阈值的上、下限值构成的阈值范围,则剔除此实时测点数据,如果都落入则进入下一步骤;
B:判断实时测点数据是否落入初始野值滤除阈值的上、下限值构成的阈值范围,如果未落入则剔除此实时测点数据,如果落入则进行归一化处理,获得变电设备运行状态的实时多维度归一化数据序列;
步骤6:通过对变电设备运行状态的实时多维度归一化数据序列应用降维操作,产生变电设备运行状态的实时降维数据序列;
步骤7:应用可配置的预测器,对变电设备运行状态的实时降维数据序列进行预测计算,产生变电设备运行状态的预测数据序列;
步骤8:应用变电设备运行状态的实时数据及预测数据进行分值计算,得到变电设备运行状态分值;
步骤9:确定变电设备运行状态阈值区间,包括上阈值界、下阈值界;
步骤10:应用变电设备运行状态阈值区间,判断当前时刻分值是否在阈值区间范围,判断变电设备的状态异常。
其中,步骤5中进行归一化处理,获得变电设备运行状态的实时多维度归一化数据序列具体为:
多维度实时变电设备参数xt定义为t时刻变电设备数据集合,x(i)定义为多维度变电设备数据的第i维,i=1,2,…,n,表示为:
xt=(x(1),x(2),…,x(i),…,x(n))
对多维度实时变电设备参数xt进行正规化,实现归一化运算,
得到t时刻变电设备运行状态的实时多维度归一化数据序列到nt,其中NOR(xt)是正规化运算,||xt||,是xt的模。
其中,步骤6具体为对变电设备运行状态的实时多维度归一化数据序列nt进行降维运算:
yt=PCA(nt)
得到t时刻变电设备运行状态的实时降维数据序列yt,其中PCA(xt)是降维运算,通过对变电设备运行状态的实时多维度归一化数据序列应用降维操作,产生变电设备运行状态的实时降维数据序列。
其中,步骤7具体为:应用变电设备运行状态的实时降维数据序列yt和变电设备运行状态的实时数据及预测数据进行分值计算,
得到变电设备运行状态分值到zt
其中,步骤9具体为:
[Q1-1.5IQR,Q3+1.5IQR]
其中,Q1-1.5IQR为上阈值;Q3+1.5IQR为下阈值;四分位数间距IQR=Q3-Q1
其中,步骤10具体为:使用变电设备运行状态分值到zt与变电设备运行状态阈值区间[Q1-1.5IQR,Q3+1.5IQR]进行比较,如果zt在该区间范围,则变电设备状态正常;否则,变电设备状态异常。
本发明的多维度实时变电设备数据的阈值自适应设置异常检测方法,可以实现:
解决变电设备状态参数异常检测阈值区间较多依赖变电设备专家离线计算及主观经验,而无法根据设备运行实时状态自适应方式变化的问题,利用特定顺序和特殊的处理方式,并且采用了多种归一化方式进行数据处理,并且对采集的实时测点数据首先进行多重的去野值判断,提高了数据的有效性和处理效率,提高了运算效率,并且能够实时快速、自动化的检测设备异常情况。
附图说明
图1为野值滤除阈值处理流程图
图2为变电设备参数异常检测方法流程图
具体实施方式
下面详细说明本发明的具体实施,有必要在此指出的是,以下实施只是用于本发明的进一步说明,不能理解为对本发明保护范围的限制,该领域技术熟练人员根据上述本发明内容对本发明做出的一些非本质的改进和调整,仍然属于本发明的保护范围。
