CN106609351A - 一种氮掺杂二氧化钛薄膜的制备方法 - Google Patents

一种氮掺杂二氧化钛薄膜的制备方法 Download PDF

Info

Publication number
CN106609351A
CN106609351A CN201510689003.5A CN201510689003A CN106609351A CN 106609351 A CN106609351 A CN 106609351A CN 201510689003 A CN201510689003 A CN 201510689003A CN 106609351 A CN106609351 A CN 106609351A
Authority
CN
China
Prior art keywords
nitrogen
titanium dioxide
doped titanium
preparation
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510689003.5A
Other languages
English (en)
Inventor
江晓红
刘光辉
庄玉召
德米特里·冰利普左夫
陆路德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510689003.5A priority Critical patent/CN106609351A/zh
Publication of CN106609351A publication Critical patent/CN106609351A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种氮掺杂二氧化钛薄膜的制备方法。在通入少量氮气的情况下,采用磁过滤真空直流阴极弧蒸发工艺在石英基底上沉积了氮掺杂钛薄膜,随后将其置于马弗炉中在大气氛围下退火处理制备了氮掺杂二氧化钛薄膜。该制备方法以金属钛为钛源,成本低廉且制备过程简单易行、可控性强。制得的氮掺杂二氧化钛薄膜表面微观粗糙度较小、结晶度高,具有较高的紫外-可见光吸收能力。

