CN106644035A - 一种基于时频变换特性的振动源识别方法及系统 - Google Patents

一种基于时频变换特性的振动源识别方法及系统 Download PDF

Info

Publication number
CN106644035A
CN106644035A CN201611161986.6A CN201611161986A CN106644035A CN 106644035 A CN106644035 A CN 106644035A CN 201611161986 A CN201611161986 A CN 201611161986A CN 106644035 A CN106644035 A CN 106644035A
Authority
CN
China
Prior art keywords
vibration source
auto
waveform
vibration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611161986.6A
Other languages
English (en)
Other versions
CN106644035B (zh
Inventor
曲洪权
苑世娇
盛智勇
杨丹
郑彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China University of Technology
Original Assignee
North China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China University of Technology filed Critical North China University of Technology
Priority to CN201611161986.6A priority Critical patent/CN106644035B/zh
Publication of CN106644035A publication Critical patent/CN106644035A/zh
Application granted granted Critical
Publication of CN106644035B publication Critical patent/CN106644035B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明提供了一种基于时频变换特性的振动源识别方法及系统,方法获取当前振动源在多个报警点的振动信号的自相关系数波形;根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;将多维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。系统包括自相关系数波形获取单元、能量占比确定单元及振动源识别单元。本发明能够根据时频变换特性准确的识别出振动信号,且识别过程快速且有效,为控制中心提供了可靠地振动源判定基础,使得控制能在能够根据振动源的类型,做出准确且及时的响应。

