CN106636653B - A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash - Google Patents

A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash Download PDF

Info

Publication number
CN106636653B
CN106636653B CN201611235415.2A CN201611235415A CN106636653B CN 106636653 B CN106636653 B CN 106636653B CN 201611235415 A CN201611235415 A CN 201611235415A CN 106636653 B CN106636653 B CN 106636653B
Authority
CN
China
Prior art keywords
filtrate
solid
alkaline residue
dedusting ash
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611235415.2A
Other languages
Chinese (zh)
Other versions
CN106636653A (en
Inventor
马守栋
吴兆钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611235415.2A priority Critical patent/CN106636653B/en
Publication of CN106636653A publication Critical patent/CN106636653A/en
Application granted granted Critical
Publication of CN106636653B publication Critical patent/CN106636653B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention discloses the method for comprehensive utilization of a kind of spent acid, alkaline residue and dedusting ash, include the following steps:(1) dedusting ash and waste hydrochloric acid are mixed, at 40~80 DEG C, stirring;(2) alkaline residue is added in step (1) in the liquid of gained, stirs simultaneously control ph, be separated by filtration, obtain the first solid and the first filtrate;(3) precipitating reagent is added in the first filtrate, stirs, be separated by filtration, obtain the second solid (containing zinc, nickel, cobalt powder) and the second filtrate, the second filtrate obtains the 3rd solid through evaporation and concentration.The method of the present invention is by waste water acid-washing waste acid, waste residue alkaline residue and the abundant recycling of waste gas dedusting ash, there is provided the collaboration chloridising roasting that valuable metal therein and polymetallic ore have been recycled after three industrial wastes fully integration processing to chlorinating agent, economic benefit is created solving problem of environmental pollution at the same time.

