CN106634923B - The nano silica and oil recovering nano-fluid of surface modification - Google Patents

The nano silica and oil recovering nano-fluid of surface modification Download PDF

Info

Publication number
CN106634923B
CN106634923B CN201610853302.2A CN201610853302A CN106634923B CN 106634923 B CN106634923 B CN 106634923B CN 201610853302 A CN201610853302 A CN 201610853302A CN 106634923 B CN106634923 B CN 106634923B
Authority
CN
China
Prior art keywords
nano
nano silica
surface modification
oil
fatty acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610853302.2A
Other languages
Chinese (zh)
Other versions
CN106634923A (en
Inventor
戴彩丽
李玉阳
王新科
吕文娇
由庆
赵明伟
孙永鹏
吴一宁
赵光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201610853302.2A priority Critical patent/CN106634923B/en
Publication of CN106634923A publication Critical patent/CN106634923A/en
Application granted granted Critical
Publication of CN106634923B publication Critical patent/CN106634923B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Abstract

The invention discloses a kind of nano silica of surface modification and oil recovering nano-fluids.The nano silica of surface modification, preparation method include the following steps: that 1) nano silica is reacted with hydrosulphonyl silane, obtain sulfhydrylation nano silica;2) sulfhydrylation nano silica made from step 1) and monounsaturated fatty acids is taken to carry out click-reaction to get the nano silica of monounsaturated fatty acids surface modification.Oil recovering nano-fluid: being dispersed in water to obtain dispersion liquid for the nano silica of the surface modification, adjust dispersion liquid pH value to 8 ~ 12 to get.The nanometer silicon dioxide particle of monounsaturated fatty acids surface modification of the invention can not add dispersing agent self-dispersing Yu Shuizhong.Nano-fluid preparation process of the invention is simple, dispersion is uniform, stability is good, is easy to extemporaneous preparation and large-scale application, can be improved Oil in Super-low Permeability Reservoirs recovery ratio.

