CN106601913A - 一种以纳米硫锡化物为空穴层的太阳能电池 - Google Patents
一种以纳米硫锡化物为空穴层的太阳能电池 Download PDFInfo
- Publication number
- CN106601913A CN106601913A CN201510670695.9A CN201510670695A CN106601913A CN 106601913 A CN106601913 A CN 106601913A CN 201510670695 A CN201510670695 A CN 201510670695A CN 106601913 A CN106601913 A CN 106601913A
- Authority
- CN
- China
- Prior art keywords
- nano
- layer
- hole transmission
- transmission layer
- stannous sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Hybrid Cells (AREA)
Abstract
本发明公开一种以纳米硫锡化物为空穴传输层的太阳能电池。该电池包括透明导电阳极衬底和依次层叠于该衬底上的纳米硫锡化物空穴传输层、光活性层、电子传输层和阴极层。本发明的特点是采用的硫锡化物为纳米结构。采用纳米硫锡化物作为空穴传输层的优点是可提高太阳能电池的光电转换效率。
Description
技术领域
本发明涉及一种太阳能电池,具体涉及一种以纳米硫锡化物为空穴传输层的太阳能电池。
背景技术
当前,对可再生能源有效利用的关键技术是实现高效能源转换材料的开发。硫锡化物纳米材料,作为典型的IV-VI族半导体材料,具有显著的光-电活性,在有效利用并转换太阳能方面有着广泛的应用前景。其中,SnS的光吸收系数大于104 cm-1,其理论能量转换效率可达到25%;光学直接和间接带隙宽度分别为1.3 ~1.5 eV和1.0~1.1 eV,接近太阳能电池的最佳禁带宽度1.5 eV。此外,硫锡化物的主要组成元素Sn和S在自然界中含量丰富,且相对无毒,是一类高效、廉价、环保型的太阳能转换材料。
近年来,硫锡化物在太阳能电池中的应用已经成为一项热点研究。2010年,Stavrinadis等曾将SnS纳米晶引用在ITO/SnS/PbS/Al的叠层器件中,发现其开路电压远远高于对比的肖特基ITO/PbS/Al器件。Wang等将SnS/SnO棒状纳米材料应用在光伏电池中,发现电池的转换效率与SnS:MDMO-PPV 电池器件相比,提高了一个数量级。但是目前为止,将硫锡化物混合在光活化层中,只能少量提升太阳能电池的光电转换效率。此外,单纯将硫锡化物纳米结构作为空穴层应用在太阳能电池中的报道还很少。
发明内容
本发明的目的是提供一种以纳米硫锡化物作为空穴传输层的太阳能电池,提高现有太阳能电池的光电转换效率。
本发明的设计方案在于该太阳能电池的光活性层与阳极之间的空穴传输层为纳米硫锡化物。该太阳能电池包括透明导电阳极衬底和依次层叠于该衬底上的纳米硫锡化物空穴传输层、光活性层、电子传输层和阴极层。
所述的纳米硫锡化物空穴层的纳米材料种类为二硫化锡、硫化亚锡、硫化亚锡与二硫化锡纳米复合材料(硫化亚锡的质量分数为5%至95%)、氧掺杂的硫化亚锡(氧的质量含量为0.01% 至5%)、氧掺杂的二硫化锡(氧的质量含量为0.01% 至5%)、氧掺杂的硫化亚锡与二硫化锡纳米复合材料(氧的质量含量为0.01% 至5%,硫化亚锡的质量分数为5%至95%)。
所述的纳米硫锡化物的结构包括量子点、纳米颗粒、纳米蠕虫、纳米线、纳米带、纳米片。
所述的纳米硫锡化物空穴传输层(2)的厚度为5 nm至200 nm。
本发明的优点在于:纳米硫锡化物作为空穴传输层可以提高空穴传输效率,能显著提高太阳能电池的光电转换效率。
附图说明
图1为本发明的以纳米硫锡化物作为空穴层的太阳能电池结构示意图。1——透明导电阳极衬底,2——纳米硫锡化物空穴传输层、3——光活性层、4——电子传输层、5——阴极层。
图2为实施例2中以硫化亚锡纳米蠕虫材料作为空穴传输层的器件与不使用空穴传输层的器件之间的光电转化效率对比图。
具体实施方式
以下通过具体实施例说明本发明,但本发明并不仅仅现定于这些实施例。
实施例
1
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为10 nm的硫化亚锡量子点空穴传输层、光活性层、电子传输层和阴极层。
实施例
2
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为50 nm的硫化亚锡纳米蠕虫空穴传输层、光活性层、电子传输层和阴极层。
实施例
3
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为100 nm的硫化亚锡与二硫化锡复合纳米线空穴传输层、光活性层、电子传输层和阴极层。
实施例
4
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为120 nm的氧掺杂(质量含量为3%)硫化亚锡与二硫化锡复合纳米带空穴传输层、光活性层、电子传输层和阴极层。
实施例
5
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为100 nm的二硫化锡纳米片空穴传输层、光活性层、电子传输层和阴极层。
实施例
6
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为50 nm的氧掺杂(质量含量为0.1%)二硫化锡纳米片空穴传输层、光活性层、电子传输层和阴极层。
实施例
7
太阳能电池结构为:透明导电阳极衬底和依次层叠于该衬底上的厚度为100 nm的氧掺杂(质量含量为2%)二硫化锡纳米颗粒空穴传输层、光活性层、电子传输层和阴极层。
Claims (3)
1.一种以纳米硫锡化物为空穴传输层的太阳能电池,其结构依次为:(1)透明导电阳极衬底、(2)空穴传输层、(3)光活性层、(4)电子传输层、(5)阴极层,其特征在于:
所述的空穴传输层(2)的纳米材料种类是二硫化锡、硫化亚锡、硫化亚锡与二硫化锡复合材料、氧掺杂的硫化亚锡、氧掺杂的二硫化锡、氧掺杂的硫化亚锡与二硫化锡复合材料,其中,硫化亚锡与二硫化锡纳米复合材料中硫化亚锡的质量分数为5%至95%;氧掺杂的硫化亚锡、氧掺杂的二硫化锡、氧掺杂的硫化亚锡与二硫化锡纳米复合材料中,氧的质量含量为0.01% 至5%。
2.权利要求1所述的硫锡化物的纳米结构包括量子点、纳米颗粒、纳米蠕虫、纳米线、纳米带、纳米片。
3.权利要求1所述的空穴传输层(2)的厚度为5 nm至200 nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510670695.9A CN106601913A (zh) | 2015-10-19 | 2015-10-19 | 一种以纳米硫锡化物为空穴层的太阳能电池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510670695.9A CN106601913A (zh) | 2015-10-19 | 2015-10-19 | 一种以纳米硫锡化物为空穴层的太阳能电池 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106601913A true CN106601913A (zh) | 2017-04-26 |