Description

A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash
Technical field
The invention belongs to resource circulation utilization field, it is related to the method for comprehensive utilization of a kind of spent acid, alkaline residue and dedusting ash.
Background technology
Steel plate is the important raw and processed materials of auto industry, household electrical appliance, Container Transport and Welded tube production industry.Due to putting The surface of steel plate put too long often forms one layer of iron scale, therefore is required for removing this layer through overpickling before cold-rolling of steel plate Iron scale, will so consume substantial amounts of hydrochloric acid, so as to generate substantial amounts of waste hydrochloric acid.In general, cold rolling mill produces The content of free hydrochloric acid is about 10wt% in the spent acid gone out, and the content of free iron is about 20~30wt%, while is also contained A small amount of nickel ion and cobalt ions;By taking a middle-size and small-size cold rolling mill as an example, its daily up to tens of to up to a hundred ton of spent acid amount, and The method of the spent acid of processing cold rolling mill output mainly has neutralisation, roasting method, evaporation and sulfate substitution method etc. at present.
Neutralisation is to be reacted using substantial amounts of lime with hydrochloric acid until reaching and can directly be discharged after discharge standard.This method exists Consume large quantities of lime at the same time, also result in the waste of the hydrochloric acid and frerrous chloride in a large amount of spent acid.Fe2 contained in waste liquid after discharge + be oxidized to Fe3+ after water body is changed into brown, cause soil hardening, seriously affect ecological environment.Therefore, neutralisation is a kind of The method of pollutant transfer, is only applicable to handle a small amount of pickle liquor.
Roasting method is by the hydrochloric acid in high-temperature roasting waste acid recovery, while generation such as iron chloride or ferric oxide particles.Should Method mainly has spray roasting and fluosolids roasting method.Spray roasting is by the way that spent acid is sprayed by the nozzle of roast furnace top Enter in stove, put the direct-fired mode of coal gas in burner, finally spray obtains hydrochloric acid of living again from tail gas, and furnace bottom obtains iron oxide Particle.The calcination temperature of this method is generally at 600-800 DEG C.Fluosolids roasting method is that spent acid is sprayed into the flowing molten iron medium containing oxidation In fluid bed, coal gas lights heating by bottom, finally obtains live again hydrochloric acid and ferric oxide particles.This method advantage is that hydrochloric acid returns Yield is big, concentration is high, and the concentration of hydrochloric acid of recycling is 20% or so;Shortcoming is that investment is high, including is taken up a large area, equipment investment High, operating cost height, civil engineering, complex structural designs, further include the supply of heat source, cooling water.Gained ferric oxide particles are miscellaneous at the same time Quality is big, and purity is not high with causing price.Due to its so high input and energy consumption, it is merely capable of being used in large-scale acid at present Among washing machine group.
Evaporation is to evaporate spent acid under subnormal ambient, and hydrochloric acid and water are evaporated from spent acid, is recycled by cooling Hydrochloric acid.Gained concentrate crystallisation by cooling, finally obtains about 22% or so hydrochloric acid and frerrous chloride crystal after separation of solid and liquid.Should Method advantage is:The investment of civil engineering and equipment is smaller, without very complicated structure.But its production cycle is longer, treating capacity is not Greatly, and gained concentrated mother liquor is needed to return after separation of solid and liquid and distilled, and energy consumption (steam, electricity etc.) is higher, is suitable for steel wire, steel pipe And the less small-sized pickling unit of the spent acid amount such as steel tower.
Sulfate substitution method is based on evaporation, and the concentration of hydrochloric acid obtained by evaporation is relatively low, is added in spent acid Enter sulfuric acid, sulfuric acid and frerrous chloride occur displacement reaction, finally obtain ferrous sulfate and hydrochloric acid.Afterwards by negative pressure evaporation, Separation of solid and liquid obtains the higher hydrochloric acid of concentration and errous sulfate crystal.Concentration of hydrochloric acid obtained by this method is higher, while obtains sulfuric acid It is ferrous.But it is complete reaction between ions, therefore there are hydrochloric acid and sulphur at the same time in gained acid solution since the reaction is displacement reaction Sour ferrous, separating difficulty is larger.Simultaneously because ferrous sulfate is soluble matter, its solubility is 66.67g, and therefore, separation has certain Difficulty, cause gained hydrochloric acid concentration be less than theoretical concentration.If excess sulfuric acid, a certain amount of sulphur can be contained in recovery acid Acid, i.e., usually obtain nitration mixture, severe corrosion equipment.Further, since adding sulfuric acid, cost is caused also accordingly to increase, also can shadow Ring benefit