Description

The nano silica and oil recovering nano-fluid of surface modification
Technical field
The invention belongs to nano-functional materials and oil field chemical technical field, and in particular to a kind of nanometer of surface modification Silica and oil recovering nano-fluid, the nano-fluid can be improved Oil in Super-low Permeability oil deposil erude petroleum recovery ratio.
Background technique
Petroleum has irreplaceable role as a kind of high efficient energy sources in national economy.With Chinese national economy It increases rapidly, oil demand is continuously improved.With going deep into for oil-gas exploration and development, the ratio of Low Permeability Oil/gas resources exploration Again will be increasing, the reserves for especially newly verifying extra-low-permeability reservoir in recent years are especially abundant, and such as middle petroleum Changqing oilfields are super Nearly 1,000,000,000 tons of low-permeability oil deposit proved reserves, account for the 70% of Changqing oilfields petroleum proven reserve.But extra-low-permeability reservoir reservoir Micro-nano pore throat is developed, the effective use rate of reserves is improved and faces the challenge.
In recent years, with the increase of the development of nanotechnology and oil-gas field development difficulty, nanotechnology is gradually applied to oil Gas field development field.The nano-fluid displacement of reservoir oil is a kind of emerging oil recovery technique, it is formed in water using aqueous solution as transfer medium Several hundred to tens even several nanometers of little particle has very big specific surface area and surface energy, greatly reduces grease Interfacial tension, so that injection fluid during washing away hole, makes crude oil be easy to peel off into small oil droplet, and driven liquid displacement Out.Nano-fluid drive has the characteristics that using concentration is lower, small investment, quick, oil displacement efficiency is obvious, will become has hair " the improving water drive " of exhibition prospect improves the new technology of oil recovery factor and increasing injection.
Recovery efficiency technique is improved compared to traditional chemical displacement of reservoir oil, modified dispersions of nanoparticles has for oil field development There is good effect of increasing production.2010, the Saudi Arabia tip A Mei company EXPEC research center utilized the fluid for carrying nanometer robot Chemicals is sent into oil reservoir depths and carries out the displacement of reservoir oil, ASP flooding test is as a result, it has been found that the fluid has good stability and mobility. " Energy fuels " the 1st phase " Enhanced Heavy Oil Recovery in Sandstone of volume 28 in 2014 Cores Using TiO2A Nanofluids " text reports a kind of nano titanium oxide dispersion and adopts for heavy oil raising Yield, the results showed that recovery ratio can be increased to 80% from 49% by nano particle, and main function mechanism is wetability conversion, nanometer Oil wet surface is converted to water-wet surface by titanium dioxide, and oil is stripped from wall surface, nano material interaction and adsorption mechanism pair Wetability conversion plays key effect." Langmuir " " Dynamic Spreading of Nanofluids of volume 28 in 2012 On Solids. Part I:Experimental " and " Dynamic Spreading of Nanofluids on Solids Two articles of Part II:Modeling " are reported respectively through laboratory experiment and sunykatuib analysis to dispersions of nanoparticles The research for improving recovery ratio, since there are Brownian movements and interparticle electrostatic repulsion forces for nano particle, when particle size is enough It is small, when quantity is enough, a stronger extension will be generated, and the electrostatic repulsion of the surface of solids exist it is uneven, thus A wedge structure is self-assembly of in three-phase contact zone, the forward thrust that this wedge structure generates, what articulated system generated It reduces capillary pressure, wettability reversal and mutually seeps and change the booster actions such as hysteresis effect, it can be by oil under rock surface removing Come.