Description

一种基于时频变换特性的振动源识别方法及系统
技术领域
本发明涉及振动源识别技术领域,具体涉及一种基于时频变换特性的振动源识别方法及系统。
背景技术
随着经济的飞速发展,油气资源的需求量日趋增加,管道运输以其经济、有效、环保的优势,已成为油气资源运输的主要手段,管道安全保护的问题也日益突出地摆在人们面前。管道一旦泄漏极易发生爆炸,不仅影响能源的正常运输,还将给国家和人民群众的生命、财产造成巨大损失。因此,管道安全预警是必不可少的。
在运用光纤传感系统在对管道保护区进行实时监控的基础上,同时对所检测到的振动信号进行分类,识别引起振动的外部事件源,辨别是否为有害入侵信号。通过光纤传感系统对光缆周边的振动事件进行探测,采集石油管道周边的各种振动信号进行报警提示,同时提取信号特征参数,对振源进行分类和识别。由于振动背景复杂多样,因此在大量复杂的振动信号中准确识别目标振源并有效报警是安全预警系统研究的难点。振源识别是基于振源的行为及其属性特征,以计算机为工具,采用模式识别理论,建立振动信号和振动源对应关系的一门技术。系统对光纤管道采集到的振动信号进行预处理、特征提取和识别,并根据其特征确定有害入侵振动并进行安全预警,从而实现保障油气管道安全,防患于未然的目的。
现有的研究存在的主要问题是缺乏合适的振动源识别方法,因此,需要建立一种有效的振动源识别方法来实现振动信号的识别,以降低振源识别的错误率。
发明内容
针对现有技术中的缺陷,本发明提供一种基于时频变换特性的振动源识别方法及系统,能够根据时频变换特性准确的识别出振动信号,且识别过程快速且有效,为控制中心提供了可靠地振动源判定基础,使得控制能在能够根据振动源的类型,做出准确且及时的响应。
为解决上述技术问题,本发明提供以下技术方案:
一方面,本发明提供了一种基于时频变换特性的振动源识别方法,所述方法包括:
步骤1.获取当前振动源在多个报警点的振动信号的自相关系数波形;
步骤2.根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;
步骤3.将多维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
进一步的,所述步骤1包括:
步骤1-1.在光纤传感系统的各报警点检测到振动源时,接收各报警点发送的振动信号,其中,各报警点的设置位置不同;
步骤1-2.根据所述自相关函数确定各所述振动信号的自相关系数波形。
进一步的,所述步骤1-2包括:
步骤1-2a.以信号能量高的部分作为自相关模板,简化所述自相关函数;
步骤1-2b.根据简化后的所述自相关函数确定各所述振动信号的自相关系数波形。
进一步的,所述步骤1-2a中的自相关函数R(k)如式(1)所示:
式(1)中,X为振动信号,w为窗函数,1为信号长度,k为自相关函数的第k位,m为信号序列位置。
进一步的,所述步骤1-2b中的简化后的所述自相关函数R(k)如式(2)所示:
式(2)中,X为振动信号,1为信号长度,k为自相关函数的第k位,m为信号序列位置,M为从振动信号中截取的一段模板,N0为模板长度。
进一步的,所述步骤2包括:
步骤2-1.根据时频变换特性对所述自相关系数波形进行r层DB3小波分解,得到r+1层波段;
步骤2-2.去除波段层中的最低层;
步骤2-3.计算得到所述波段层中剩余高层波形的能量占比。
进一步的,所述步骤2-3包括:
步骤2-3a.依次计算得到剩余各高层波形的能量占比Pi
步骤2-3b.根据各高层波形的能量占比Pi计算得到各高层波形的能量在总能量中的占比ηi,得到r维能量占比特征向量[η12...ηr]。
进一步的,所述步骤3包括:
步骤3-1.将r维能量占比特征向量作为特征输入到MLFNN网络;
步骤3-2.根据误差目标函数对r维能量占比特征向量进行参数训练;
步骤3-3.根据参数训练的结果识别当前振动源的类型,其中,所述当前振动源的类型包括敲击振动源、行车振动源及人为运动引起的振动源。
进一步的,所述步骤3-2中的所述误差目标函数E如式(3)所示:
式(3)中,Ec表示第c个训练样例的误差,ωj表示连接权和阈值,L为批次训练的数据量,λ∈(0,1)。
另一方面,本发明还提供一种基于时频变换特性的振动源识别系统,所述系统包括:
自相关系数波形获取单元,用于获取当前振动源在多个报警点的振动信号的自相关系数波形;
能量占比确定单元,用于根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;
振动源识别单元,用于将r维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