Large type chemical products based on soda ash, since being born at the end of the 19th century, the just progress tribute to world industry Immense strength is offered.Between 2010~2014 years, China's soda ash production capacity is by 26,400,000 tons of enlargings in the end of the year 2010 by 2014 33000000 tons, average growth rate per annum about 5.2%, becomes the first in the world soda manufacture big country.It is but associated with " whole world eldest child " ring of light Accompany, be alkaline residue discharge capacity first.Although China has been gradually reduced using the proportion of ammonia-soda process soda ash, yield accounting is still near Five to sixty percent or so.According to this ratio, the soda ash that ammonia-soda process produces is 1400~17,000,000 tons or so.In the industry it is believed that 10 cubic metres of waste liquids, wherein solids content (butt) about 3% will be discharged by often producing 1 ton of soda ash.So, it is pure using ammonia-soda process Alkali will produce 450~5,000,000 tons of alkaline residues.Contain a large amount of chlorions in alkaline residue, pH value is higher, the meeting again under the effect of the showers such as rainwater Enter soil, polluted underground water with water.Alkaline residue is since the technique of invention ammonia-soda process alkaline, its caused environmental problem, It is always century problem in global range.At present, the developed country such as America and Europe avoids alkali by way of eliminating ammonia-soda process The pollution that slag is brought.But China is since the limitation of technology and resource, ammonia-soda process can not still be eliminated completely, therefore, to handle number Amount so huge alkaline residue, needs professional equipment that acquisition price is high and puts into high operation and maintenance cost.In face of cost, Each alkali factory to alkaline residue with regard to without any processing, directly by alkaline residue accumulation river bank by the sea, so will certainly land occupation, but also Entail dangers to navigation channel, causes the different degrees of pollution in marine site, river and silts up, or even jeopardizes culture fishery.
Dedusting ash (also known as blast furnace dust, cigarette ash or flue dust) is as blast furnace gas carries out in blast furnace ironmaking process Raw material dust and high-temperature region intense reaction and the particulate that produces through product obtained from dry dust removal, be the by-product of steel and iron industry Product.Its main component is iron oxide and carbon, also there is the non-ferrous metal of recovery value containing a small amount of zinc, lead, indium, potassium, sodium and bismuth etc.. According to statistics, about 20 kilograms of dedusting ash containing zinc 10%~20% will be produced by often producing l tons of iron, by China's Tangshan production steel in 2012 1.7 hundred million tons of calculating, the year quantum of output of Qian'an dedusting ash is estimated at 17,000,000 tons, converts into 680,000~1,360,000 tons of metal Zn content, about Equivalent to the yield of 11,000,000~22,000,000 tons of zinc ores.Meanwhile China is the country of potassium resource famine again, therefore often Year can also recycle 850,000~1,300,000 tons of sylvite and as the raw material of chemical fertilizer.
With China's rapid development of economy, the demand of metal material is constantly expanded, the consumption drastically expanded triggers The serious problems of each side such as resource, the energy and environment, become an important factor for restricting Chinese society and sustainable economic development. Therefore, metal secondary resource is carried out recycling research, develops the high efficient separation technology of secondary resource and recycle skill Art, carries out the recycling to dedusting ash, the resource of preciousness is fully utilized, can also mitigate solid and give up Expect the pollution to environment.If dedusting ash resource is not fully utilized, a large amount of soils can be not only taken, are also necessarily caused to environment Detrimental effect;Secondly, rising steadily with iron ore and metallic zinc price, if recycled not from dedusting ash iron, zinc, The valuable elements such as lead, potassium, sodium are taken in reduce ironmaking cost and increase, certainly will be a kind of huge wastes to dedusting ash.
It can be seen from the above that spent acid, alkaline residue and dedusting ash are all trade wastes, belong to three industrial wastes.If arbitrarily stack without If rationally disposal or recycling, serious pollution will certainly be caused to surrounding environment, while can not recycle a variety of valuable Metal.
The content of the invention
The purpose of the present invention is overcome the deficiencies of the prior art and provide the comprehensive profit of a kind of spent acid, alkaline residue and dedusting ash Use method.
Technical scheme is summarized as follows:
The method of comprehensive utilization of a kind of spent acid, alkaline residue and dedusting ash, includes the following steps:
(1) it is 1g by solid-to-liquid ratio by dedusting ash and waste hydrochloric acid:The ratio mixing of 4~8mL, at 40~80 DEG C, in stirring speed Rate stirs 60~90min for 100-180r/min;
(2) mass fraction for making alkaline residue in the liquid obtained by alkaline residue is added in step (1) is 80%~90%, stirring And control ph is reacted 40~60min, is separated by filtration 7.5~8.5, the first solid (consolidating containing ferroso-ferric oxide and carbon is obtained Body) and the first filtrate;