Family
ID=58553505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510670695.9A Pending CN106601913A (zh) | 2015-10-19 | 2015-10-19 | 一种以纳米硫锡化物为空穴层的太阳能电池 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106601913A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013201186A (ja) * | 2012-03-23 | 2013-10-03 | Toyota Central R&D Labs Inc | 太陽電池 |
CN204668323U (zh) * | 2015-06-24 | 2015-09-23 | 湖南师范大学 | 一种硫化亚锡薄膜太阳能电池 |
-
2015
- 2015-10-19 CN CN201510670695.9A patent/CN106601913A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013201186A (ja) * | 2012-03-23 | 2013-10-03 | Toyota Central R&D Labs Inc | 太陽電池 |
CN204668323U (zh) * | 2015-06-24 | 2015-09-23 | 湖南师范大学 | 一种硫化亚锡薄膜太阳能电池 |
Non-Patent Citations (2)
Title |
---|
BY GITTI L等: ""Novel Electrodes from Solution-Processed Layer-Structure Materials"", 《ADVANCED MATERIALS》 * |
XIN GUO等: ""The synthesis of multi-structured SnS nanocrystals toward enhanced performance for photovoltaic devices"", 《NANOSCALE》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sharma et al. | Comparative analysis of photovoltaic technologies for high efficiency solar cell design | |
Kant et al. | Review of next generation photovoltaic solar cell technology and comparative materialistic development | |
Sethi et al. | Use of nanotechnology in solar PV cell | |
CN103050627B (zh) | 一种有机太阳能电池及其制备方法 | |
Iqbal et al. | Materials for photovoltaics: overview, generations, recent advancements and future prospects | |
US11764001B2 (en) | Perovskite solar cell configurations | |
KR20110122399A (ko) | 유기 태양 전지 | |
Daraie et al. | Performance improvement of perovskite heterojunction solar cell using graphene | |
KR20110005444A (ko) | 적층형 태양 전지 | |
Wang et al. | High-performance ZnO nanosheets/nanocrystalline aggregates composite photoanode film in dye-sensitized solar cells | |
Jaiswal et al. | Numerical study of eco-friendly Sn-based Perovskite solar cell with 25.48% efficiency using SCAPS-1D | |
Agnihotri et al. | Recent advances & perspectives in electron transport layer of organic solar cells for efficient solar energy harvesting | |
Zhou et al. | Emerging Frontiers of 2D Transition Metal Dichalcogenides in Photovoltaics Solar Cell | |
KR20130040358A (ko) | 태양전지 | |
KR101333714B1 (ko) | 섬유형 태양전지의 제조방법 및 이에 따라 제조되는 섬유형 태양전지 | |
CN111370580A (zh) | 一种具有空穴传输层的太阳能电池 | |
Afshar et al. | Review on the application of nanostructure materials in solar cells | |
CN206460967U (zh) | 一种碲化镉薄膜太阳能电池 | |
US20140261650A1 (en) | Solar cell | |
CN106601913A (zh) | 一种以纳米硫锡化物为空穴层的太阳能电池 | |
Wang et al. | Composition of Electron Transport Layers in Organic Solar Cells (OSCs). | |
KR101575509B1 (ko) | 태양전지용 전자 수집체 및 이의 제조 방법 | |
KR102377621B1 (ko) | 수분 안정성과 장기 안정성이 향상된 태양전지 | |
KR101419805B1 (ko) | 박막형 태양전지용 후면 전극 및 이를 포함하는 박막형 태양전지 | |
US20240213388A1 (en) | Multi-junction solar cell and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170426 |