Description

一种氮掺杂二氧化钛薄膜的制备方法
技术领域
本发明属于纳米复合膜材料技术领域,涉及一种在紫外-可见光波段具有高响应的氮掺杂二氧化钛薄膜的制备方法。
背景技术
新型纳米复合膜材料由于其具有特定的结构和功能特性,在当前纳米技术的发展进程中占据着非比寻常的作用。纳米半导体膜材料基于半导体材料优异的光电特性,拥有形状特殊、适应性强、可回收利用率高等优点,在太阳能电池、空气净化、高级涂料、静电屏蔽等领域占据着重要地位。
最具有代表性的半导体膜材料TiO2薄膜,因其无毒、稳定、价格低廉及合适的禁带宽度等优良特性,已经得到众多科学工作者的关注,在自清洁表面、气敏元器件、光催化敏化等方面有着广泛的应用。TiO2主要有三种晶型,即锐钛矿、板钛矿和金红石相。它们的带隙宽度约为3.0-3.2eV。尽管如此,仍只有约4%的太阳能能够被TiO2材料有效利用。目前,已有许多研究工作尝试着改性TiO2材料以期获得更好的光电性能,这些改性方法包括半导体复合、氢化、敏化、掺杂等等。其中,非金属离子N掺杂被认为是改性TiO2材料最有效的方法之一。Sato等人最早报道了通过混合煅烧TiO2和NH4Cl的方法制备了包含N的改性TiO2材料。随后,Asahi等人分别通过在N2、Ar混合气体中溅射TiO2靶材和在NH3、Ar混合气体中煅烧TiO2粉末的方法制备了N掺杂TiO2薄膜和N掺杂TiO2粉末。此外,当前用于制备N掺杂TiO2材料的方法还有很多,包括磁控溅射、离子注入、溶胶-凝胶合成和水热处理等。然而在以往的研究报道中,N掺杂TiO2材料的制备多是以Ti的氧化物或Ti盐为Ti源,以金属Ti为Ti源,采用直流真空阴极弧蒸发沉积工艺制备N掺杂TiO2薄膜的研究却鲜有报道。
发明内容
本发明的目的是提供一种在紫外-可见光波段具有高响应性的氮掺杂二氧化钛薄膜的制备方法。
实现本发明目的的技术解决方案是:一种氮掺杂二氧化钛薄膜的制备方法,包括如下步骤:将预清洁的石英基底置于真空室内的旋转台上,采用高纯金属Ti为阴极弧靶材;关闭真空室腔门,对真空室抽真空;在真空度稳定后,开启N2阀门,控制N2分压调控通入N2的流量;调整旋转台的转速为3r/min,开启阴极弧开关,开始蒸发Ti靶沉积镀膜;镀膜过程结束后,待真空室腔内温度冷却到室温后取出薄膜样品;将薄膜样品进行退火处理即可得到氮掺杂二氧化钛薄膜。
上述步骤中,真空室内的真空度为6×10-3Pa,N2分压为0.01~0.1Pa,直流阴极弧电流为40~100A,-薄膜的沉积时间为1~30min。
上述步骤中,退火处理的升温速率为1~10℃/min,退火温度为600~1000℃,退火时间为1~6h。
上述步骤中,高纯金属Ti的含量大于99.7%。
与现有相比,本发明的优点如下:(1)原料成本低廉、常见易得,产物无毒、稳定便于直接应用。金属Ti是常见的金属材料,容易获取;N2是常用到的保护气体,安全稳定;沉积得到的薄膜和经退火处理后的薄膜对人体和环境无毒无害;(2)制备方法简单,操作过程易行。本发明的实验方法主要是在引入少量N2的情况下,采用真空直流阴极弧蒸发工艺沉积掺杂N的Ti薄膜,再经过退火氧化的处理即可得到氮掺杂的二氧化钛薄膜。整个操作流程可控性强,从镀膜前的准备到薄膜样品制备完成所需的时间短、效率高。(3)薄膜样品经退火处理后即制备完毕,避免了其它合成路线的后处理问题。
附图说明
附图1是本发明的氮掺杂二氧化钛薄膜的制备流程示意图。
附图2是本发明实例1所制备的氮掺杂二氧化钛薄膜的结构表征XRD光谱图。
附图3是本发明实例1所制备的氮掺杂二氧化钛薄膜的结构表征Raman光谱图。
附图4是本发明实例2所制备的氮掺杂二氧化钛薄膜的Ti 2p XPS光谱图。
附图5是本发明实例2所制备的氮掺杂二氧化钛薄膜的O 1s XPS光谱图。
附图6是本发明实例2所制备的氮掺杂二氧化钛薄膜的N 1s XPS光谱图。
附图7是本发明实例3所制备的氮掺杂二氧化钛薄膜的紫外-可见(UV-Vis)光谱图。
附图8是本发明实例4所制备的氮掺杂二氧化钛薄膜的场发射扫描电镜(FE-SEM)图谱(A)薄膜表面;(B)薄膜剖面。
具体实施方式
下面结合附图对本发明作进一步描述。
按附图1所示,本发明的氮掺杂二氧化钛薄膜制备流程如下:
实施实例1:
氮掺杂二氧化钛薄膜样品的制备
第一步:将石英基底(20×20×1mm)分别用丙酮和去离子水各超声清洗15min后置于烘箱中烘干备用;
第二步:将上述石英基底固定在直流阴极弧蒸发沉积设备真空室内的旋转台上,采用高纯金属Ti(99.7%)为阴极弧靶材;
第三步:关闭真空室腔门,对真空室抽真空直至真空度达到并稳定在6×10-3Pa;
第四步:打开通入真空室的N2阀门,调控N2分压为0.01Pa,同时调节旋转台转速为3r/min;
第五步:启动阴极弧Ti靶开关,设置阴极弧电流为50A开始镀膜,控制镀膜时间为5min;