Chinese patent CN104531118A reports " a kind of preparation method of intelligent nano oil displacement agent ", by responsive to temperature type Polymer and hydrophilic polymer, hydrophobic polymer are grafted to nanoparticle surface by covalent bond, prepare with temperature The composite nanoparticle of sensitivity characteristic obtains the intelligent nano with temperature response characteristics then with alkali, surfactant compound Oil displacement agent.
At present nanometer technology of reservoir sweep be mainly used for middle and high infiltration reservoir improve recovery ratio, and it is small by Oil in Super-low Permeability Reservoirs pore throat, The limitation of the factors such as nano-fluid dispersion stabilization, there are no the nanometer streams that can be improved Oil in Super-low Permeability Reservoirs recovery ratio in the prior art Body.
Summary of the invention
In order to solve the above-mentioned technical problem, a kind of nano silica of surface modification and containing its oil recovering with receiving Meter Liu Ti, the nano-fluid can be improved Oil in Super-low Permeability oil deposil erude petroleum recovery ratio.
The nano-fluid is made of the nanometer silicon dioxide particle and alkaline aqueous solution of monounsaturated fatty acids surface modification. The nano silica of monounsaturated fatty acids surface modification of the invention is successively repaired by hydrosulphonyl silane and monounsaturated fatty acids It adorns nanometer silicon dioxide particle and is made.Monounsaturated fatty acids modification nanometer silicon dioxide particle is dispersed in water, 50 ~ At 100 DEG C, dispersion liquid pH value is adjusted to 8 ~ 12 with sodium hydroxide or potassium hydroxide solution, it is saturating that well dispersed clarification can be obtained Bright shape nano-fluid.Monounsaturated fatty acids modifies nanometer silicon dioxide particle, and there are Brownian movements and interparticle electrostatic repulsion Power, reduction capillary pressure that articulated system generates, wettability reversal and mutually seeps and changes the booster actions such as hysteresis effect, can will be oily It is stripped down from rock surface, to improve Oil in Super-low Permeability oil recovery.The nano-fluid preparation process is simple, dispersion is uniform, Stability is good, is easy to extemporaneous preparation and large-scale application.
The nano silica of surface modification provided by the invention, preparation method include the following steps:
1) nano silica is reacted with hydrosulphonyl silane, obtains sulfhydrylation nano silica;
2) sulfhydrylation nano silica made from step 1) and monounsaturated fatty acids is taken to carry out click-reaction to get list The nano silica of unsaturated fatty acid surface modification.
Preferably, step 1) is that nano silica is taken to be scattered in organic solvent, addition hydrosulphonyl silane, at 30 ~ 80 DEG C It is stirred to react, it is cooling, it is separated by solid-liquid separation, solid washing is dry, obtains sulfhydrylation nano silica;Wherein, the organic solvent For the one of which or combinations thereof of methanol, ethyl alcohol, toluene or N,N-dimethylformamide.It is highly preferred that being stirred to react the time is 2 ~8 h;Solid is washed 4 ~ 8 times with ethyl alcohol or N,N-dimethylformamide;24 ~ 48 h are dried in vacuo at 30 ~ 80 DEG C.
Preferably, step 2 is that the sulfhydrylation nano silica for taking step 1) to obtain is scattered in organic solvent, is added Catalyst is added in monounsaturated fatty acids, stirring, and ultraviolet lighting reaction is separated by solid-liquid separation after completion of the reaction, and solid washing is dry Obtain the nano silica of monounsaturated fatty acids surface modification;Wherein, the catalyst be styrax, benzoin ethyl ether, Benzoin isopropyl ether, benzoin isobutyl ether, dimethoxybenzoin, diphenylethan, benzophenone, 2,4 dihydroxyl benzophenone, Michler's keton or triethylamine one of which or combinations thereof.Preferably, the mass ratio of monounsaturated fatty acids and catalyst are as follows: 1 ~ 40: 0.01~5;The ultraviolet lighting reaction time is 10 ~ 120 min;Solid is washed 4 ~ 8 times with ethyl alcohol or N,N-dimethylformamide;30~ 24 ~ 48 h are dried in vacuo at 80 DEG C.
Preferably, the partial size of the nano silica is 7 ~ 15 nm, and specific surface area is 150 ~ 400 m2/g。
Preferably, the weight ratio of the nano silica, hydrosulphonyl silane and monounsaturated fatty acids are as follows: 1 ~ 10:1 ~ 40:1 ~ 40(is with this ratio, it is ensured that each nanometer silicon dioxide particle is modified, so that well dispersed single insatiable hunger be made With fatty acid modifying nanometer silicon dioxide particle).
Preferably, the hydrosulphonyl silane chemical formula is X3Si(CH2)nSH, X CH3O、CH3CH2O, Cl or Br, wherein 1≤ N≤30, n are integer;The monounsaturated fatty acids chemical formula is CH3(CH2)aHC=CH(CH2)bCOOH, wherein 1≤a≤50, 1≤b≤50, a and b are integer.
The present invention also provides a kind of oil recovering nano-fluids of nano silica containing above-mentioned surface modification: The nano silica of the surface modification is dispersed in water to obtain dispersion liquid, adjust dispersion liquid pH value to 8 ~ 12 to get.
Preferably, the nano silica of surface modification mass percent shared in dispersion liquid be 0.001 ~ 1%。
Preferably, pH is adjusted with the aqueous solution of alkali.
Preferably, dispersion liquid pH value is adjusted at 50 ~ 100 DEG C to 8 ~ 12.
Present invention has the advantage that:
The nanometer silicon dioxide particle of monounsaturated fatty acids surface modification of the invention can not add dispersing agent self-dispersing Yu Shuizhong.
Nano-fluid preparation process of the invention is simple, dispersion is uniform, stability is good, is easy to extemporaneous preparation and answers on a large scale With.
Nano-fluid of the invention can be improved Oil in Super-low Permeability Reservoirs oil recovery factor.
Detailed description of the invention
Fig. 1 is monounsaturated fatty acids surface finish nano silica dioxide granule preparation process schematic diagram.
Fig. 2 is monounsaturated fatty acids surface finish nano silica dioxide granule grain size distribution in nano-fluid.
Specific embodiment
The present invention will be further explained below with reference to the attached drawings and specific examples, so that those skilled in the art can be with It better understands the present invention and can be practiced, but illustrated embodiment is not as a limitation of the invention.
As shown in Figure 1, the nano silica of monounsaturated fatty acids surface modification of the invention is by hydrosulphonyl silane and list Unsaturated fatty acid is successively modified nanometer silicon dioxide particle and is made.Monounsaturated fatty acids surface modification of the invention is received Rice silica is since the monounsaturated fatty acids on surface can form steric effect and electrostatic repulsion effect, so as to repair surface The nanometer silicon dioxide particle of decorations is well dispersed in the nano-fluid.
The nano silica of surface modification of the invention is prepared via a method which:
(1) by 1 ~ 10 g partial size, 7 ~ 15 nm, 150 ~ 400 m of specific surface area2The nanometer silicon dioxide particle of/g is scattered in In 100 ~ 1000 mL organic solvents, 1 ~ 40 g hydrosulphonyl silane is added, is stirred to react 2 ~ 8 h at 30 ~ 80 DEG C, is cooled to room temperature, from The heart or filtering reaction product wash 24 ~ 48 h of vacuum drying at 4 ~ 8 times, 30 ~ 80 DEG C with ethyl alcohol or n,N-Dimethylformamide, Obtain sulfhydrylation nanometer silicon dioxide particle;The organic solvent is its of methanol, ethyl alcohol, toluene or N,N-dimethylformamide Middle one kind or combinations thereof can be such that nano silica is dispersed in wherein;
(2) it disperses above-mentioned sulfhydrylation nanometer silicon dioxide particle in 100 ~ 1000 mL organic solvents, 1 ~ 40 g is added Monounsaturated fatty acids stirs 5 ~ 30 min, adds 0.01 ~ 5 g catalyst, 10 ~ 120 min, centrifugation are reacted under ultraviolet lighting Or filtering reaction product, 24 ~ 48 h of vacuum drying at 4 ~ 8 times, 30 ~ 80 DEG C are washed with ethyl alcohol or n,N-Dimethylformamide, are obtained Nanometer silicon dioxide particle is modified to monounsaturated fatty acids;
The organic solvent is methanol, ethyl alcohol, toluene or one of which of N,N-dimethylformamide or combinations thereof;It is described Catalyst is styrax, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, dimethoxybenzoin, diphenylethan, two Benzophenone, 2,4 dihydroxyl benzophenone, Michler's keton or one of which of triethylamine or combinations thereof.