由上述技术方案可知,本发明所述的一种基于时频变换特性的振动源识别方法及系统,方法获取当前振动源在多个报警点的振动信号的自相关系数波形;根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;将多维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型;能够根据时频变换特性准确的识别出振动信号,且识别过程快速且有效,为控制中心提供了可靠地振动源判定基础,使得控制能在能够根据振动源的类型,做出准确且及时的响应。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一的一种基于时频变换特性的振动源识别方法的流程示意图;
图2是本发明实施例二的识别方法中步骤100的一种具体实施方式的流程示意图;
图3是本发明实施例三的识别方法中步骤102的一种具体实施方式的流程示意图;
图4是本发明实施例四的识别方法中步骤200的一种具体实施方式的流程示意图;
图5是本发明实施例五的识别方法中步骤203的一种具体实施方式的流程示意图;
图6是本发明实施例六的识别方法中步骤300的一种具体实施方式的流程示意图;
图7是本发明具体应用例中的识别方法总流程图;
图8是本发明具体应用例中的求自相关函数流程图;
图9是本发明具体应用例中的小波分解和求能量占比流程图;
图10是本发明具体应用例中的镐刨原始振动信号仿真结果图;
图11是本发明具体应用例中的过车原始振动信号仿真结果图;
图12是本发明具体应用例中的小跑仿真结果图;
图13是本发明具体应用例中的镐刨信号自相关系数仿真结果图;
图14是本发明具体应用例中的过车原始振动信号仿真结果图;
图15是本发明具体应用例中的小跑原始振动信号仿真结果图;
图16是本发明具体应用例中的各原始振动信号仿真结果图对比图;
图17是本发明实施例七的一种基于时频变换特性的振动源识别系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的实施例一提供了一种基于时频变换特性的振动源识别方法。参见图1,该识别述方法具体包括如下内容:
步骤100:获取当前振动源在多个报警点的振动信号的自相关系数波形。
在本步骤中,在光纤传感系统的各报警点检测到振动源时,接收各报警点发送的振动信号,且各报警点的设置位置不同,以及根据所述自相关函数确定各所述振动信号的自相关系数波形。
步骤200:根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比。
在本步骤中,根据时频变换特性对所述自相关系数波形进行小波分解,去除波段层中的最低层,以及计算得到所述波段层中剩余高层波形的能量占比。
步骤300:将多维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
在本步骤中,将多维能量占比特征向量作为特征输入到MLFNN网络;根据误差目标函数对多维能量占比特征向量进行参数训练;根据参数训练的结果识别当前振动源的类型,其中,所述当前振动源的类型包括敲击振动源、行车振动源及人为运动引起的振动源。
从上述描述可知,本发明的实施例能够根据时频变换特性准确的识别出振动信号,且识别过程快速且有效,为控制中心提供了可靠地振动源判定基础,使得控制能在能够根据振动源的类型,做出准确且及时的响应。
本发明的实施例二提供了上述识别方法中步骤100的一种具体实施方式。参见图2,该步骤100具体包括如下内容:
步骤101.在光纤传感系统的各报警点检测到振动源时,接收各报警点发送的振动信号,其中,各报警点的设置位置不同。
步骤102.根据所述自相关函数确定各所述振动信号的自相关系数波形。
从上述描述可知,本发明的实施例能够准确获取当前振动源在多个报警点的振动信号的自相关系数波形,为后续处理提供了可靠的数据基础。
本发明的实施例三提供了上述识别方法中步骤102的一种具体实施方式。参见图3,该步骤102具体包括如下内容:
步骤102a.以信号能量高的部分作为自相关模板,简化所述自相关函数。
在本步骤中,自相关函数R(k)如式(1)所示:
式(1)中,X为振动信号,w为窗函数,1为信号长度,k为自相关函数的第k位,m为信号序列位置。
步骤102b.根据简化后的所述自相关函数确定各所述振动信号的自相关系数波形。
在本步骤中,简化后的所述自相关函数R(k)如式(2)所示:
式(2)中,X为振动信号,1为信号长度,k为自相关函数的第k位,m为信号序列位置,M为从振动信号中截取的一段模板,N0为模板长度。
从上述描述可知,本发明的实施例能够根据所述自相关函数确定各所述振动信号的自相关系数波形。
本发明的实施例四提供了上述识别方法中步骤200的一种具体实施方式。参见图4,该步骤200具体包括如下内容:
步骤201.根据时频变换特性对所述自相关系数波形进行r层DB3小波分解,得到r+1层波段。
步骤202.去除波段层中的最低层。
步骤203.计算得到所述波段层中剩余高层波形的能量占比。
从上述描述可知,本发明的实施例能够根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比。