第六步:镀膜结束后,待真空室冷却至室温,取出薄膜样品;
第七步:将上述薄膜样品置于马弗炉中以室温为起始温度,1℃/min的升温速率下,在700℃退火处理4h,然后自然冷却至室温即可得到氮掺杂二氧化钛薄膜样品;
附图2为所制备的氮掺杂二氧化钛薄膜的结构表征XRD谱图。这些分别在2θ为27.4°、36.1°和39.2°位置出现的衍射峰分别对应金红石相TiO2的(110)、(101)和(200)晶面,与标准衍射卡片JCPDS no.21-1276一致,证实了TiO2的存在。附图3为所制备的氮掺杂二氧化钛的结构表征Raman谱图。拉曼位移值分别为144cm-1(B1g),230cm-1(2ndorder),445cm-1(Eg)和610cm-1(A1g)的拉曼振动模与标准的金红石相TiO2相一致,进一步证实了退火后的薄膜为TiO2薄膜。
实施实例2:
氮掺杂二氧化钛薄膜样品的制备
第一步:将石英基底(20×20×1mm)分别用丙酮和去离子水各超声清洗15min后置于烘箱中烘干备用;
第二步:将上述石英基底固定在直流阴极弧蒸发沉积设备真空室内的旋转台上,采用高纯金属Ti(99.7%)为阴极弧靶材;
第三步:关闭真空室腔门,对真空室抽真空直至真空度达到并稳定在6×10-3Pa;
第四步:打开通入真空室的N2阀门,调控N2分压为0.03Pa,同时调节旋转台转速为3r/min;
第五步:启动阴极弧Ti靶开关,设置阴极弧电流为50A开始镀膜,控制镀膜时间为5min;
第六步:镀膜结束后,待真空室冷却至室温,取出薄膜样品;
第七步:将上述薄膜样品置于马弗炉中以室温为起始温度,1℃/min的升温速率下,在700℃退火处理4h,然后自然冷却至室温即可得到氮掺杂二氧化钛薄膜样品;
附图4为所制备的氮掺杂二氧化钛薄膜的Ti 2p XPS谱图,在结合能分别458.1eV和463.9eV位置处的特征峰分别是典型的Ti4+的Ti 2p3/2和Ti 2p1/2化学位移。附图5为所制备的氮掺杂二氧化钛薄膜的O 1s XPS谱图,在结合能529.7eV处的特征峰对应TiO2晶格中的O2-(OL),化学位移值为531.5eV处的特征峰是薄膜表面吸附的OH(OOH)。附图6为所制备的氮掺杂二氧化钛薄膜的N 1s XPS谱图,在结合能为399.8eV的特征峰对应薄膜中掺杂的N元素,其含量约为1.3%。
实施实例3:
氮掺杂二氧化钛薄膜样品的制备
第一步:将石英基底(20×20×1mm)分别用丙酮和去离子水各超声清洗15min后置于烘箱中烘干备用;
第二步:将上述石英基底固定在直流阴极弧蒸发沉积设备真空室内的旋转台上,采用高纯金属Ti(99.7%)为阴极弧靶材;
第三步:关闭真空室腔门,对真空室抽真空直至真空度达到并稳定在6×10-3Pa;
第四步:打开通入真空室的N2阀门,调控N2分压为0.03Pa,同时调节旋转台转速为3r/min;
第五步:启动阴极弧Ti靶开关,设置阴极弧电流为70A开始镀膜,控制镀膜时间为5min;
第六步:镀膜结束后,待真空室冷却至室温,取出薄膜样品;
第七步:将上述薄膜样品置于马弗炉中以室温为起始温度,1℃/min的升温速率下,在700℃退火处理4h,然后自然冷却至室温即可得到氮掺杂二氧化钛薄膜样品;
附图7为所制备的氮掺杂二氧化钛薄膜的紫外-可见吸收光谱,由图可以看出,在紫外光区,薄膜的吸光率接近90%,在可见光区,薄膜的吸收率均在20%上下浮动,具有较高的紫外-可见光响应性。这样的光学特征正是本发明所期望的,这也有利于该材料在紫外屏蔽、太阳能电池、光催化敏化等领域的应用。
实施实例4:
氮掺杂二氧化钛薄膜样品的制备
第一步:将石英基底(20×20×1mm)分别用丙酮和去离子水各超声清洗15min后置于烘箱中烘干备用;
第二步:将上述石英基底固定在直流阴极弧蒸发沉积设备真空室内的旋转台上,采用高纯金属Ti(99.7%)为阴极弧靶材;
第三步:关闭真空室腔门,对真空室抽真空直至真空度达到并稳定在6×10-3Pa;
第四步:打开通入真空室的N2阀门,调控N2分压为0.03Pa,同时调节旋转台转速为3r/min;
第五步:启动阴极弧Ti靶开关,设置阴极弧电流为50A开始镀膜,控制镀膜时间为5min;
第六步:镀膜结束后,待真空室冷却至室温,取出薄膜样品;
第七步:将上述薄膜样品置于马弗炉中以室温为起始温度,1℃/min的升温速率下,在600℃退火处理4h,然后自然冷却至室温即可得到氮掺杂二氧化钛薄膜样品;
附图8为所制备的氮掺杂二氧化钛薄膜的场发射扫描电镜(FE-SEM)图谱(A)薄膜表面;(B)薄膜剖面。由图谱可看出所制备的薄膜样品表面微观粗糙度较小,剖面紧密一致、厚度均匀。薄膜厚度约为800nm,可以广泛应用于工业建筑涂料、功能材料表面涂层、抗紫外吸收薄膜、精细陶瓷表面改性等领域。

Claims (6)

1.一种氮掺杂二氧化钛薄膜的制备方法,其特征在于,包括如下步骤:将预清洁的石英基底置于真空室内的旋转台上,采用高纯金属Ti为阴极弧靶材;关闭真空室腔门,对真空室抽真空;在真空度稳定后,开启N2阀门,控制N2分压调控通入N2的流量;调整旋转台的转速为3r/min,开启阴极弧开关,开始蒸发Ti靶沉积镀膜;镀膜过程结束后,待真空室腔内温度冷却到室温后取出薄膜样品;将薄膜样品进行退火处理即可得到氮掺杂二氧化钛薄膜。
2.如权利要求1所述的氮掺杂二氧化钛薄膜的制备方法,其特征在于,真空室内的真空度为6×10-3Pa,N2分压为0.01~0.1Pa。
3.如权利要求1所述的氮掺杂二氧化钛薄膜的制备方法,其特征在于,直流阴极弧电流为40~100A。
4.如权利要求1所述的氮掺杂二氧化钛薄膜的制备方法,其特征在于,-薄膜的沉积时间为1~30min。
5.如权利要求1所述的氮掺杂二氧化钛薄膜的制备方法,其特征在于,退火处理的升温速率为1~10℃/min,退火温度为600~1000℃,退火时间为1~6h。
6.如权利要求1所述的氮掺杂二氧化钛薄膜的制备方法,其特征在于,高纯金属Ti的含量大于99.7%。
CN201510689003.5A 2015-10-21 2015-10-21 一种氮掺杂二氧化钛薄膜的制备方法 Pending CN106609351A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510689003.5A CN106609351A (zh) 2015-10-21 2015-10-21 一种氮掺杂二氧化钛薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510689003.5A CN106609351A (zh) 2015-10-21 2015-10-21 一种氮掺杂二氧化钛薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN106609351A true CN106609351A (zh) 2017-05-03

Family

ID=58611421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510689003.5A Pending CN106609351A (zh) 2015-10-21 2015-10-21 一种氮掺杂二氧化钛薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106609351A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88100549A (zh) * 1988-02-11 1988-08-03 北京联合大学机械工程学院机电技术开发服务公司 阴极电弧源离子渗金属技术及设备
CN101157021A (zh) * 2007-11-01 2008-04-09 复旦大学 一种可见光活性氮掺杂纳米二氧化钛薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN88100549A (zh) * 1988-02-11 1988-08-03 北京联合大学机械工程学院机电技术开发服务公司 阴极电弧源离子渗金属技术及设备
CN101157021A (zh) * 2007-11-01 2008-04-09 复旦大学 一种可见光活性氮掺杂纳米二氧化钛薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈甥怡: ""氮化钛硬质薄膜抗氧化性能研究"", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Similar Documents

Publication Publication Date Title
Qiu et al. Solution-based synthesis of pyrite films with enhanced photocurrent generation
CN109267010B (zh) 一种钛氧化合物柔性光电腐蚀薄膜及其制备方法
CN102534531A (zh) 一种带隙可调的二氧化钛/氮化钛复合薄膜的制备方法
Chang et al. Optical properties of TiO2 thin films after Ag ion implantation
Zhitomirsky Electrolytic TiO2-RuO2 deposits
CN106609351A (zh) 一种氮掺杂二氧化钛薄膜的制备方法
Akhanda et al. Effect of annealing atmosphere on structural and optical properties of CZTS thin films prepared by spin-coating
Sobczyk-Guzenda et al. Amorphous and crystalline TiO2 coatings synthesized with the RF PECVD technique from metalorganic precursor
Sosnin et al. Investigation of electrical and optical properties of low temperature titanium nitride grown by rf-magnetron sputtering
CN101003894A (zh) 透明ZnO薄膜制备方法及所得产品
Dahnoun et al. High transparent titanium dioxide-anatase thin films deposited by spin coating technique: Effect of annealing temperature
Zhang et al. The deposition of crystallized TiO2 coatings by closed field unbalanced magnetron sputter ion plating
Peng et al. Influence of annealing temperature on the properties of TiO2 films annealed by ex situ and in situ TEM
Desiati et al. Microstructural and mechanical characteristic of ceramic composite coating developed by electrophoretic deposition
Wang et al. Fabrication of TiO2 films on glass substrates by a pulsed dc reactive magnetron sputtering
Teodorescu-Soare et al. Investigations on Crystallinity and Surface Oxidation States of Nb: TiO2 DC-Sputtered Films
Albin et al. Nucleation and growth characteristics of spray-pyrolyzed CdS thin films
Zhang et al. Antibacterial properties of nanometer Fe3+-TiO2 thin films
Adam et al. A Study on Low Cost-Highly Transparent and Conductive Molybdenum Doped Zinc Oxide Thin Films Deposited by Spray Pyrolysis Technique
Khottummee et al. Transparent thin film of zinc zirconate deposited by DC magnetron sputtering technique
Irtegov et al. Properties of WS2 films prepared by magnetron sputtering from a nanostructured target
Liu et al. The investigation of band gap and N chemical bond structure of N–TiO2 film prepared by N ion beam implantation
CN104810249B (zh) CdTe薄膜上生长CdS薄膜或CdS纳米结构的方法
Li et al. Fabrication of zinc oxide nanostructures by mist chemical vapor deposition
Liu et al. Effects of substrate temperature on properties of transparent conductive Ta-doped TiO2 films deposited by radio-frequency magnetron sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170503