(3) precipitating reagent is added to make in the first filtrate precipitating reagent mass fraction be 2%~3%, stirring 60~ 80min, is separated by filtration, obtain the second solid (containing zinc, nickel, cobalt powder) and the second filtrate, the second filtrate obtains through being concentrated by evaporation 3rd solid (chloride containing potassium, calcium chloride, mixed chlorinated dose of magnesium chloride and sodium chloride).
The dedusting ash is the dust collected in blast furnace ironmaking process through cleaner, and iron content exists in the dust In the range of 40wt%~60wt% and Zn content is in the range of 1wt%~20wt%.
The waste hydrochloric acid is gained waste hydrochloric acid after steel surface HCl treatment, in the waste hydrochloric acid iron content 100~ In the range of 300g/L, nickel content is in the range of 2~5g/L.
The alkaline residue is the waste residue that ammonia-soda process soda ash produces, in the waste residue calcium carbonate content 40wt%~ In the range of 60wt%, preferably in the range of 45wt%~55wt%.
Preferably:Precipitating reagent is greater than or equal to 90% hydroxide for calcium oxide of the purity more than or equal to 90%, purity One or more in the high calcium powder of calcium and calcium content more than or equal to 8%.
The invention has the advantages that:
(1) present invention makes full use of industrial three kinds of wastes --- the valuable gold such as calcium in dedusting ash, waste hydrochloric acid and alkaline residue Belong to, by trade waste recycling and be converted into high value-added product, iron, nickel, cobalt fully in recycling waste hydrochloric acid etc. Calcium in valuable metal and zinc, potassium, sodium, iron and carbon and alkaline residue in hydrochloric acid, dedusting ash, while economic value is created Resource circulation utilization is carried out to trade waste, it is avoided and environment is polluted, significantly reduce environmental pressure.
(2) present invention is calcium carbonate this feature using the main component of alkaline residue, as the additive of precipitation iron removaling, It can also avoid causing the redissolution of precipitation of iron ions to react due to crossing basicity while avoiding adding other medicaments.
(3) product that the present invention finally obtains is containing zinc, nickel, the powder of cobalt and calcium chloride, magnesium chloride, sodium chloride, chlorine Change potassium mixed chlorinated dose.Potassium chloride can be as the raw material of sylvite in chemical fertilizer, and calcium chloride, magnesium chloride and sodium chloride can With directly as chlorinating agent, coordinate the first solid of gained carry out (containing ferroso-ferric oxide and carbon) polymetallic ore (sulfate slag or Lateritic nickel ore etc.) collaboration chloridising roasting, handling three industrial wastes and recycle valuable metal while also provides for pyrometallurgy Production raw material.
Brief description of the drawings
Fig. 1 is the process flow chart of the method for the present invention.
Embodiment
Embodiment of the present invention is described in detail below in conjunction with drawings and examples.Those skilled in the art will It will be appreciated that following embodiments are merely a preferred embodiment of the present invention, in order to more fully understand the present invention, thus it is not construed as limiting Determine the scope of the present invention.For those skilled in the art, the invention may be variously modified and varied, all in the present invention Spirit and principle within, any modification, equivalent substitution or improvement for being made etc., should be included in protection scope of the present invention it It is interior.
Experimental method in following embodiments, is conventional method unless otherwise specified;Experiment material used, such as nothing Specified otherwise, is to be commercially available from routine biochemistry reagent manufacturer.
Embodiment 1
The method of comprehensive utilization of a kind of spent acid, alkaline residue and dedusting ash, is shown in Fig. 1, includes the following steps:
(1) it is 1g by solid-to-liquid ratio by dedusting ash and waste hydrochloric acid:The ratio mixing of 6mL, at 50 DEG C, is in stir speed (S.S.) 120r/min stirs 70min;
(2) mass fraction for making alkaline residue in the liquid obtained by alkaline residue is added in step (1) is 85%, stirs and controls PH value reacts 50min, is separated by filtration, obtains the first solid (solid containing ferroso-ferric oxide and carbon) and the first filtrate 8;
(3) precipitating reagent is added to make in the first filtrate precipitating reagent mass fraction be 2.5%, stir 70min, filtering point From, obtain the second solid (containing zinc, nickel, cobalt powder) and the second filtrate, the second filtrate be concentrated to give the 3rd solid through multiple-effect evaporation (chloride containing potassium, calcium chloride, mixed chlorinated dose of magnesium chloride and sodium chloride).
Precipitating reagent is equal to 90% calcium oxide for purity.
The utilization rate of iron is 84.25% in final dedusting ash and spent acid, zinc, nickel, the rate of recovery of cobalt be respectively 92.77%, 84.04%th, 71.22%.
Embodiment 2
The method of comprehensive utilization of a kind of spent acid, alkaline residue and dedusting ash, includes the following steps:
(1) it is 1g by solid-to-liquid ratio by dedusting ash and waste hydrochloric acid:The ratio mixing of 4mL, at 80 DEG C, is in stir speed (S.S.) 180r/min stirs 60min;
(2) mass fraction for making alkaline residue in the liquid obtained by alkaline residue is added in step (1) is 80%, stirs and controls PH value reacts 60min, is separated by filtration, obtains the first solid (solid containing ferroso-ferric oxide and carbon) and the first filtrate 7.5;
(3) precipitating reagent is added to make in the first filtrate precipitating reagent mass fraction be 2%, stir 80min, filtering point From, obtain the second solid (containing zinc, nickel, cobalt powder) and the second filtrate, to obtain the 3rd solid (chloride through being concentrated by evaporation for the second filtrate Change potassium, calcium chloride, magnesium chloride and sodium chloride mixed chlorinated dose).
Precipitating reagent is equal to 94% calcium hydroxide for purity.
The utilization rate of iron in final dedusting ash and spent acid, zinc, nickel, the rate of recovery of cobalt are respectively 91.27%, 85.06%, 70.72%.
Embodiment 3
The method of comprehensive utilization of a kind of spent acid, alkaline residue and dedusting ash, includes the following steps:
(1) it is 1g by solid-to-liquid ratio by dedusting ash and waste hydrochloric acid:The ratio mixing of 8mL, at 40 DEG C, is in stir speed (S.S.) 100r/min stirs 90min;
(2) mass fraction for making alkaline residue in the liquid obtained by alkaline residue is added in step (1) is 90%, stirs and controls PH value reacts 40min, is separated by filtration, obtains the first solid (solid containing ferroso-ferric oxide and carbon) and the first filtrate 8.5;
(3) precipitating reagent is added to make in the first filtrate precipitating reagent mass fraction be 3%, stir 60min, filtering point From, obtain the second solid (containing zinc, nickel, cobalt powder) and the second filtrate, to obtain the 3rd solid (chloride through being concentrated by evaporation for the second filtrate Change potassium, calcium chloride, magnesium chloride and sodium chloride mixed chlorinated dose).
Precipitating reagent is that mass ratio is 1:1:The composition of 1 calcium oxide, calcium hydroxide and high calcium powder, wherein:Calcium oxide Purity be equal to 90%;The purity of calcium hydroxide is equal to 94%;Calcium content is equal to 10%. in high calcium powder
The utilization rate 77.89% of iron in final dedusting ash and spent acid, zinc, nickel, the rate of recovery of cobalt be respectively 89.55%, 84.17%th, 69.52%.
Dedusting ash described in embodiment 1-3 is the dust collected in blast furnace ironmaking process through cleaner, specific in the dust Component is shown in Table 1.
Table 1
Element Fe Zn Pb Mg Mn Si
Content (%) 48.62 16.81 1.46 0.97 0.17 3.75
It is demonstrated experimentally that in dust arbitrary value of the iron content in the range of 40wt%~60wt% and Zn content 1wt%~ Arbitrary value in the range of 20wt% may be used to the present invention.
Waste hydrochloric acid described in embodiment 1-3 is gained waste hydrochloric acid after steel surface HCl treatment, iron content in the waste hydrochloric acid 238g/L, nickel content 4.2g/L, cobalt content 0.4g/L.
It is demonstrated experimentally that iron content is in the range of 100~300g/L in waste hydrochloric acid, nickel content appointing in the range of 2~5g/L Meaning value may be used to the present invention.
Alkaline residue described in embodiment 1-3 is the waste residue that ammonia-soda process soda ash produces, its specific component is shown in Table 2:
Table 2
CaCO3 CaO Mg(OH)2 CaCl2 NaCl CaSO4 Fe2O3 Al2O3 SiO2
48.25 3.54 8~20 8~12 4~8 2~6 0.5~1.5 1~3 3~9
It is demonstrated experimentally that in waste residue calcium carbonate content in the range of 40wt%~60wt%, particularly 45wt%~ Arbitrary value in the range of 55wt% may be used to the present invention.
Comparative example 1:
(1) by dedusting ash and waste hydrochloric acid according to solid-to-liquid ratio 1g:The ratio mixing of 2mL, at 50 DEG C, is in stir speed (S.S.) 120r/min stirs 70min;
(2), (3) are the same as embodiment 1 (2), (3).
Precipitating reagent is equal to 90% calcium oxide for purity.
The utilization rate of iron is 65.21% in final dedusting ash and spent acid, zinc, nickel, the rate of recovery of cobalt be respectively 32.54%, 21.88%th, 15.24%.
Comparative example 2:
(1) with 1 step of embodiment (1);
(2) mass fraction for making alkaline residue in the liquid obtained by alkaline residue is added in step (1) is 25%, stirs and controls PH value reacts 50min, is separated by filtration, obtains the first solid (solid containing ferroso-ferric oxide and carbon) and the first filtrate 8;
(3) with 1 step of embodiment (3).
Precipitating reagent is equal to 90% calcium oxide for purity.
The utilization rate of iron is 32.1% in final dedusting ash and spent acid, zinc, nickel, the rate of recovery of cobalt be respectively 28.51%, 18.74%th, 13.52%.
Applicant states that the present invention illustrates the process of the present invention, but not office of the invention by above-described embodiment It is limited to above-mentioned processing step, that is, does not mean that the present invention has to rely on above-mentioned processing step and could implement.Technical field Technical staff it will be clearly understood that any improvement in the present invention, equivalence replacement and auxiliary element to raw material selected by the present invention Addition, selection of concrete mode etc., all fall within protection scope of the present invention and the open scope.