Several embodiments are exemplified below so that invention is further explained:
Embodiment 1
By 2 g partial size, 10 nm, 200 m of specific surface area2The nanometer silicon dioxide particle of/g is scattered in 100 mL ethyl alcohol, 2 g (CH are added3CH2O)3SiCH2CH2SH is stirred to react 3 h at 60 DEG C, is cooled to room temperature, is centrifuged or filters reaction product, uses 24 h are dried in vacuo at ethanol washing 4 times, 50 DEG C, obtain sulfhydrylation nanometer silicon dioxide particle.
It disperses above-mentioned sulfhydrylation nanometer silicon dioxide particle in 100 mL ethyl alcohol, 2 g CH is added3(CH2)4HC=CH (CH2)4COOH stirs 30 min, and 0.01 g dimethoxybenzoin is added as catalyst, reacts 20 min under ultraviolet lighting, from The heart or filtering reaction product, are dried in vacuo 24 h at ethanol washing 4 times, 50 DEG C, obtain monounsaturated fatty acids surface modification Nanometer silicon dioxide particle.
Embodiment 2
By 4 g partial size, 7 nm, 300 m of specific surface area2The nanometer silicon dioxide particle of/g is scattered in 200 mL N, N- diformazans In base formamide, 4 g (CH are added3O)3SiCH2CH2SH is stirred to react 3 h at 60 DEG C, is cooled to room temperature, and is centrifuged or filters and is anti- Product is answered, 24 h is dried in vacuo at ethanol washing 4 times, 50 DEG C, obtains sulfhydrylation nanometer silicon dioxide particle.
It disperses above-mentioned sulfhydrylation nanometer silicon dioxide particle in 200 mL n,N-Dimethylformamide, 2 g is added CH3(CH2)10HC=CH(CH2)10COOH stirs 30 min, and 0.01 g diphenylethan is added as catalyst, under ultraviolet lighting 20 min, centrifugation or filtering reaction product are reacted, 24 h is dried in vacuo at ethanol washing 4 times, 50 DEG C, obtains single unsaturated lipid Fat acid modifies nanometer silicon dioxide particle.
Embodiment 3
By 2 g partial size, 10 nm, 250 m of specific surface area2The nanometer silicon dioxide particle of/g is scattered in 200 mL N, N- bis- In methylformamide, 2 g Cl are added3SiCH2CH2SH is stirred to react 3 h at 60 DEG C, is cooled to room temperature, is centrifuged or filters reaction Product is dried in vacuo 24 h at ethanol washing 4 times, 50 DEG C, obtains sulfhydrylation nanometer silicon dioxide particle.
It disperses above-mentioned sulfhydrylation nanometer silicon dioxide particle in 200 mL n,N-Dimethylformamide, 2 g is added CH3(CH2)15HC=CH(CH2)15COOH stirs 20 min, and 0.01 g triethylamine is added as catalyst, reacts under ultraviolet lighting 30 min, centrifugation or filtering reaction product, are dried in vacuo 24 h at ethanol washing 4 times, 50 DEG C, obtain monounsaturated fatty acids Modify nanometer silicon dioxide particle.
Embodiment 4
Monounsaturated fatty acids surface finish nano silica dioxide granule made from 0.01 g embodiment 1 is weighed to be scattered in It in 99.99 g water, is stirred under the conditions of 80 DEG C, dispersion liquid pH value is adjusted to 10, until list is not with 1 mol/L sodium hydroxide solution Saturated fatty acid modification nanometer silicon dioxide particle clear shape is evenly dispersed, and the nano-fluid can be obtained.
Embodiment 5
It weighs the modification nanometer silicon dioxide particle of monounsaturated fatty acids made from 0.1 g embodiment 2 and is scattered in 99.9 g It in water, is stirred under the conditions of 100 DEG C, dispersion liquid pH value is adjusted to 9, until single unsaturated lipid with 1 mol/L potassium hydroxide solution Fat acid modification nanometer silicon dioxide particle clear shape is evenly dispersed, and the nano-fluid can be obtained.
Embodiment 6
It weighs the modification nanometer silicon dioxide particle of monounsaturated fatty acids made from 0.1 g embodiment 3 and is scattered in 99.9 g It in water, is stirred under the conditions of 100 DEG C, dispersion liquid pH value is adjusted to 9, until single unsaturated lipid with 1 mol/L potassium hydroxide solution Fat acid modification nanometer silicon dioxide particle clear shape is evenly dispersed, and the nano-fluid can be obtained.
Embodiment 7