本发明的实施例五提供了上述识别方法中步骤203的一种具体实施方式。参见图5,该步骤203具体包括如下内容:
步骤203a.依次计算得到剩余各高层波形的能量占比Pi
步骤203b.根据各高层波形的能量占比Pi计算得到各高层波形的能量在总能量中的占比ηi,得到r维能量占比特征向量[η12...ηr]。
从上述描述可知,本发明的实施例给出了计算得到所述波段层中剩余高层波形的能量占比的具体实现方式。
本发明的实施例六提供了上述识别方法中步骤300的一种具体实施方式。参见图6,该步骤300具体包括如下内容:
步骤301.将r维能量占比特征向量作为特征输入到MLFNN网络。
步骤302.根据误差目标函数对r维能量占比特征向量进行参数训练。
在本步骤中,误差目标函数E如式(3)所示:
式(3)中,Ec表示第c个训练样例的误差,ωj表示连接权和阈值,L为批次训练的数据量,λ∈(0,1)。
步骤303.根据参数训练的结果识别当前振动源的类型,其中,所述当前振动源的类型包括敲击振动源、行车振动源及人为运动引起的振动源。
从上述描述可知,本发明的实施例实现了将多维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
为更进一步的说明本方案,本发明还提供一种基于时频变换特性的振动源识别方法的具体应用例。该识别述方法的具体应用例具体包括如下内容:
图7是本具体应用例的总体流程。识别的对象包括:过车信号、镐刨信号、挖地信号。
如图7所示的实施例的基于时频变换特征MLFNN网络识别算法包括:
S101:振动信号求自相关系数,自相关是以信号能量高的部分作为自相关模板;
S102:把自相关系数进行小波分解并求指定层小波的能量占比;
S103:把能量占比作为一个优化的MLFNN的输入进行训练。
根据本发明的一个实施例的振动信号自相关系数计算过车如图8所示,其包括:
S201:对振动信号X(长度512ms)进行3-64Hz带通滤波得到X1
S202:把滤波后的信号分成三段:
求出各段能量:
S203:把原始信号中与最大能量对应的位置作为自相关的模板。
其中M为模板;
S204:根据自相关函数的计算公式求出振动信号的自相关函数波形图,自相关函数公式:
根据本发明的一个实施例的对自相关函数波形进行小波分解的过程如图9所示,其包括:
S301:对自相关函数波形进行5层小波分解,产生6个波段:ca5、cd5、cd4、cd3、cd2、cd1,因为ca5含直流量,所以以下的运算都不包含ca5
S302:求出各层的能量:
Pi=∑cdi 2 (5)
S303:计算能量占比:
形成一个5维的特征向量:[η12345];其中,各原始振动信号仿真结果图如图10至12所示,各信号自相关系数仿真结果图如图13至15所示,能量占比的柱状图如图16。
把得到的特征输入到三层的MLFNN网络中,对振动信号进行识别。该网络中间层节点个数为3,迭代1000次,同时该网络在经典的MLFNN网络中使用优化算法,误差目标函数为:
增加连接权和阈值平方和这一项后,训练过程会偏好比较小的连接权和阈值,使网络输出更加“光滑”,从而对过拟合有所缓解。
本发明人针对上述基于时频变换特征的MLFNN网络识别方法,对实测过车信号、镐刨信号、小跑信号进行分类仿真,识别错误率为0.04。可见通过此方法可以有效的识别出过车、镐刨和小跑信号。
与现有识别方法相比,本发明的优点包括:
(1)本发明的方法能够有效实现光纤入侵识别;
(2)本发明的方法能够通过小波分解提取不同波段的能量分布;
(3)本发明的方法经过相关运算和小波分解、能量占比等方法提取特征再输入到MLFNN网络中,增大了识别的可行性。
(4)本发明的方法将特征输入MLFNN网络中,并且使用正则化的优化算法,缓解了MLFNN网络的过拟合问题,通过调配结构、参数,使不同光纤入侵信号可分。
本发明的实施例七提供了能够实现识别方法的一种基于时频变换特性的振动源识别系统的一种具体实施方式。参见图17,该识别系统具体包括如下内容:
自相关系数波形获取单元10,用于获取当前振动源在多个报警点的振动信号的自相关系数波形;
能量占比确定单元20,用于根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;
振动源识别单元30,用于将r维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
从上述描述可知,本发明的实施例能够根据时频变换特性准确的识别出振动信号,且识别过程快速且有效,为控制中心提供了可靠地振动源判定基础,使得控制能在能够根据振动源的类型,做出准确且及时的响应。
最后应说明的是:以上各实施例仅用以说明本发明的实施例的技术方案,而非对其限制;尽管参照前述各实施例对本发明的实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明的实施例各实施例技术方案的范围。

Claims (10)

1.一种基于时频变换特性的振动源识别方法,其特征在于,所述方法包括:
步骤1.获取当前振动源在多个报警点的振动信号的自相关系数波形;
步骤2.根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;
步骤3.将多维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
2.根据权利要求1所述的方法,其特征在于,所述步骤1包括:
步骤1-1.在光纤传感系统的各报警点检测到振动源时,接收各报警点发送的振动信号,其中,各报警点的设置位置不同;
步骤1-2.根据所述自相关函数确定各所述振动信号的自相关系数波形。
3.根据权利要求2所述的方法,其特征在于,所述步骤1-2包括:
步骤1-2a.以信号能量高的部分作为自相关模板,简化所述自相关函数;
步骤1-2b.根据简化后的所述自相关函数确定各所述振动信号的自相关系数波形。
4.根据权利要求3所述的方法,其特征在于,所述步骤1-2a中的自相关函数R(k)如式(1)所示:
R ( k ) = Σ m = 0 N - 1 - k [ X ( 1 + m ) w ′ ( m ) ] [ X ( 1 + m + k ) w ′ ( m + k ) ] ( Σ m = 0 N - 1 - k [ X ( 1 + m ) w ′ ( m ) ] 2 + Σ m = 0 N - 1 - k [ X ( 1 + m + k ) w ′ ( m + k ) ] 2 ) / 2 - - - ( 1 )
式(1)中,X为振动信号,w为窗函数,1为信号长度,k为自相关函数的第k位,m为信号序列位置。
5.根据权利要求3所述的方法,其特征在于,所述步骤1-2b中的简化后的所述自相关函数R(k)如式(2)所示:
R ( k ) = Σ m = 0 N 0 - 1 - k [ M ( 1 + m ) ] [ X ( 1 + m + k ) ] ( Σ m = 0 N 0 - 1 - k [ M ( 1 + m ) ] 2 + Σ m = 0 N 0 - 1 - k [ X ( 1 + m + k ) ] 2 ) / 2 - - - ( 2 )
式(2)中,X为振动信号,1为信号长度,k为自相关函数的第k位,m为信号序列位置,M为从振动信号中截取的一段模板,N0为模板长度。
6.根据权利要求1所述的方法,其特征在于,所述步骤2包括:
步骤2-1.根据时频变换特性对所述自相关系数波形进行r层DB3小波分解,得到r+1层波段;
步骤2-2.去除波段层中的最低层;
步骤2-3.计算得到所述波段层中剩余高层波形的能量占比。
7.根据权利要求6所述的方法,其特征在于,所述步骤2-3包括:
步骤2-3a.依次计算得到剩余各高层波形的能量占比Pi
步骤2-3b.根据各高层波形的能量占比Pi计算得到各高层波形的能量在总能量中的占比ηi,得到r维能量占比特征向量[η12...ηr]。
8.根据权利要求1所述的方法,其特征在于,所述步骤3包括:
步骤3-1.将r维能量占比特征向量作为特征输入到MLFNN网络;
步骤3-2.根据误差目标函数对r维能量占比特征向量进行参数训练;
步骤3-3.根据参数训练的结果识别当前振动源的类型,其中,所述当前振动源的类型包括敲击振动源、行车振动源及人为运动引起的振动源。
9.根据权利要求8所述的方法,其特征在于,所述步骤3-2中的所述误差目标函数E如式(3)所示:
E = λ 1 L Σ c = 1 L E c + ( 1 - λ ) Σ j ω j 2 - - - ( 3 )
式(3)中,Ec表示第c个训练样例的误差,ωj表示连接权和阈值,L为批次训练的数据量,λ∈(0,1)。
10.一种基于时频变换特性的振动源识别系统,其特征在于,所述系统包括:
自相关系数波形获取单元,用于获取当前振动源在多个报警点的振动信号的自相关系数波形;
能量占比确定单元,用于根据时频变换特性对所述自相关系数波形进行小波分解并计算分解得到的高层波形的能量占比;
振动源识别单元,用于将r维能量占比特征向量作为特征输入到MLFNN网络进行参数训练,并根据参数训练的结果识别当前振动源的类型。
CN201611161986.6A 2016-12-15 2016-12-15 一种基于时频变换特性的振动源识别方法及系统 Expired - Fee Related CN106644035B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611161986.6A CN106644035B (zh) 2016-12-15 2016-12-15 一种基于时频变换特性的振动源识别方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611161986.6A CN106644035B (zh) 2016-12-15 2016-12-15 一种基于时频变换特性的振动源识别方法及系统

Publications (2)

Publication Number Publication Date
CN106644035A true CN106644035A (zh) 2017-05-10
CN106644035B CN106644035B (zh) 2019-07-30

Family

ID=58822452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611161986.6A Expired - Fee Related CN106644035B (zh) 2016-12-15 2016-12-15 一种基于时频变换特性的振动源识别方法及系统

Country Status (1)

Country Link
CN (1) CN106644035B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324644A (zh) * 2018-09-29 2019-02-12 联想(北京)有限公司 一种控制振动源振动的方法及装置
CN109612568A (zh) * 2018-11-22 2019-04-12 北京航天易联科技发展有限公司 一种振源移动干扰源识别方法
CN109682457A (zh) * 2019-01-23 2019-04-26 江苏光为传感设备有限公司 基于角度检测的光纤事件识别方法
WO2020118130A1 (en) * 2018-12-07 2020-06-11 Itt Manufacturing Enterprises Llc Embedded system for vibration detection and analysis

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098585A (ja) * 2000-09-25 2002-04-05 Takasago Thermal Eng Co Ltd 回転機器の異常検出方法及びその装置
CN102045120A (zh) * 2010-10-29 2011-05-04 成都九洲电子信息系统有限责任公司 光纤周界系统的振动信号识别方法
CN102563360A (zh) * 2012-01-16 2012-07-11 北方工业大学 基于序贯概率比检测的管道安全预警系统的振动事件检测方法
CN103217213A (zh) * 2013-02-21 2013-07-24 北京工业大学 基于响应信号时频联合分布特征的模态参数辨识方法
CN103902844A (zh) * 2014-04-24 2014-07-02 国家电网公司 基于eemd峰度阈值的变压器振动信号降噪方法
CN103994816A (zh) * 2014-05-19 2014-08-20 北方工业大学 一种基于光纤多发事件的识别方法
CN104198183A (zh) * 2014-09-17 2014-12-10 重庆大学 风电机组传动链振动噪声抑制及其早期故障特征提取方法
CN104266894A (zh) * 2014-09-05 2015-01-07 中国矿业大学 一种基于相关性分析的矿山微震信号初至波时刻提取方法
CN104964736A (zh) * 2015-07-15 2015-10-07 北方工业大学 基于时频特性em分类的光纤入侵振源识别方法
CN105067101A (zh) * 2015-08-05 2015-11-18 北方工业大学 振源识别的基于振动信号的基音频率特征的提取方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098585A (ja) * 2000-09-25 2002-04-05 Takasago Thermal Eng Co Ltd 回転機器の異常検出方法及びその装置
CN102045120A (zh) * 2010-10-29 2011-05-04 成都九洲电子信息系统有限责任公司 光纤周界系统的振动信号识别方法
CN102563360A (zh) * 2012-01-16 2012-07-11 北方工业大学 基于序贯概率比检测的管道安全预警系统的振动事件检测方法
CN103217213A (zh) * 2013-02-21 2013-07-24 北京工业大学 基于响应信号时频联合分布特征的模态参数辨识方法
CN103902844A (zh) * 2014-04-24 2014-07-02 国家电网公司 基于eemd峰度阈值的变压器振动信号降噪方法
CN103994816A (zh) * 2014-05-19 2014-08-20 北方工业大学 一种基于光纤多发事件的识别方法
CN104266894A (zh) * 2014-09-05 2015-01-07 中国矿业大学 一种基于相关性分析的矿山微震信号初至波时刻提取方法
CN104198183A (zh) * 2014-09-17 2014-12-10 重庆大学 风电机组传动链振动噪声抑制及其早期故障特征提取方法
CN104964736A (zh) * 2015-07-15 2015-10-07 北方工业大学 基于时频特性em分类的光纤入侵振源识别方法
CN105067101A (zh) * 2015-08-05 2015-11-18 北方工业大学 振源识别的基于振动信号的基音频率特征的提取方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109324644A (zh) * 2018-09-29 2019-02-12 联想(北京)有限公司 一种控制振动源振动的方法及装置
CN109612568A (zh) * 2018-11-22 2019-04-12 北京航天易联科技发展有限公司 一种振源移动干扰源识别方法
CN109612568B (zh) * 2018-11-22 2021-06-29 北京航天易联科技发展有限公司 一种振源移动干扰源识别方法
WO2020118130A1 (en) * 2018-12-07 2020-06-11 Itt Manufacturing Enterprises Llc Embedded system for vibration detection and analysis
CN113272659A (zh) * 2018-12-07 2021-08-17 Itt制造企业有限责任公司 用于振动检测和分析的嵌入式系统
US11184690B2 (en) 2018-12-07 2021-11-23 Itt Manufacturing Enterprises Llc Embedded system for vibration detection and analysis
CN109682457A (zh) * 2019-01-23 2019-04-26 江苏光为传感设备有限公司 基于角度检测的光纤事件识别方法

Also Published As

Publication number Publication date
CN106644035B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
CN106644035A (zh) 一种基于时频变换特性的振动源识别方法及系统
Kim et al. Automated peak picking using region‐based convolutional neural network for operational modal analysis
CN107992904A (zh) 基于多源信息融合的林业生态环境人机交互方法
CN106897826A (zh) 一种交通事故风险评估方法及系统
CN110533067A (zh) 基于深度学习的边框回归的端到端弱监督目标检测方法
CN111709244A (zh) 一种用于矛盾纠纷事件因果关系识别的深度学习方法
CN106209829A (zh) 一种基于告警策略的网络安全管理系统
CN110879881A (zh) 基于特征组分层和半监督随机森林的鼠标轨迹识别方法
CN103150383A (zh) 一种短文本数据的事件演化分析方法
CN116563645A (zh) 联合迭代剪枝和知识蒸馏的面向目标检测的模型压缩方法
CN104964736B (zh) 基于时频特性最大期望分类的光纤入侵振源识别方法
CN113158835A (zh) 一种基于深度学习的交通事故智能检测方法
CN102298728A (zh) 一种目标威胁程度评估方法
CN112668771A (zh) 一种海底隧道的综合评价选址方法及系统
CN117274010A (zh) 一种用于矿井灾害应急救援的情景应对方法及系统
CN108536825A (zh) 一种识别房源数据是否重复的方法
CN104077524B (zh) 用于病毒鉴定的训练方法和病毒鉴定方法及装置
CN115225373B (zh) 一种信息不完备条件下的网络空间安全态势表达方法及装置
CN110362828A (zh) 网络资讯风险识别方法及系统
CN111652102B (zh) 一种输电通道目标物辨识方法及系统
CN104166981A (zh) 基于多图表达的人体动作学习方法
CN111046785B (zh) 一种基于卷积神经网络的无人机巡检视频关键目标识别的方法
CN117237993B (zh) 作业现场违规行为检测方法、装置、存储介质及电子设备
CN104463212A (zh) 基于阈值和正则化最小二乘的云检测方法和系统
CN110162887A (zh) 基于动态检测数据的高速铁路桥梁徐变上拱数值预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Qu Hongquan

Inventor after: Feng Tingliang

Inventor after: Yuan Shijiao

Inventor after: Sheng Zhiyong

Inventor after: Yang Dan

Inventor before: Qu Hongquan

Inventor before: Yuan Shijiao

Inventor before: Sheng Zhiyong

Inventor before: Yang Dan

Inventor before: Zheng Tong

CB03 Change of inventor or designer information
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190730

CF01 Termination of patent right due to non-payment of annual fee