Claims (4)

  1. A kind of 1. method of comprehensive utilization of spent acid, alkaline residue and dedusting ash, it is characterized in that including the following steps:
    (1) it is 1g by solid-to-liquid ratio by dedusting ash and spent acid:The ratio mixing of 4~8mL, 60~90min is stirred at 40~80 DEG C;
    (2) mass fraction for making alkaline residue in the liquid obtained by alkaline residue is added in step (1) is 80%~90%, stirs and controls PH value processed reacts 40~60min, is separated by filtration, obtains the first solid and the first filtrate 7.5~8.5;
    (3) precipitating reagent is added to make in the first filtrate precipitating reagent mass fraction be 2%~3%, stir 60~80min, mistake Filter separation, obtains the second solid and the second filtrate, and the second filtrate obtains the 3rd solid through being concentrated by evaporation;
    The dedusting ash is the dust collected in blast furnace ironmaking process through cleaner;
    The spent acid is gained waste hydrochloric acid after steel surface HCl treatment;
    The alkaline residue is the waste residue that ammonia-soda process soda ash produces, and calcium carbonate content is in 40wt%~60wt% models in the waste residue In enclosing;
    The precipitating reagent is for calcium oxide of the purity more than or equal to 90% and purity in the calcium hydroxide more than or equal to 90% It is one or more of.
  2. 2. according to the method described in claim 1, it is characterized in that iron content is in 40wt%~60wt% scopes in the dust Interior and Zn content is in the range of 1wt%~20wt%.
  3. 3. according to the method described in claim 1, it is characterized in that iron content is in 100~300g/L scopes in the waste hydrochloric acid Interior, nickel content is in the range of 2~5g/L.
  4. 4. according to the method described in claim 1, it is characterized in that calcium carbonate content is in 45wt%~55wt% in the waste residue In the range of.
CN201611235415.2A 2016-12-27 2016-12-27 A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash Expired - Fee Related CN106636653B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611235415.2A CN106636653B (en) 2016-12-27 2016-12-27 A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611235415.2A CN106636653B (en) 2016-12-27 2016-12-27 A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash

Publications (2)

Publication Number Publication Date
CN106636653A CN106636653A (en) 2017-05-10
CN106636653B true CN106636653B (en) 2018-04-20

Family

ID=58831865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611235415.2A Expired - Fee Related CN106636653B (en) 2016-12-27 2016-12-27 A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash

Country Status (1)

Country Link
CN (1) CN106636653B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108690914A (en) * 2017-04-04 2018-10-23 马守栋 A kind of method that acid-washing waste acid, sludge and copper smelting slag symbiosis Environmental-protection recycling utilize
CN107555462B (en) * 2017-08-21 2019-06-28 赵阳臣 A kind of method of calcined soda waste residue comprehensive reutilization
CN108405552B (en) * 2018-02-08 2021-04-06 兰州康顺石化有限责任公司 Chemical acid sludge neutralization treatment method
CN113293314A (en) * 2021-05-31 2021-08-24 湘潭大学 Method for leaching and separating bismuth from blast furnace gas ash or/and mud
CN113247959A (en) * 2021-06-09 2021-08-13 东北大学 Method for preparing functional iron oxide nanoparticles by using machine head ash as raw material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274449A (en) * 2013-06-18 2013-09-04 衡阳师范学院 Method for rapidly removing arsenic in high arsenic zinc oxide through zinc ash and sodium carbonate peroxide in iron and steel plants and producing zinc sulfate
CN104313335A (en) * 2014-09-23 2015-01-28 吉林市弗兰达科技股份有限公司 Wet separation utilization method of ferroalloy manganese dust
CN105624430A (en) * 2016-02-04 2016-06-01 马守栋 Method for extracting nickel and cobalt from nickel laterite ore through caustic sludge and waste pickling liquid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374728B2 (en) * 1997-10-29 2003-02-10 三菱マテリアル株式会社 How to treat incinerated dust

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103274449A (en) * 2013-06-18 2013-09-04 衡阳师范学院 Method for rapidly removing arsenic in high arsenic zinc oxide through zinc ash and sodium carbonate peroxide in iron and steel plants and producing zinc sulfate
CN104313335A (en) * 2014-09-23 2015-01-28 吉林市弗兰达科技股份有限公司 Wet separation utilization method of ferroalloy manganese dust
CN105624430A (en) * 2016-02-04 2016-06-01 马守栋 Method for extracting nickel and cobalt from nickel laterite ore through caustic sludge and waste pickling liquid

Also Published As

Publication number Publication date
CN106636653A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
Binnemans et al. Hydrometallurgical processes for the recovery of metals from steel industry by-products: a critical review
CN106636653B (en) A kind of method of comprehensive utilization of spent acid, alkaline residue and dedusting ash
Zhang et al. The technology of extracting vanadium from stone coal in China: History, current status and future prospects
CN101239740B (en) Method for coproducing vanadium pentoxide from vanadium-containing stone coal ore and fluorite
Li et al. Current status of the technology for utilizing difficult-to-treat dust and sludge produced from the steel industry
CN101550491B (en) Method for extracting nickel or cobalt from nickel ore with chloridizing roasting-leaching method
CN107285371A (en) The method for preparing feed grade zinc oxide using blast furnace dedusting ash and zinc waste residue
CN110331300A (en) A kind of method of Copper making industry waste acid and the comprehensive extraction arsenic of flue dust
CN102134648B (en) Method for comprehensive treatment of industrial waste
CN104911356A (en) Comprehensive recovery technology of solid waste gas ash and zinc-containing ferrovanadium slag
CN101323914A (en) Process for extracting vanadic anhydride by high calcium calcination
CN103924091A (en) Smelting method for removing fluorine and chlorine out of fluorine-and-chlorine-containing inferior zinc oxide and enriching valuable metals
CN101062783B (en) Environment-friendly type technique for vanadium extraction of stone coal
CN105087905B (en) It is a kind of to handle transiens and the method for limonite type lateritic nickel ore using industrial acid-washed spent acid
CN104046781B (en) The Comprehensive utilization method of a kind of industrial acid-washed waste liquid and sulfate slag
CN102286759A (en) Method for preparing electrodeposited zinc from high-fluorine high-chlorine secondary zinc oxide powder
CN102390868B (en) Method for producing manganese sulfate from smelting furnace gas
CN101787439B (en) Method for recovering valuable metals from metallurgical waste
CN102212683A (en) Wet metallurgical method with comprehensive reclamation, basically no three wastes and zero discharge
Long et al. Separation and recovery of arsenic and alkali products during the treatment of antimony smelting residues
Zhang et al. An energy-efficient process of leaching vanadium from roasted tablet of ammonium sulfate, vanadium slag and silica
CN109485133A (en) A method of the dechlorination of waste acid containing chlorine
CN114702048A (en) Lithium slag solid waste recycling process
Nasimifar et al. A review on the extraction of vanadium pentoxide from primary, secondary, and co-product sources
CN107460330B (en) A kind of method that potassium salt system pressure oxidation prepares sodium pyroantimonate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180420

Termination date: 20211227