Using nanometer silicon dioxide particle particle diameter distribution in laser particle size analyzer measurement nano-fluid, as shown in Figure 2: real In the nano-fluid for applying example 4 ~ 6,7 ~ 25 nm of nanometer silicon dioxide particle particle size distribution range.
Embodiment 8
Taking a block length is 6 cm, diameter is 2.5 cm Oil in Super-low Permeability natural cores, cleans rock core, is dried in vacuo 24 at 90 DEG C After h, gas permeability is 2.3 mD, saturation simulation oil (viscosity 3 mPas, 25 DEG C), after 24 h of aging, record saturation oil mass, With the speed of 0.1 mL/min with 3% potassium chloride brine displacements rock core until outlet end is not fuel-displaced, record cumulative oil production, meter Calculating primary recovery rate is 35.69%;Nano-fluid made from 0.3 PV embodiment 4 is injected to rock core with the speed of 0.1 mL/min Slug records oil production;It is not fuel-displaced that secondary water is driven to rock core outlet end, records cumulative oil production, calculates secondary waterflood recovery efficiency factor It is 45.78%, nano-fluid improves recovery ratio 10.09%.
Embodiment 9
Taking a block length is 6 cm, diameter is 2.5 cm Oil in Super-low Permeability natural cores, cleans rock core, is dried in vacuo 24 at 90 DEG C After h, gas permeability is 1.9 mD, saturation simulation oil (viscosity 3 mPas, 25 DEG C), after 24 h of aging, record saturation oil mass, With the speed of 0.1 mL/min with 3% potassium chloride brine displacements rock core until outlet end is not fuel-displaced, record cumulative oil production, meter Calculating primary recovery rate is 32.18%;Nano-fluid made from 0.3 PV embodiment 5 is injected to rock core with the speed of 0.1 mL/min Slug records oil production;It is not fuel-displaced that secondary water is driven to rock core outlet end, records cumulative oil production, calculates secondary waterflood recovery efficiency factor It is 45.29%, nano-fluid improves recovery ratio 13.11%.
Embodiment 10
Taking a block length is 6 cm, diameter is 2.5 cm Oil in Super-low Permeability natural cores, cleans rock core, is dried in vacuo 24 at 90 DEG C After h, gas permeability is 2.5 mD, saturation simulation oil (viscosity 3 mPas, 25 DEG C), after 24 h of aging, record saturation oil mass, With the speed of 0.1 mL/min with 3% potassium chloride brine displacements rock core until outlet end is not fuel-displaced, record cumulative oil production, meter Calculating primary recovery rate is 34.26%;Nano-fluid made from 0.3 PV embodiment 6 is injected to rock core with the speed of 0.1 mL/min Slug records oil production;It is not fuel-displaced that secondary water is driven to rock core outlet end, records cumulative oil production, calculates secondary waterflood recovery efficiency factor It is 44.29%, nano-fluid improves recovery ratio 10.03%.
Embodiment 11
Taking 5 block lengths is 6 cm, diameter is the similar Oil in Super-low Permeability natural core of 2.5 cm permeabilities, cleaning rock core, 90 DEG C After 24 h of lower vacuum drying, gas permeability is divided into 3.3 mD, 3.1 mD, 3.4 mD, 2.9 mD and 3.7 mD, saturation simulation oil (viscosity 3 mPas, 25 DEG C), after 24 h of aging, record saturation oil mass;Above-mentioned 5 blocks of rock cores are put into imbibition bottle, are soaked respectively Bubble is concentration is 3wt% potassium chloride salt water, concentration is 0.1wt% neopelex surfactant solution, embodiment 4 In the nano-fluid of nano-fluid, the nano-fluid of embodiment 5 and embodiment 6,5 blocks of rock cores are recorded in different imbibition liquid at any time Between oil drain quantity record final oil drain quantity until oil drain quantity no longer changes, the recovery ratio for calculating separately 5 kinds of imbibition liquid is respectively 13.2%, 18.6%, 30.1%, 30.0% and 29.8%, nano-fluid improves 10% or more compared to surfactant solution.
Embodiment described above is only to absolutely prove preferred embodiment that is of the invention and being lifted, protection model of the invention It encloses without being limited thereto.Those skilled in the art's made equivalent substitute or transformation on the basis of the present invention, in the present invention Protection scope within.Protection scope of the present invention is subject to claims.

Claims (7)

1. a kind of nano silica of surface modification, which is characterized in that preparation method includes the following steps:
1) it takes nano silica to be scattered in organic solvent, hydrosulphonyl silane is added, is stirred to react at 30 ~ 80 DEG C, cooling, solid-liquid Separation, solid washing is dry, obtains sulfhydrylation nano silica;Wherein, the organic solvent be methanol, ethyl alcohol, toluene or One of which of N,N-dimethylformamide or combinations thereof;
2) the sulfhydrylation nano silica for taking step 1) to obtain is scattered in organic solvent, and monounsaturated fatty acids is added, stirs It mixes, catalyst is added, ultraviolet lighting reaction is separated by solid-liquid separation after completion of the reaction, and solid washing is dried to obtain monounsaturated fatty acids The nano silica of surface modification;Wherein, the catalyst is styrax, benzoin ethyl ether, benzoin isopropyl ether, styrax Butyl ether, dimethoxybenzoin, diphenylethan, benzophenone, 2,4 dihydroxyl benzophenone, Michler's keton or triethylamine wherein one Kind or combinations thereof;
The hydrosulphonyl silane chemical formula is X3Si(CH2)nSH, X CH3O、CH3CH2O, Cl or Br, wherein 1≤n≤30, n are whole Number;The monounsaturated fatty acids chemical formula is CH3(CH2)aHC=CH(CH2)bCOOH, wherein 1≤a≤15,1≤b≤15, a It is integer and equal with b.
2. the nano silica of surface modification according to claim 1, which is characterized in that the nano silica Partial size is 7 ~ 15 nm, and specific surface area is 150 ~ 400 m2/g。
3. the nano silica of surface modification according to claim 1, which is characterized in that the nano silica, The weight ratio of hydrosulphonyl silane and monounsaturated fatty acids are as follows: 1 ~ 10:1 ~ 40:1 ~ 40.
4. the oil recovering of nano silica of the one kind containing the described in any item surface modifications of claim 1 ~ 3 is flowed with nanometer Body, which is characterized in that be dispersed in water to obtain dispersion liquid for the nano silica of the surface modification, adjust dispersion liquid pH value To 8 ~ 12 to get.
5. oil recovering nano-fluid according to claim 4, which is characterized in that the nano-silica of the surface modification SiClx mass percent shared in dispersion liquid is 0.001 ~ 1%.
6. oil recovering nano-fluid according to claim 4, which is characterized in that adjust pH with the aqueous solution of alkali.
7. oil recovering nano-fluid according to claim 4, which is characterized in that adjust dispersion liquid at 50 ~ 100 DEG C PH value is to 8 ~ 12.
CN201610853302.2A 2016-09-27 2016-09-27 The nano silica and oil recovering nano-fluid of surface modification Active CN106634923B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610853302.2A CN106634923B (en) 2016-09-27 2016-09-27 The nano silica and oil recovering nano-fluid of surface modification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610853302.2A CN106634923B (en) 2016-09-27 2016-09-27 The nano silica and oil recovering nano-fluid of surface modification

Publications (2)

Publication Number Publication Date
CN106634923A CN106634923A (en) 2017-05-10
CN106634923B true CN106634923B (en) 2019-06-07

Family

ID=58853326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610853302.2A Active CN106634923B (en) 2016-09-27 2016-09-27 The nano silica and oil recovering nano-fluid of surface modification

Country Status (1)

Country Link
CN (1) CN106634923B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108410440B (en) * 2018-03-07 2020-09-15 中国石油大学(华东) Surface modified nano-silica nanofluid for improving recovery ratio
CN112745987B (en) * 2019-10-31 2022-07-08 中国石油化工股份有限公司 Saturated fatty acid crystallization aid and preparation method thereof
CN116023916A (en) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 Nanometer self-adaptive profile control and flooding agent and preparation method thereof
CN113881415B (en) * 2021-11-05 2022-07-26 清华大学 Nanoparticle oil displacement agent and method for improving recovery ratio

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735787A (en) * 2009-12-22 2010-06-16 上海大学 Nano material-based water-based oil field injection agent and preparation method thereof
CN102964881A (en) * 2012-12-07 2013-03-13 北京彤程创展科技有限公司 Amino/mercapto silane modified silica and preparation method thereof
CN103739794A (en) * 2013-12-24 2014-04-23 太原理工大学 Preparation method of hyperbranched polymer-modified nano-silicon dioxide hybrid material
CN103937478A (en) * 2014-04-16 2014-07-23 东北石油大学 Preparation method of nanofluid for improving oil recovery
CN105001846A (en) * 2015-07-01 2015-10-28 中国石油大学(华东) Nano liquid for decompression and augmented injection of tight oil water-flooding and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101735787A (en) * 2009-12-22 2010-06-16 上海大学 Nano material-based water-based oil field injection agent and preparation method thereof
CN102964881A (en) * 2012-12-07 2013-03-13 北京彤程创展科技有限公司 Amino/mercapto silane modified silica and preparation method thereof
CN103739794A (en) * 2013-12-24 2014-04-23 太原理工大学 Preparation method of hyperbranched polymer-modified nano-silicon dioxide hybrid material
CN103937478A (en) * 2014-04-16 2014-07-23 东北石油大学 Preparation method of nanofluid for improving oil recovery
CN105001846A (en) * 2015-07-01 2015-10-28 中国石油大学(华东) Nano liquid for decompression and augmented injection of tight oil water-flooding and preparation method and application thereof

Also Published As

Publication number Publication date
CN106634923A (en) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106634923B (en) The nano silica and oil recovering nano-fluid of surface modification
CN108410440B (en) Surface modified nano-silica nanofluid for improving recovery ratio
CN109456745A (en) A kind of nanometer of wetting agent and its preparation method and application
CN109251741A (en) A kind of magnetic Nano oil displacement agent and preparation method thereof
CN103214631B (en) Temperature-sensitive modified silica nanosphere and preparation method and application thereof
CN106479469B (en) Oil in Super-low Permeability reservoir waterflooding increasing injection nano fluid and preparation method thereof
CN111303355B (en) High-temperature-resistant silicon dioxide Janus colloidal particle plugging agent and preparation method and application thereof
CN109456744A (en) A kind of nanometer wetting agent and its preparation method and application based on nonionic surfactant modification
Liu et al. Utilization of Janus-silica/surfactant nanofluid without ultra-low interfacial tension for improving oil recovery
CN107353886B (en) CO is prevented to fine and close oil reservoir 2Gas channeling nano composite material and preparation method thereof
CN108410442A (en) A kind of low permeability reservoirs control water dewatering nano silica lotion and preparation method thereof
CN111334275B (en) Biosynthetic composite oil displacement agent and application thereof
US11827850B2 (en) Enhanced oil recovery with janus nanoparticles
CN110026093A (en) A kind of PET-SiO2The preparation method of super-hydrophobic film
CN114058353B (en) Janus modified molybdenum disulfide nano-particles, preparation method thereof and oil displacement material
CN104341799A (en) Fluorine-containing acrylic ester polymer-modified nano silicon dioxide scrubbing oil system, and preparation method and application thereof
Wang et al. The influence of fluorochemical-modified graphene oxide on the gas-wetting alteration of reservoir cores
CN109456746A (en) A kind of nanometer wetting agent and its preparation method and application based on cationic surfactant modification
CN107720760B (en) The method for preparing various sizes of nano SiO 2 particle is realized by regulation ammonium hydroxide and esters of silicon acis additive amount
Wang et al. Design of fluorine-modified nanocrystalline cellulose achieving super gas-wetting alteration of reservoir cores
Cao et al. Carbon dots nanofluid: Reducing injection pressure in unconventional reservoir by regulating oil/water/rock interfacial properties
Zhao et al. Novel silicon quantum dots for efficient imbibition oil recovery in low permeability reservoirs
CN113234429A (en) Preparation method and performance evaluation method of desorbent
Zhou et al. Effect of the SiO2 nanoparticle size on application of enhanced oil recovery in medium-permeability formations
CN110194949B (en) Hypotonic oil field pressure-reducing injection-increasing chemical agent and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170510

Assignee: KARAMAY XINKEAO PETROLEUM TECHNOLOGICAL Co.,Ltd.

Assignor: China University of Petroleum (East China)

Contract record no.: X2020370010013

Denomination of invention: Surface-modified nano-silica and nano fluid for crude oil recovery

Granted publication date: 20190607

License type: Exclusive License

Record date: 20200721

EE01 Entry into force of recordation of patent licensing contract