本发明提供了一种多维度实时变电设备数据的阈值自适应设置异常检测方法,如图1和2所示,具体包括如下的步骤:
步骤1:在变电系统数据库里,找到变电设备的所有历史指标信息,选取一段时间内变电设备在正常运行状态下和非正常运行状态下的历史数据;
步骤2:
A.对选取的变电设备的正常运行状态下的历史数据按照如下公式进行归一化处理:
其中,hn1为h1归一化后的值,hmax1和hmin1分别为变电设备正常运行状态下的历史数据的最大值和最小值,h1为变电设备正常运行状态下的历史数据;
B.对选取的变电设备的非正常运行状态下的历史数据按照如下公式进行归一化处理:
其中,hn2为h2归一化后的值,hmax2和hmin2分别为变电设备非正常运行状态下的历史数据的最大值和最小值,h2为变电设备非正常运行状态下的历史数据;
步骤3:
A:将归一化后的hn1做平均值计算,得到平均值H1,并且设置阈值补偿参数L1,设置正常状态下初始野值滤除阈值的下限值为H1-L1,上限值为H1+L1,其中L1可以为根据实际需要滤除野值而设置的,也可以根据长时间变电设备的历史数据做出的经验选择,例如可以是0.1,0.2等;
B:将归一化后的hn2做平均值计算,得到平均值H2,计算ΔH=|H1-H2|,并且设置误差阈值补偿参数L2,设置非正常状态下初始野值滤除误差阈值的下限值为ΔH-L2,上限值为ΔH+L2,其中L2可以为根据实际要滤除野值而设置的,也可以根据长时间变电设备的历史数据做出的经验选择,例如可以是0.03,0.05等;
步骤4:
A.将正常状态下初始野值滤除阈值的下限值为H-L,上限值为H+L分别利用如下公式进行还原,得到还原后的初始野值滤除阈值的上、下限值:
B.将非正常状态下初始野值滤除误差阈值的下限值为ΔH-L2,上限值为ΔH+L2分别利用如下公式进行还原,得到还原后的初始野值滤除误差阈值的上、下限值:
步骤5:实时获取变电设备运行状态多维度实时测点数据,判断:
A:比较实时测点数据和初始野值滤除阈值的上、下限值的差值,如果差值没有落入初始野值滤除阈值的上、下限值构成的阈值范围,则剔除此实时测点数据,如果都落入则进入下一步骤;
B:判断实时测点数据是否落入初始野值滤除阈值的上、下限值构成的阈值范围,如果未落入则剔除此实时测点数据,如果落入则进行归一化处理,获得变电设备运行状态的实时多维度归一化数据序列;
进行归一化处理,获得变电设备运行状态的实时多维度归一化数据序列;
其中对测点数据进行归一化运算,具体为;
多维度实时变电设备参数xt定义为t时刻变电设备数据集合,x(i)定义为多维度变电设备数据的第i维,i=1,2,…,n,表示为:
xt=(x(1),x(2),…,x(i),…,x(n))
所述归一化处理,是指对多维度实时变电设备参数xt进行正规化,实现归一化运算,
得到t时刻变电设备运行状态的实时多维度归一化数据序列到nt,其中NOR(xt)是正规化运算,||xt||,是xt的模。
其中所述变电设备包括(但不限于)开关刀闸、变压器等,所述变电设备状态参数包括(但不限于)电流、电压、功率、功率因数、油温、油中气体数据等。
步骤6:通过对变电设备运行状态的实时多维度归一化数据序列应用降维操作,产生变电设备运行状态的实时降维数据序列;
对归一化处理后的数据序列进行多维度变电设备数据降维,具体为:
所述进行降维操作,是指对变电设备运行状态的实时多维度归一化数据序列nt进行降维运算:
yt=PCA(nt)
得到t时刻变电设备运行状态的实时降维数据序列yt,其中PCA(xt)是降维运算,通过对变电设备运行状态的实时多维度归一化数据序列应用降维操作,产生变电设备运行状态的实时降维数据序列;所述降维运算PCA(xt)包括(但不限于)离散余弦变换、主成分分析、离散小波变换等。
步骤7:应用可配置的预测器,对变电设备运行状态的实时降维数据序列进行预测计算,产生变电设备运行状态的预测数据序列;
对变电设备运行状态的实时降维数据序列进行预测计算,产生变电设备运行状态的预测数据序列,具体为:
所述预测计算,是指对变电设备运行状态的实时降维数据序列yt进行预测计算,
得到t时刻变电设备运行状态的预测数据序列其中AR(yt)是预测器;其中所述预测器包括(但不限于):多项式回归预测器、支持向量机预测器、人工神经网络预测器、卡尔曼预测滤波器、决策树回归预测器。
步骤8:应用变电设备运行状态的实时数据及预测数据进行分值计算,得到变电设备运行状态分值;
利用变电设备实际数据与预测数据进行分值计算,得到当前时刻电设备运行状态分值,具体为:
所述分值计算,是指应用变电设备运行状态的实时降维数据序列yt和变电设备运行状态的实时数据及预测数据进行分值计算,
得到变电设备运行状态分值到zt
步骤9:确定变电设备运行状态阈值区间,包括上阈值界、下阈值界;
确定变电设备运行状态阈值区间,包括上阈值界、下阈值界,计算正常阈值范围,具体为:
所述变电设备运行状态阈值区间,是指
[Q1-1.5IQR,Q3+1.5IQR]
其中,Q1-1.5IQR为上阈值;Q3+1.5IQR为下阈值;四分位数间距IQR=Q3-Q1
步骤10:应用变电设备运行状态阈值区间,判断当前时刻分值是否在阈值区间范围,并做出变电设备运行状态是否异常的结论。
所述判断当前时刻分值是否在阈值区间范围,并做出变电设备运行状态是否异常的结论是指使用变电设备运行状态分值到zt与变电设备运行状态阈值区间[Q1-1.5IQR,Q3+1.5IQR]进行比较,如果zt在该区间范围,则变电设备状态正常;否则,变电设备状态异常。
尽管为了说明的目的,已描述了本发明的示例性实施方式,但是本领域的技术人员将理解,不脱离所附权利要求中公开的发明的范围和精神的情况下,可以在形式和细节上进行各种修改、添加和替换等的改变,而所有这些改变都应属于本发明所附权利要求的保护范围,并且本发明要求保护的产品各个部门和方法中的各个步骤,可以以任意组合的形式组合在一起。因此,对本发明中所公开的实施方式的描述并非为了限制本发明的范围,而是用于描述本发明。相应地,本发明的范围不受以上实施方式的限制,而是由权利要求或其等同物进行限定。

Claims (6)

1.一种多维度实时变电设备数据的阈值自适应设置异常检测方法,其特征在于,依次包括如下步骤:
步骤1:在变电系统数据库里,找到变电设备的所有历史指标信息,选取一段时间内变电设备在正常运行状态下和非正常运行状态下的历史数据;
步骤2:
A.对选取的变电设备的正常运行状态下的历史数据按照如下公式进行归一化处理:
h n 1 = 2 ( h 1 - h m a x 1 ) ( h m a x 1 - h min 1 ) + 1
其中,hn1为h1归一化后的值,hmax1和hmin1分别为变电设备正常运行状态下的历史数据的最大值和最小值,h1为变电设备正常运行状态下的历史数据;
B.对选取的变电设备的非正常运行状态下的历史数据按照如下公式进行归一化处理:
h n 2 = h 2 - h min 2 h max 2 - h min 2
其中,hn2为h2归一化后的值,hmax2和hmin2分别为变电设备非正常运行状态下的历史数据的最大值和最小值,h2为变电设备非正常运行状态下的历史数据;
步骤3:
A:将归一化后的hn1做平均值计算,得到平均值H1,并且设置阈值补偿参数L1,设置正常状态下初始野值滤除阈值的下限值为H1-L1,上限值为H1+L1,;
B:将归一化后的hn2做平均值计算,得到平均值H2,计算ΔH=|H1-H2|,并且设置误差阈值补偿参数L2,设置非正常状态下初始野值滤除误差阈值的下限值为ΔH-L2,上限值为ΔH+L2;
步骤4:
A.将正常状态下初始野值滤除阈值的下限值为H-L,上限值为H+L分别利用如下公式进行还原,得到还原后的初始野值滤除阈值的上、下限值:
h d o w n 1 = 1 2 [ ( H 1 - L 1 ) - 1 ) ] ( h max 1 - h min 1 ) + h max 1 h u p 1 = 1 2 [ ( H 1 + L 1 ) - 1 ) ] ( h max 1 - h min 1 ) + h max 1 ;
B.将非正常状态下初始野值滤除误差阈值的下限值为ΔH-L2,上限值为ΔH+L2分别利用如下公式进行还原,得到还原后的初始野值滤除误差阈值的上、下限值:
hdown2=(ΔH-L2)(hmax2-hmin2)+hmin2
hup2=(ΔH+L2)(hmax2-hmin2)+hmin2
步骤5:实时获取变电设备运行状态多维度实时测点数据,判断:
A:比较实时测点数据和初始野值滤除阈值的上、下限值的差值,如果差值没有落入初始野值滤除阈值的上、下限值构成的阈值范围,则剔除此实时测点数据,如果都落入则进入下一步骤;
B:判断实时测点数据是否落入初始野值滤除阈值的上、下限值构成的阈值范围,如果未落入则剔除此实时测点数据,如果落入则进行归一化处理,获得变电设备运行状态的实时多维度归一化数据序列;
步骤6:通过对变电设备运行状态的实时多维度归一化数据序列应用降维操作,产生变电设备运行状态的实时降维数据序列;
步骤7:应用可配置的预测器,对变电设备运行状态的实时降维数据序列进行预测计算,产生变电设备运行状态的预测数据序列;
步骤8:应用变电设备运行状态的实时数据及预测数据进行分值计算,得到变电设备运行状态分值;
步骤9:确定变电设备运行状态阈值区间,包括上阈值界、下阈值界;
步骤10:应用变电设备运行状态阈值区间,判断当前时刻分值是否在阈值区间范围,判断变电设备的状态异常。
2.如权利要求1所述的方法,其特征在于:步骤5中进行归一化处理,获得变电设备运行状态的实时多维度归一化数据序列具体为:
多维度实时变电设备参数xt定义为t时刻变电设备数据集合,x(i)定义为多维度变电设备数据的第i维,i=1,2,…,n,表示为:
xt=(x(1),x(2),…,x(i),…,x(n))
对多维度实时变电设备参数xt进行正规化,实现归一化运算,
n t = N O R ( x t ) = x t | | x t | |
得到t时刻变电设备运行状态的实时多维度归一化数据序列到nt,其中NOR(xt)是正规化运算,||xt||,是xt的模。
3.如权利要求2所述的方法,其特征在于:步骤6具体为对变电设备运行状态的实时多维度归一化数据序列nt进行降维运算:
yt=PCA(nt)
得到t时刻变电设备运行状态的实时降维数据序列yt,其中PCA(xt)是降维运算,通过对变电设备运行状态的实时多维度归一化数据序列应用降维操作,产生变电设备运行状态的实时降维数据序列。
4.如权利要求1-3所述的方法,其特征在于:步骤7具体为:应用变电设备运行状态的实时降维数据序列yt和变电设备运行状态的实时数据及预测数据进行分值计算,
z t = Σ i = 1 n ( y t ( i ) - y ^ t ( i ) ) 2 y ^ t ( i )
得到变电设备运行状态分值到zt
5.如权利要求1-4所述的方法,其特征在于:步骤9具体为:
[Q1-1.5IQR,Q3+1.5IQR]
其中,Q1-1.5IQR为上阈值;Q3+1.5IQR为下阈值;四分位数间距IQR=Q3-Q1
6.如权利要求1-5所述的方法,其特征在于:步骤10具体为:使用变电设备运行状态分值到zt与变电设备运行状态阈值区间[Q1-1.5IQR,Q3+1.5IQR]进行比较,如果zt在该区间范围,则变电设备状态正常;否则,变电设备状态异常。
CN201611221222.1A 2016-12-26 2016-12-26 一种多维度实时变电设备数据的阈值自适应设置异常检测方法 Active CN106649755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611221222.1A CN106649755B (zh) 2016-12-26 2016-12-26 一种多维度实时变电设备数据的阈值自适应设置异常检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611221222.1A CN106649755B (zh) 2016-12-26 2016-12-26 一种多维度实时变电设备数据的阈值自适应设置异常检测方法

Publications (2)

Publication Number Publication Date
CN106649755A true CN106649755A (zh) 2017-05-10
CN106649755B CN106649755B (zh) 2020-08-25

Family

ID=58831316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611221222.1A Active CN106649755B (zh) 2016-12-26 2016-12-26 一种多维度实时变电设备数据的阈值自适应设置异常检测方法

Country Status (1)

Country Link
CN (1) CN106649755B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341444A (zh) * 2017-06-07 2017-11-10 北京星网锐捷网络技术有限公司 数据异常预警方法及装置
CN109239265A (zh) * 2018-09-11 2019-01-18 清华大学合肥公共安全研究院 监测设备故障检测方法及装置
CN110415494A (zh) * 2019-07-25 2019-11-05 西安因联信息科技有限公司 一种基于历史运行数据的设备报警阈值计算方法
CN110826362A (zh) * 2018-08-09 2020-02-21 英业达科技有限公司 用于炉温误差处理的方法、非暂时性计算机可读介质与设备
CN111256758A (zh) * 2020-02-27 2020-06-09 深圳市东力科创技术有限公司 一种抽油井监控的方法、装置、存储介质和计算机设备
CN113312803A (zh) * 2021-07-29 2021-08-27 湖南五凌电力科技有限公司 测量点的阈值配置方法、装置、电子设备及存储介质
CN114254879A (zh) * 2021-11-30 2022-03-29 南方电网数字电网研究院有限公司 多传感器信息融合的电力设备安全诊断方法和装置
CN116056443A (zh) * 2023-04-03 2023-05-02 四川易景智能终端有限公司 一种基于5g通信的smt贴片故障诊断系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110010106A1 (en) * 2008-04-11 2011-01-13 Mitsubishi Electric Corporation Apparatus state detector, method for detecting apparatus state, apparatus state detection server and apparatus state detection system; living persons' anomaly detector, living persons' anomaly detection system and method for detecting living persons' anomaly, and apparatus-state database maintenance server
CN104350471A (zh) * 2012-06-28 2015-02-11 国际商业机器公司 利用自动阈值设置在多时间序列数据中实时地检测异常
CN105956734A (zh) * 2016-04-15 2016-09-21 广东轩辕网络科技股份有限公司 动态设置it设备的性能的指标阈值的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110010106A1 (en) * 2008-04-11 2011-01-13 Mitsubishi Electric Corporation Apparatus state detector, method for detecting apparatus state, apparatus state detection server and apparatus state detection system; living persons' anomaly detector, living persons' anomaly detection system and method for detecting living persons' anomaly, and apparatus-state database maintenance server
CN104350471A (zh) * 2012-06-28 2015-02-11 国际商业机器公司 利用自动阈值设置在多时间序列数据中实时地检测异常
CN105956734A (zh) * 2016-04-15 2016-09-21 广东轩辕网络科技股份有限公司 动态设置it设备的性能的指标阈值的方法及系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107341444A (zh) * 2017-06-07 2017-11-10 北京星网锐捷网络技术有限公司 数据异常预警方法及装置
CN110826362A (zh) * 2018-08-09 2020-02-21 英业达科技有限公司 用于炉温误差处理的方法、非暂时性计算机可读介质与设备
CN110826362B (zh) * 2018-08-09 2023-09-12 英业达科技有限公司 用于炉温误差处理的方法和非暂时性计算机可读介质
CN109239265A (zh) * 2018-09-11 2019-01-18 清华大学合肥公共安全研究院 监测设备故障检测方法及装置
CN109239265B (zh) * 2018-09-11 2021-01-22 清华大学合肥公共安全研究院 监测设备故障检测方法及装置
US11385122B2 (en) 2018-09-11 2022-07-12 Hefei Institute For Public Safety Research, Tsinghua University Method and device for detecting fault of monitoring device
CN110415494A (zh) * 2019-07-25 2019-11-05 西安因联信息科技有限公司 一种基于历史运行数据的设备报警阈值计算方法
CN111256758A (zh) * 2020-02-27 2020-06-09 深圳市东力科创技术有限公司 一种抽油井监控的方法、装置、存储介质和计算机设备
CN113312803A (zh) * 2021-07-29 2021-08-27 湖南五凌电力科技有限公司 测量点的阈值配置方法、装置、电子设备及存储介质
CN114254879A (zh) * 2021-11-30 2022-03-29 南方电网数字电网研究院有限公司 多传感器信息融合的电力设备安全诊断方法和装置
CN114254879B (zh) * 2021-11-30 2023-10-20 南方电网数字电网研究院有限公司 多传感器信息融合的电力设备安全诊断方法和装置
CN116056443A (zh) * 2023-04-03 2023-05-02 四川易景智能终端有限公司 一种基于5g通信的smt贴片故障诊断系统

Also Published As

Publication number Publication date
CN106649755B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN106649755A (zh) 一种多维度实时变电设备数据的阈值自适应设置异常检测方法
CN107941537B (zh) 一种机械设备健康状态评估方法
CN104992270B (zh) 输变电设备状态检修辅助决策系统及方法
CN106682159A (zh) 一种阈值配置方法
CN110766059A (zh) 一种变压器故障的预测方法、装置和设备
CN104390657A (zh) 一种发电机组运行参数测量传感器故障诊断方法及系统
US20230023931A1 (en) Hydraulic turbine cavitation acoustic signal identification method based on big data machine learning
CN106384210A (zh) 一种基于检修风险收益的输变电设备检修优先级排序方法
CN106656669B (zh) 一种基于阈值自适应设置的设备参数异常检测系统及方法
CN105930629B (zh) 一种基于海量运行数据的在线故障诊断方法
EP2706422B1 (de) Verfahren zur rechnergestützten Überwachung des Betriebs eines technischen Systems, insbesondere einer elektrischen Energieerzeugungsanlage
CN104598734A (zh) 滚动轴承集成期望最大化和粒子滤波的寿命预测模型
CN104792529A (zh) 基于状态空间模型的滚动轴承寿命预测方法
CN110688617B (zh) 风机振动异常检测方法及装置
CN107730084A (zh) 基于灰色预测和风险评估的变压器检修决策方法
CN105303296B (zh) 一种电力设备全寿命状态评价方法
CN107403279B (zh) 一种输油泵工况自适应状态预警系统及方法
CN112633614B (zh) 一种基于特征提取的实时故障程度诊断系统及方法
CN110737976A (zh) 一种基于多维度信息融合的机械设备健康评估方法
CN116308300B (zh) 一种电力设备状态监测评价与指挥方法及系统
CN112598144A (zh) 基于相关性分析的cnn-lstm突发故障预警方法
CN116840764A (zh) 一种电容式电压互感器综合误差状态评估方法及系统
CN109894476B (zh) 一种冷轧硅钢生产线液压设备故障诊断方法和装置
CN113313365A (zh) 一种一次风机的劣化预警方法及设备
CN117633690A (zh) 一种基于数据驱动的旋转机械健康状态监测方法及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 250101 5th floor, block B, Yinhe building, 2008 Xinluo street, high tech Zone, Jinan City, Shandong Province

Patentee after: Shandong luruan Digital Technology Co.,Ltd.

Address before: 250101 5th floor, block B, Yinhe building, 2008 Xinluo street, high tech Zone, Jinan City, Shandong Province

Patentee before: SHANDONG LUNENG SOFTWARE TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder