CN106601032B - A kind of multipath landform integrality detection method based on lower view sensor - Google Patents

A kind of multipath landform integrality detection method based on lower view sensor Download PDF

Info

Publication number
CN106601032B
CN106601032B CN201610971415.2A CN201610971415A CN106601032B CN 106601032 B CN106601032 B CN 106601032B CN 201610971415 A CN201610971415 A CN 201610971415A CN 106601032 B CN106601032 B CN 106601032B
Authority
CN
China
Prior art keywords
terrain
value
error
dgps
lat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610971415.2A
Other languages
Chinese (zh)
Other versions
CN106601032A (en
Inventor
雷小永
杜玮
戴树岭
赵永嘉
刘卫华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610971415.2A priority Critical patent/CN106601032B/en
Publication of CN106601032A publication Critical patent/CN106601032A/en
Application granted granted Critical
Publication of CN106601032B publication Critical patent/CN106601032B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft
    • G08G5/70Arrangements for monitoring traffic-related situations or conditions
    • G08G5/74Arrangements for monitoring traffic-related situations or conditions for monitoring terrain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于下视传感器的多路径地形完整性检测方法,属于航空电子系统领域,为使飞行员相信合成视景系统能够提供精确的外部景象,要求具有一定的完整性监视与告警能力。本发明公开的方法,实时检测机载地形数据库与下视传感器测量的实际地形数据的一致度,当二者偏差超过设定阈值时,向飞行员发出告警信息。具体包括:机载地形数据库采样算法、传感器测量数据合成地形算法、多路径检测算法和统计学检验算法。所述方法能同时检测地形数据的水平误差与垂直误差,且检测精度不受飞机姿态影响,检测精度高,实时性好,对飞行安全有着重要意义。

The invention discloses a multi-path terrain integrity detection method based on a downward-looking sensor, which belongs to the field of avionics systems. In order to make pilots believe that the synthetic vision system can provide accurate external scenes, certain integrity monitoring and warning capabilities are required. . The method disclosed by the invention detects in real time the degree of consistency between the airborne terrain database and the actual terrain data measured by the downward-looking sensor, and sends a warning message to the pilot when the deviation between the two exceeds a set threshold. Specifically include: airborne terrain database sampling algorithm, sensor measurement data synthetic terrain algorithm, multi-path detection algorithm and statistical testing algorithm. The method can simultaneously detect the horizontal error and the vertical error of the terrain data, and the detection accuracy is not affected by the attitude of the aircraft, the detection accuracy is high, and the real-time performance is good, which is of great significance to flight safety.

Description

一种基于下视传感器的多路径地形完整性检测方法A Multi-path Terrain Integrity Detection Method Based on Downward-Looking Sensor

技术领域technical field

本发明属于航空电子系统领域,具体涉及合成视景系统中,一种基于下视传感器的多路径地形完整性检测方法。The invention belongs to the field of avionics systems, and in particular relates to a multi-path terrain integrity detection method based on a downward-looking sensor in a synthetic vision system.

背景技术Background technique

为了使飞行员相信合成视景系统(SVS)能够提供精确的外部景象,没有危险误导信息,系统要求具有一定的完整性监视与告警能力。如果完整性检测发现机载地形数据库与实际地形不匹配,显示系统便会向飞行员发出告警,提示合成视景不可靠且不能使用,以减少对飞行员提供危害误导性的地形信息。In order for pilots to trust that the Synthetic Vision System (SVS) can provide an accurate external view without dangerous misleading information, the system requires certain integrity monitoring and warning capabilities. If the integrity check finds that the onboard terrain database does not match the actual terrain, the display system will warn the pilot that the synthetic view is unreliable and cannot be used, so as to reduce the risk of misleading terrain information provided to the pilot.

地形完整性检测的目的是实时检测机载地形数据库与下视传感器测量的实际地形数据的一致度,而非机载地形数据库的正确性。其关键技术,一是机载地形数据库采样模型的建立,模型应当最大限度接近雷达测高计测量特性,以保证检测精度,二是如何同时检验垂直误差和水平转移误差,三是减小告警时间,及时向飞行员发出告警信息,保障飞行安全。The purpose of terrain integrity detection is to detect in real time the consistency between the airborne terrain database and the actual terrain data measured by the downward-looking sensor, rather than the correctness of the airborne terrain database. The key technologies are, first, the establishment of the sampling model of the airborne terrain database. The model should be as close as possible to the measurement characteristics of the radar altimeter to ensure the detection accuracy. The second is how to test the vertical error and the horizontal transfer error at the same time. The third is to reduce the alarm time , and send warning information to the pilot in time to ensure flight safety.

发明内容Contents of the invention

本发明的目的在于解决合成视景系统中现有地形完整性检测方法的不足,提出了一种基于下视传感器的多路径地形完整性检测方法。The purpose of the present invention is to solve the deficiency of the existing terrain integrity detection method in the synthetic vision system, and proposes a multi-path terrain integrity detection method based on a downward-looking sensor.

本发明的基于下视传感器的多路径地形完整性检测方法,包括以下几个步骤:The multi-path terrain integrity detection method based on downward-looking sensors of the present invention comprises the following steps:

步骤一:机载地形数据库采样;Step 1: Airborne terrain database sampling;

步骤二:计算合成地形高度;Step 2: Calculate the synthetic terrain height;

步骤三:计算统计检验量;Step 3: Calculate the statistical test quantity;

步骤四:多路径检测;Step 4: multipath detection;

步骤五:假设检验,若机载地形数据库与下视传感器测量的实际地形数据的不一致度超出设定阈值,则向飞行员发出告警信息。Step 5: Hypothesis testing, if the inconsistency between the airborne terrain database and the actual terrain data measured by the down-looking sensor exceeds the set threshold, a warning message will be sent to the pilot.

本发明的优点在于:The advantages of the present invention are:

(1)现有机载地形数据库采样算法中,采样模型大多假设雷达测高计测量的是飞机正下方的铅垂高度,这种限制造成了飞机在俯仰和滚转姿态时的采样误差,且这种误差易出现在飞机起飞和着陆等对地形完整性要求高的情况下。本发明中提出的采样模型,克服了这种限制,无论飞机处于何种姿态,均保持高精度的地形完整性检测;(1) In the existing airborne terrain database sampling algorithms, most of the sampling models assume that the radar altimeter measures the vertical height directly below the aircraft. This limitation causes sampling errors in the pitch and roll attitudes of the aircraft, and This kind of error is easy to appear in the situation where the integrity of the terrain is high, such as the take-off and landing of the aircraft. The sampling model proposed in the present invention overcomes this limitation and maintains high-precision terrain integrity detection no matter what attitude the aircraft is in;

(2)本发明中,在对机载地形数据库采样时,使用了相交检测和双线性差值,在保证采样精度的同时,最大限度提高了效率;(2) In the present invention, when the airborne terrain database is sampled, intersection detection and bilinear difference are used, and the efficiency is maximized while ensuring the sampling accuracy;

(3)现有地形完整性检测大多使用单路径检测,仅能检测地形数据库中垂直误差,特别是当地势平坦时,无法检测到地形数据库中水平转移误差,本发明所使用的多路径检测提供了一种检测地形数据库中水平误差的方法,同时检测垂直误差和水平误差,提高了地形完整性检测能力。(3) Most of the existing terrain integrity detections use single-path detection, which can only detect vertical errors in the terrain database, especially when the terrain is flat, and cannot detect horizontal transfer errors in the terrain database. The multi-path detection used in the present invention provides A method for detecting horizontal errors in terrain database is proposed, which detects vertical errors and horizontal errors simultaneously, and improves the detection ability of terrain integrity.

附图说明Description of drawings

图1是本发明的流程图;Fig. 1 is a flow chart of the present invention;

图2是机载地形数据库采样模型示意图;Fig. 2 is a schematic diagram of the sampling model of the airborne terrain database;

图3是合成地形测量示意图;Fig. 3 is a schematic diagram of synthetic terrain measurement;

图4是合成视景系统地形完整性检测事件树。Fig. 4 is an event tree of terrain integrity detection in synthetic vision system.

具体实施方式Detailed ways

下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.

本发明的基于下视传感器的多路径地形完整性检测方法,通过多路径检测和统计学算法,实时检测机载地形数据库与下视传感器测量的实际地形数据的一致度,当二者偏差超过设定阈值时,向飞行员发出告警信息。The multi-path terrain integrity detection method based on the downward-looking sensor of the present invention detects in real time the degree of consistency between the airborne terrain database and the actual terrain data measured by the downward-looking sensor through multi-path detection and statistical algorithms. When the threshold is set, a warning message is sent to the pilot.

本发明的一种基于下视传感器的多路径地形完整性检测方法,如图1所示,包括以下步骤:A kind of multi-path terrain integrity detection method based on down-looking sensor of the present invention, as shown in Figure 1, comprises the following steps:

步骤一:机载地形数据库采样。Step 1: Airborne terrain database sampling.

如图2所示,在合成视景系统中,以雷达测高计安装位置为原点,在包含雷达测高计波束范围内,沿雷达测高计天线方向发出射线,与地形进行相交检测,取与飞机距离最近点,作为与雷达测高计测量值相比较的采样点,并采用双线性插值方法计算采样点高度值hDEM(latDGPS(ti),lonDGPS(ti)),进而得到地形数据库地形轮廓。As shown in Figure 2, in the synthetic vision system, the installation position of the radar altimeter is taken as the origin, within the range of the radar altimeter beam, the ray is sent along the direction of the radar altimeter antenna, and the intersection detection is performed with the terrain. The closest point to the aircraft is used as a sampling point for comparison with the measured value of the radar altimeter, and the height value h DEM (lat DGPS (t i ), lon DGPS (t i )) of the sampling point is calculated using the bilinear interpolation method, And then get the terrain profile of the terrain database.

其中,沿雷达测高计天线方向发出射线,以及选取距离飞机最近采样点,而非飞机铅垂方向采样点,目的是使采样模型更接近雷达测高计测量特性。计算采样点高度值,除双线性插值算法外,还可选择最邻近插值法和三次卷积插值法,但最邻近插值法精度低,三次卷积插值法计算量过大,为同时满足实时性和精度的要求,本发明选择双线性插值。Among them, the ray is emitted along the direction of the radar altimeter antenna, and the sampling point closest to the aircraft is selected instead of the sampling point in the vertical direction of the aircraft, in order to make the sampling model closer to the measurement characteristics of the radar altimeter. To calculate the height value of sampling points, in addition to the bilinear interpolation algorithm, the nearest neighbor interpolation method and the cubic convolution interpolation method can also be selected, but the accuracy of the nearest neighbor interpolation method is low, and the calculation amount of the cubic convolution interpolation method is too large. In order to meet the requirements of performance and precision, the present invention chooses bilinear interpolation.

步骤二:计算合成地形高度。Step 2: Calculate the synthetic terrain height.

如图3所示,合成地形轮廓是海平面以上的地面高度:As shown in Figure 3, the synthetic terrain profile is the ground height above sea level:

hsynth(ti)=hDGPS(ti)-(hradalt(ti)+hantenna)h synth (t i )=h DGPS (t i )-(h radicalt (t i )+h antenna )

其中,hDGPS是有DGPS提供的飞机在海平面以上的高度值;hantenna是GPS天线顶端与雷达测高计天线低端的高度差;hradalt是雷达测高计的测量值。Among them, h DGPS is the altitude value of the aircraft above sea level provided by DGPS; h antenna is the height difference between the top of the GPS antenna and the low end of the radar altimeter antenna; h radalt is the measured value of the radar altimeter.

步骤三:计算统计检验量。Step 3: Calculate the statistical test quantity.

(1)将雷达测高计测量合成地形轮廓与地形数据库采样地形轮廓的绝对误差p(ti)定义为:(1) The absolute error p(t i ) between the synthetic terrain profile measured by the radar altimeter and the sampled terrain profile of the terrain database is defined as:

p(ti)=hSYNT(ti)-hDEM(latDGPS,lonDGPS)p(t i )=h SYNT (t i )-h DEM (lat DGPS ,lon DGPS )

其中,hDEM(latDGPS,lonDGPS)是地形数据库中地形高度,hSYNT(ti)是地形的合成高度。Among them, h DEM (lat DGPS , lon DGPS ) is the height of the terrain in the terrain database, and h SYNT (t i ) is the synthetic height of the terrain.

(2)对绝对误差p(ti)进行卡尔曼滤波,减小传感器和数字高程模型(DigitalElevation Model,简称DEM)数据中的额定噪声并估算传感器和DEM的偏差,具体步骤如下:(2) Carry out Kalman filtering on the absolute error p(t i ), reduce the rated noise in the sensor and Digital Elevation Model (DEM) data and estimate the deviation between the sensor and DEM, the specific steps are as follows:

1)初始化预测值和误差方差 1) Initialize the predicted value and error variance

其中,按照假定系统模型为0,的取值范围为((15)2,(20)2);in, According to the assumption that the system model is 0, The value range of is ((15) 2 ,(20) 2 );

计算卡尔曼滤波器增益:Compute the Kalman filter gain:

其中,Kk是卡尔曼滤波增益,是上一状态的误差方差,Hk是单位域变换矩阵,Rk是误差方差的测量值,为常数;Among them, K k is the Kalman filter gain, is the error variance of the previous state, H k is the unit field transformation matrix, R k is the measured value of the error variance, which is a constant;

2)更新采样值的估计值:2) Update the estimated value of the sampled value:

其中,是tk时刻的估计值,是上一状态估计值,zk是在tk时刻的测量值;in, is the estimated value at time t k , is the estimated value of the last state, z k is the measured value at time t k ;

3)计算估计值的误差方差3) Calculate the error variance of the estimate

其中,Pk是估计值的误差方差;where P k is the error variance of the estimated value;

4)计算预测值4) Calculate the predicted value

其中,是tk+1时刻的预测值,Φk为单位状态转移矩阵,是tk+1时刻的预测误差方差,Qk是系统噪声方差,称为滤波器的调谐参数,为常量;in, is the predicted value at time t k+1 , Φ k is the unit state transition matrix, is the prediction error variance at time t k+1 , Q k is the system noise variance, which is called the tuning parameter of the filter and is a constant;

5)返回2),重复以上过程,至系统运行结束。5) Return to 2) and repeat the above process until the system is running.

(3)定义统计检验量:(3) Define the statistical test volume:

其中,T是统计检验量,P是误差方差的估计值,N是采样点的个数,是经过卡尔曼滤波后的绝对误差。Among them, T is the statistical test quantity, P is the estimated value of the error variance, N is the number of sampling points, is the absolute error after Kalman filtering.

步骤四:多路径检测。Step 4: Multipath detection.

(1)模拟水平DEM转移误差,将飞行路径进行水平偏移,得到多条飞行路径,根据步骤三中方法,计算多路径统计检验量:(1) Simulate the horizontal DEM transfer error, and shift the flight path horizontally to obtain multiple flight paths. According to the method in step 3, calculate the multi-path statistical inspection quantity:

其中,T(m,n)是统计检验量;Among them, T(m,n) is the statistical test quantity;

latDGPS=latDGPS(ti)+lat_offm m∈(1,M);lat DGPS =lat DGPS (t i )+lat_off m m∈(1,M);

lonDGPS=lonDGPS(ti)+lon_offn n∈(1,N)。lon DGPS = lon DGPS (t i ) + lon_off n n∈(1,N).

(2)计算1中统计检验量T,拥有最小T值的偏移路径,被认为是飞机在地形数据库的当前水平位置,被定义为:(2) Calculate the statistical test quantity T in 1, and the offset path with the minimum T value is considered to be the current horizontal position of the aircraft in the terrain database, which is defined as:

其中,min()函数返回估计位置,是统计量T的最小值。Among them, the min() function returns the estimated position, is the minimum value of the statistic T.

定义TV(ti)=Tmin为垂直误差检验量。Tmin是检验量最小值。Define T V (t i ) = T min as the vertical error inspection quantity. T min is the minimum value of the test quantity.

(3)将估计位置定义为为地形数据库估计位置lonDBP和latDBP;真实位置定义为lontrue和lattrue,计算两者之间的水平误差:(3) The estimated position is defined as the estimated position lon DBP and lat DBP for the terrain database; the real position is defined as lon true and lat true , and the horizontal error between the two is calculated:

pH=dist([lonDBP,latDBP],[lontrue,lattrue])p H =dist([lon DBP ,lat DBP ],[lon true ,lat true ])

其中,dist()返回空间中两点的距离;lontrue,lattrue为DGPS的测量位置。Among them, dist() returns the distance between two points in the space; lon true and lat true are the measured positions of DGPS.

(4)计算水平误差统计检验量。(4) Calculate the statistical test quantity of horizontal error.

其中σp为标准偏差。where σp is the standard deviation.

步骤五:进行假设检验,事件树如图4所示。若机载地形数据库与下视传感器测量的实际地形数据的不一致度超出设定阈值,则向飞行员发出告警信息。Step 5: Carry out hypothesis testing, and the event tree is shown in Figure 4. If the inconsistency between the airborne terrain database and the actual terrain data measured by the downward-looking sensor exceeds a set threshold, a warning message will be sent to the pilot.

(1)提出两个相互对立的假设:(1) Put forward two competing hypotheses:

原假设H0:系统工作在额定状态或未发现运行错误;Null hypothesis H 0 : the system works in the rated state or no operating errors are found;

其中,服从均值为0,标准差为σp的正态分布;in, Obey the normal distribution with a mean of 0 and a standard deviation of σp ;

备择假设H1:系统运行发现错误;Alternative hypothesis H 1 : Errors are found during system operation;

其中,服从均值为μB,标准差为σp的正态分布。in, It obeys the normal distribution with mean value μ B and standard deviation σ p .

(2)根据合成视景系统作为辅助、关键要素、战术要素三种不同应用,对遗漏告警概率设定三个安全阈值确定错误告警PFFD,遗漏告警PMD的概率,针对三种应用对安全等级的不同要求,遗漏告警概率分别设定为:小于10-3,10-4~10-7,10-6~10-9,其中(2) According to the three different applications of the synthetic vision system as auxiliary, key elements, and tactical elements, three safety thresholds are set for the probability of missed alarms to determine the probability of false alarms P FFD and missed alarms P MD . According to the requirements of different grades, the probability of missing alarms is respectively set as: less than 10 -3 , 10 -4 ~10 -7 , 10 -6 ~10 -9 , where

PFFD=P(检测到错误|H0)·P(H0)P FFD = P(detected error|H 0 )·P(H 0 )

PMD=P(未检测到错误|H1)·P(H1)P MD =P(no error detected|H 1 )·P(H 1 )

经实际飞行实验,取合适垂直误差检验量和水平误差检验量的检验阈值TVD和THD值,满足PFFD和PMD要求即可。Through the actual flight experiment, the test threshold TVD and T HD values of the appropriate vertical error test amount and horizontal error test amount are taken to meet the requirements of P FFD and P MD .

(3)对垂直误差检验量和水平误差检验量分别进行检验并做出决策,若小于步骤三、步骤四中的垂直检验阈值T和水平检验阈值TH,则接受H0,反之,则拒绝H0(3) Test the vertical error test quantity and the horizontal error test quantity respectively and make a decision. If it is smaller than the vertical test threshold T and horizontal test threshold T H in step 3 and step 4, then accept H 0 , otherwise, reject it H 0 .

(4)当拒绝H0时,合成视景系统向飞行员发出告警信息,当接收H0时,则表示系统运行正常。(4) When H 0 is rejected, the synthetic vision system sends a warning message to the pilot, and when H 0 is received, it means that the system is operating normally.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (2)

1.一种基于下视传感器的多路径地形完整性检测方法,包括以下步骤:1. A multi-path terrain integrity detection method based on downward looking sensor, comprising the following steps: 步骤一:机载地形数据库采样;Step 1: Airborne terrain database sampling; 在合成视景系统中,以雷达测高计安装位置为原点,在雷达测高计波束范围内,沿雷达测高计天线方向发出射线,与地形进行相交检测,取与飞机距离最近点,作为与雷达测高计测量值相比较的采样点,计算采样点高度值hDEM(latDGPS(ti),lonDGPS(ti)),其中,latDGPS(ti)表示ti时刻纬度测量值,lonDGPS(ti)表示ti时刻经度测量值;In the synthetic vision system, the installation position of the radar altimeter is taken as the origin, within the beam range of the radar altimeter, the ray is emitted along the direction of the radar altimeter antenna, and the intersection detection is performed with the terrain, and the closest point to the aircraft is taken as Comparing the sampling point with the radar altimeter measurement value, calculate the sampling point height value h DEM (lat DGPS (t i ), lon DGPS (t i )), where, lat DGPS (t i ) represents the latitude measurement at time t i value, lon DGPS (t i ) represents the longitude measurement value at time t i ; 步骤二:计算合成地形高度;Step 2: Calculate the synthetic terrain height; 合成地形轮廓是海平面以上的地面高度:The synthetic terrain profile is the ground height above sea level: hsynth(ti)=hDGPS(ti)-(hradalt(ti)+hantenna)h synth (t i )=h DGPS (t i )-(h radicalt (t i )+h antenna ) 其中,hDGPS为飞机在海平面以上的高度值;hantenna是GPS天线顶端与雷达测高计天线低端的高度差;hradalt是雷达测高计的测量值;Among them, h DGPS is the height value of the aircraft above sea level; h antenna is the height difference between the top of the GPS antenna and the low end of the radar altimeter antenna; h radalt is the measured value of the radar altimeter; 步骤三:计算垂直统计检验量;Step 3: Calculate the vertical statistical test quantity; (1)获取雷达测高计测量合成地形轮廓与地形数据库采样地形轮廓的绝对误差p(ti):(1) Obtain the absolute error p(t i ) between the synthetic terrain profile measured by the radar altimeter and the sampled terrain profile of the terrain database: p(ti)=hSYNT(ti)-hDEM(latDGPS,lonDGPS)p(t i )=h SYNT (t i )-h DEM (lat DGPS ,lon DGPS ) 其中,hDEM(latDGPS,lonDGPS)是地形数据库中地形高度,hSYNT(ti)是地形的合成高度;Among them, h DEM (lat DGPS , lon DGPS ) is the height of the terrain in the terrain database, and h SYNT (t i ) is the synthetic height of the terrain; (2)对绝对误差p(ti)进行卡尔曼滤波;(2) Kalman filtering is performed on the absolute error p(t i ); (3)获取垂直统计检验量:(3) Obtain the vertical statistical test volume: 其中,T是垂直统计检验量,P是误差方差的估计值,N是采样点的个数,是经过卡尔曼滤波后的绝对误差;Among them, T is the vertical statistical test quantity, P is the estimated value of the error variance, N is the number of sampling points, is the absolute error after Kalman filtering; 步骤四:多路径检测;Step 4: multipath detection; (1)模拟水平DEM转移误差,将飞行路径进行水平偏移,得到多条飞行路径,计算多路径统计检验量:(1) Simulate the horizontal DEM transfer error, shift the flight path horizontally to obtain multiple flight paths, and calculate the multi-path statistical inspection quantity: 其中,T(m,n)是统计检验量;M、N分别表示纬度、经度偏移量最大值;Among them, T(m,n) is the statistical test quantity; M and N represent the maximum value of latitude and longitude offset respectively; latDGPS=latDGPS(ti)+lat_offm m∈(1,M);lat DGPS =lat DGPS (t i )+lat_off m m∈(1,M); lonDGPS=lonDGPS(ti)+lon_offn n∈(1,N);lon DGPS =lon DGPS (t i )+lon_off n n∈(1,N); (2)设最小T值的偏移路径为飞机在地形数据库的当前水平位置:(2) Let the offset path of the minimum T value be the current horizontal position of the aircraft in the terrain database: 其中,min()函数返回估计位置,是统计量T的最小值;Among them, the min() function returns the estimated position, is the minimum value of the statistic T; (3)估计位置的纬度、经度即为地形数据库估计位置的纬度和经度,分别定义为lonDBP和latDBP;真实位置的经度、纬度分别为lontrue和lattrue,计算两者之间的水平误差:(3) The latitude and longitude of the estimated position are the latitude and longitude of the estimated position of the terrain database, which are defined as lon DBP and lat DBP respectively; the longitude and latitude of the real position are respectively lon true and lat true , and the level between the two is calculated error: pH=dist([lonDBP,latDBP],[lontrue,lattrue])p H =dist([lon DBP ,lat DBP ],[lon true ,lat true ]) 其中,dist()返回空间中两点的距离;Among them, dist() returns the distance between two points in the space; (4)计算水平误差统计检验量;(4) Calculate the statistical test quantity of horizontal error; 其中:σp为标准偏差;Among them: σ p is the standard deviation; 步骤五:进行假设检验,若机载地形数据库与下视传感器测量的实际地形数据的不一致度超出设定阈值,则向飞行员发出告警信息;Step 5: Carry out hypothesis testing, if the inconsistency between the airborne terrain database and the actual terrain data measured by the downward-looking sensor exceeds the set threshold, a warning message will be sent to the pilot; (1)提出两个相互对立的假设:(1) Put forward two competing hypotheses: 原假设H0:合成视景系统工作在额定状态或未发现运行错误;Null hypothesis H 0 : the synthetic vision system works in the rated state or no operating errors are found; 其中,服从均值为0,标准差为σp的正态分布;in, Obey the normal distribution with a mean of 0 and a standard deviation of σp ; 备择假设H1:合成视景系统运行发现错误;Alternative Hypothesis H 1 : The Synthetic Vision System found an error during operation; 其中,服从均值为μB,标准差为σp的正态分布;in, Obey the normal distribution with mean value μ B and standard deviation σ p ; (2)确定合成视景系统的错误告警PFFD,遗漏告警PMD的概率:(2) Determine the false alarm P FFD and the probability of missing alarm P MD of the synthetic vision system: PFFD=P(检测到错误|H0)·P(H0)P FFD = P(detected error|H 0 )·P(H 0 ) PMD=P(未检测到错误|H1)·P(H1)P MD =P(no error detected|H 1 )·P(H 1 ) (3)对垂直误差检验量和水平误差检验量分别进行检验并做出决策,若小于步骤三、步骤四中的垂直检验量和水平检验量,则接受H0,反之,则拒绝H0(3) Test the vertical error test quantity and the horizontal error test quantity respectively and make a decision. If it is smaller than the vertical test quantity and horizontal test quantity in step 3 and step 4, then accept H 0 , otherwise, reject H 0 ; (4)当拒绝H0时,合成视景系统向飞行员发出告警信息,当接收H0时,则表示合成视景系统运行正常。(4) When H 0 is rejected, the synthetic vision system sends a warning message to the pilot, and when H 0 is received, it means that the synthetic vision system is operating normally. 2.根据权利要求1所述的一种基于下视传感器的多路径地形完整性检测方法,所述的步骤三中(2)具体为:2. a kind of multi-path terrain integrity detection method based on downward looking sensor according to claim 1, (2) in described step 3 is specifically: 1)初始化预测值和误差方差 按照假定系统模型为0,的取值范围为((15)2,(20)2);1) Initialize the predicted value and error variance According to the assumption that the system model is 0, The value range of is ((15) 2 ,(20) 2 ); 计算卡尔曼滤波器增益:Compute the Kalman filter gain: 其中,Kk是卡尔曼滤波增益,是上一状态的误差方差,Hk是单位域变换矩阵,Rk是误差方差的测量值;where K k is the Kalman filter gain, is the error variance of the previous state, H k is the unit domain transformation matrix, and R k is the measured value of the error variance; 2)更新采样值的估计值:2) Update the estimated value of the sampled value: 其中,是tk时刻的估计值,是上一状态估计值,zk是在tk时刻的测量值;in, is the estimated value at time t k , is the estimated value of the last state, z k is the measured value at time t k ; 3)计算估计值的误差方差3) Calculate the error variance of the estimate 其中,Pk是估计值的误差方差;where P k is the error variance of the estimated value; 4)计算预测值4) Calculate the predicted value 其中,是tk+1时刻的预测值,Φk为单位状态转移矩阵,是tk+1时刻的预测误差方差,Qk是系统噪声方差,称为滤波器的调谐参数;in, is the predicted value at time t k+1 , Φ k is the unit state transition matrix, is the prediction error variance at time t k+1 , Q k is the system noise variance, which is called the tuning parameter of the filter; 5)返回步骤2),直至结束。5) Return to step 2) until the end.
CN201610971415.2A 2016-10-31 2016-10-31 A kind of multipath landform integrality detection method based on lower view sensor Active CN106601032B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610971415.2A CN106601032B (en) 2016-10-31 2016-10-31 A kind of multipath landform integrality detection method based on lower view sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610971415.2A CN106601032B (en) 2016-10-31 2016-10-31 A kind of multipath landform integrality detection method based on lower view sensor

Publications (2)

Publication Number Publication Date
CN106601032A CN106601032A (en) 2017-04-26
CN106601032B true CN106601032B (en) 2018-08-03

Family

ID=58590881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610971415.2A Active CN106601032B (en) 2016-10-31 2016-10-31 A kind of multipath landform integrality detection method based on lower view sensor

Country Status (1)

Country Link
CN (1) CN106601032B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862784A1 (en) * 2020-02-04 2021-08-11 Honeywell International Inc. Methods and systems for monitoring a fault condition of a radar altitude device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108108246B (en) * 2017-12-25 2021-11-02 中国航空工业集团公司洛阳电光设备研究所 Terrain scheduling method for airborne composite view
CN108681616B (en) * 2018-03-28 2022-05-17 中国电子科技集团公司第三十六研究所 Method and device for selecting installation point of antenna outside airplane cabin and intelligent terminal
CN112669671B (en) * 2020-12-28 2022-10-25 北京航空航天大学江西研究院 Mixed reality flight simulation system based on physical interaction
CN115783278B (en) * 2022-11-28 2025-03-21 北京东方瑞丰航空技术有限公司 A pilot operation monitoring method based on "threshold-feature-result" matching

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539417A (en) * 2009-04-23 2009-09-23 中国农业大学 On-board 3D terrain automatic measuring system and method
CN103268632A (en) * 2013-01-07 2013-08-28 河海大学 A method for generating terrain information by airborne lidar scanning
CN103339525A (en) * 2010-12-21 2013-10-02 塔莱斯公司 Method and device for monitoring variations in terrain
CN105093925A (en) * 2015-07-15 2015-11-25 山东理工大学 Measured-landform-feature-based real-time adaptive adjusting method and apparatus for airborne laser radar parameters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7532967B2 (en) * 2002-09-17 2009-05-12 Hitachi Construction Machinery Co., Ltd. Excavation teaching apparatus for construction machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539417A (en) * 2009-04-23 2009-09-23 中国农业大学 On-board 3D terrain automatic measuring system and method
CN103339525A (en) * 2010-12-21 2013-10-02 塔莱斯公司 Method and device for monitoring variations in terrain
CN103268632A (en) * 2013-01-07 2013-08-28 河海大学 A method for generating terrain information by airborne lidar scanning
CN105093925A (en) * 2015-07-15 2015-11-25 山东理工大学 Measured-landform-feature-based real-time adaptive adjusting method and apparatus for airborne laser radar parameters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3862784A1 (en) * 2020-02-04 2021-08-11 Honeywell International Inc. Methods and systems for monitoring a fault condition of a radar altitude device

Also Published As

Publication number Publication date
CN106601032A (en) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106601032B (en) A kind of multipath landform integrality detection method based on lower view sensor
CN107449443B (en) Integrity monitoring of radar altimeter
US10041808B2 (en) Method of sensor data fusion
Jiang et al. A fault-tolerant tightly coupled GNSS/INS/OVS integration vehicle navigation system based on an FDP algorithm
US7859449B1 (en) System and method for a terrain database and/or position validation
CN108061889B (en) AIS and radar angle system deviation correlation method
US10858123B2 (en) Methods and systems for detecting data anomalies
CN110140065A (en) GNSS receiver protection class
CN103884339B (en) A device that configures vehicle navigation parameter values
CN114545454A (en) Fusion navigation system integrity monitoring method for automatic driving
Binjammaz et al. GPS integrity monitoring for an intelligent transport system
US11467290B2 (en) GNSS signal spoofing detection via bearing and/or range sensor observations
CN101520503B (en) Method for detecting fault satellite of satellite navigation system
CN112204346A (en) Method for determining the position of a vehicle
Al Hage et al. High integrity localization with multi-lane camera measurements
Sun et al. Air data fault detection and isolation for small UAS using integrity monitoring framework
Mamchenko et al. Algorithm for sensor data merging using analytical module for priority sensor selection
CN104965209A (en) Method, device and system for calculating actual navigation performance
CN104297557B (en) United navigation autonomous integrity monitoring method applicable to free flight of plurality of aircraft
US10670396B2 (en) Multi-sensor target location registration
US8005614B2 (en) Method for monitoring the integrity of an aircraft position computed on board
CN112106005A (en) Flight control method and device for unmanned aerial vehicle, unmanned aerial vehicle and storage medium
US8514127B2 (en) Method and system of calculation for the evaluation of the precision performance of a satellite navigation system
EP4024088A2 (en) Terrain database assisted gnss spoofing determination using radar observations
CN105467408A (en) Method for auxiliary monitoring of autonomous integrity of universal aviation-satellite navigation airborne terminal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant