CN106595653A - Wearable autonomous navigation system for pedestrian and navigation method thereof - Google Patents
Wearable autonomous navigation system for pedestrian and navigation method thereof Download PDFInfo
- Publication number
- CN106595653A CN106595653A CN201611121949.2A CN201611121949A CN106595653A CN 106595653 A CN106595653 A CN 106595653A CN 201611121949 A CN201611121949 A CN 201611121949A CN 106595653 A CN106595653 A CN 106595653A
- Authority
- CN
- China
- Prior art keywords
- navigation
- information
- sensor
- pedestrian
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
- G01S19/47—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Computer Networks & Wireless Communication (AREA)
- Navigation (AREA)
Abstract
Description
技术领域technical field
本发明属于行人导航技术领域,特别涉及了一种穿戴式行人自主导航系统及其导航方法。The invention belongs to the technical field of pedestrian navigation, and in particular relates to a wearable pedestrian autonomous navigation system and a navigation method thereof.
背景技术Background technique
行人导航定位是导航领域中的一个重要的新兴分支,可实时确定并监测行人的位置与人体的运动状态,从而有效提高军事作战、抢险搜救人员的快速反应能力与任务执行效率,同时该技术也可应用于民用领域以保障行人通行的安全性,具有广阔的军事与民用应用前景。行人导航技术已成为目前导航领域中的研究热点之一。Pedestrian navigation and positioning is an important emerging branch in the field of navigation. It can determine and monitor the position of pedestrians and the movement state of human body in real time, so as to effectively improve the rapid response ability and task execution efficiency of military operations, emergency search and rescue personnel. At the same time, this technology also It can be applied to the civilian field to ensure the safety of pedestrians, and has broad military and civilian application prospects. Pedestrian navigation technology has become one of the research hotspots in the field of navigation.
目前较为常用的行人导航方法主要依赖于卫星导航系统(GNSS)、无线通讯等定位技术,并辅以微惯性传感器以提高行人导航系统的连续性与可靠性,但该种类的行人导航方法主要面临以下关键问题:At present, the commonly used pedestrian navigation methods mainly rely on satellite navigation system (GNSS), wireless communication and other positioning technologies, supplemented by micro-inertial sensors to improve the continuity and reliability of pedestrian navigation systems, but this type of pedestrian navigation methods mainly face The following key questions:
卫星导航系统(GNSS)虽然具有精度相对稳定的实时定位能力,但在信号条件不良的环境中无法保障其定位性能,虽然采用与惯性系统的组合方案可一定程度上提高导航系统的抗干扰能力,但在卫星信号污染严重甚至屏蔽的条件下,系统性能仍无法得到保障。Although the satellite navigation system (GNSS) has a relatively stable real-time positioning capability, its positioning performance cannot be guaranteed in an environment with poor signal conditions. Although the combination scheme with the inertial system can improve the anti-jamming capability of the navigation system to a certain extent, However, under the conditions of severe satellite signal pollution or even shielding, system performance cannot be guaranteed.
惯性导航虽然具有较强的自主性,但微惯性器件的性能相对传统惯性器件仍有一定差距,惯性器件与磁传感器还受到环境温度等不确定因素的影响,使微惯性系统无法完成较长时间的精确导航。Although inertial navigation has strong autonomy, the performance of micro-inertial devices still has a certain gap compared with traditional inertial devices. Inertial devices and magnetic sensors are also affected by uncertain factors such as ambient temperature, making it impossible for micro-inertial systems to complete for a long time. precise navigation.
无线通讯与定位技术可在已知区域内提供导航定位功能,但在作战、抢险救灾等未知环境中,往往由于无法安装有效的无线传感器节点,或无线通讯信号受到障碍物阻隔或干扰,无法实现高精度定位。Wireless communication and positioning technology can provide navigation and positioning functions in known areas, but in unknown environments such as combat, emergency rescue and disaster relief, it is often impossible to install effective wireless sensor nodes, or wireless communication signals are blocked or interfered by obstacles. High precision positioning.
为提高行人导航系统的环境适应能力,目前主要存在2种方法:1)利用人体行走中的步态静止相位进行微惯性系统的零速修正,减小定位误差随时间积累速度。2)利用航位推算(DR)方法通过步频步长以及航向的估计来推算行人的位置速度。上述的2种方法均只能应用于人体的稳态运动中(比如:匀速步行等),无法适用于非平稳运动(多种步态形式夹杂转换等)。In order to improve the environmental adaptability of the pedestrian navigation system, there are currently two main methods: 1) Use the gait stationary phase in human walking to correct the zero-speed of the micro-inertial system to reduce the accumulation speed of positioning errors over time. 2) Use the dead reckoning (DR) method to estimate the pedestrian's position and speed through the estimation of the step frequency step and heading. Both of the above two methods can only be applied to the steady-state motion of the human body (such as: walking at a constant speed, etc.), and cannot be applied to non-stationary motion (multiple gait forms mixed with conversion, etc.).
发明内容Contents of the invention
为了解决上述背景技术提出的技术问题,本发明旨在提供一种穿戴式行人自主导航系统及其导航方法,弥补单个行人导航方法的不足,基于分布式可穿戴的多点信息采集,将惯导方法和其他导航方法进行数据融合滤波,提高行人导航性能。In order to solve the technical problems raised by the above-mentioned background technology, the present invention aims to provide a wearable pedestrian autonomous navigation system and its navigation method, which can make up for the shortcomings of a single pedestrian navigation method. Based on distributed wearable multi-point information collection, the inertial navigation method and other navigation methods for data fusion filtering to improve pedestrian navigation performance.
为了实现上述技术目的,本发明的技术方案为:In order to realize above-mentioned technical purpose, technical scheme of the present invention is:
一种穿戴式行人自主导航系统,包括5个传感器模块和1个综合处理模块,所述传感器模块和综合处理模块设置在行人身上,其中5个传感器模块分别设置在行人的头部、双臂以及双足上,每个传感器模块包括第一微控制器以及分别与之连接的惯性测量单元、磁传感器、气压传感器和第一蓝牙单元,所述惯性测量单元包括三轴加速度计和三轴陀螺仪,所述综合处理模块包括第二微控制器以及分别与之连接的无线通信单元、视觉传感器、卫星接收机、第二蓝牙单元和显示单元,综合处理模块通过卫星接收机获取GNSS信号,综合处理模块通过无线通信单元与远程监控中心进行数据交互,各传感器模块与综合处理模块之间通过第一蓝牙单元和第二蓝牙单元实现数据传输;所述5个传感器模块采集多种导航信息并传送给综合处理模块,综合处理模块将接收到的多种导航信息进行融合,解算出导航结果,将导航结果显示在显示单元上,并上传给远程监控中心。A wearable pedestrian autonomous navigation system, including 5 sensor modules and 1 comprehensive processing module, the sensor module and comprehensive processing module are set on the pedestrian, wherein the 5 sensor modules are respectively set on the pedestrian's head, arms and On the biped, each sensor module includes a first microcontroller and an inertial measurement unit, a magnetic sensor, an air pressure sensor, and a first bluetooth unit respectively connected to it, and the inertial measurement unit includes a three-axis accelerometer and a three-axis gyroscope , the integrated processing module includes a second micro-controller and a wireless communication unit, a visual sensor, a satellite receiver, a second bluetooth unit and a display unit respectively connected thereto, the integrated processing module obtains GNSS signals through the satellite receiver, and comprehensively processes The module performs data interaction with the remote monitoring center through the wireless communication unit, and the data transmission between each sensor module and the comprehensive processing module is realized through the first Bluetooth unit and the second Bluetooth unit; the five sensor modules collect various navigation information and transmit them to The integrated processing module integrates various received navigation information, calculates the navigation result, displays the navigation result on the display unit, and uploads it to the remote monitoring center.
进一步地,所述综合处理模块还包括与第二微控制器相连的温度传感器,根据温度信号对其他传感器进行温度补偿。Further, the comprehensive processing module further includes a temperature sensor connected to the second microcontroller, and performs temperature compensation on other sensors according to the temperature signal.
进一步地,所述传感器模块还包括与第一微控制器相连的视觉传感器。Further, the sensor module further includes a vision sensor connected to the first microcontroller.
进一步地,所述远程监控中心预先存储了导航区域的地图信息。Further, the remote monitoring center pre-stores map information of the navigation area.
基于穿戴式行人自主导航系统的导航方法,包括以下步骤:A navigation method based on a wearable pedestrian autonomous navigation system, comprising the following steps:
(1)利用传感器模块中的惯性测量单元初始化系统的水平姿态角度,惯性测量单元结合磁传感器初始化系统的航向角度;(1) Utilize the inertial measurement unit in the sensor module to initialize the horizontal attitude angle of the system, and the inertial measurement unit combines the heading angle of the magnetic sensor initialization system;
(2)通过卫星接收机获取GNSS信号,若获取的GNSS信号有效,则根据GNSS信号进行初始位置的定位;(2) Obtain GNSS signals through satellite receivers, if the acquired GNSS signals are valid, then perform initial position positioning according to GNSS signals;
(3)若获取的GNSS信号无效,则通过无线通信单元进行无线通信定位,所述无线通信定位包括离线训练阶段和在线定位阶段;离线训练阶段,采集导航区域各个采样点的无线定位参考信息,构造指纹数据库,将指纹数据库上传远程监控中心进行保存;在线定位阶段,通过实际采集的无线信息到指纹数据库去进行查询,寻找到最接近的参考信息,从而进行初始位置的定位;(3) If the GNSS signal obtained is invalid, wireless communication positioning is carried out by the wireless communication unit, and the wireless communication positioning includes an offline training stage and an online positioning stage; the offline training stage collects the wireless positioning reference information of each sampling point in the navigation area, Construct the fingerprint database, upload the fingerprint database to the remote monitoring center for storage; in the online positioning stage, query the fingerprint database through the actually collected wireless information, find the closest reference information, and then locate the initial position;
(4)若无线通信单元无法获得有效或充足的无线信息,则启动综合处理模块中的视觉传感器,进行图像采集,将采集到的信息数据通过综合处理模块上传给远程监控中心,远程监控中心预先建立了导航区域的信息数据库,将视觉传感器采集到的信息数据与信息数据库预先保存的信息数据进行匹配,从而进行初始位置的定位;(4) If the wireless communication unit cannot obtain effective or sufficient wireless information, then start the visual sensor in the comprehensive processing module to collect images, and upload the collected information data to the remote monitoring center through the comprehensive processing module, and the remote monitoring center will The information database of the navigation area is established, and the information data collected by the visual sensor is matched with the information data stored in the information database in advance, so as to locate the initial position;
(5)行人在行走过程中,通过纯捷联结合零速修正的方法对传感器模块采集的惯性信息进行修正:(5) During the walking process of pedestrians, the inertial information collected by the sensor module is corrected through the method of pure strapdown combined with zero speed correction:
设置滑动窗口的宽度为N,定义如下变量:Set the width of the sliding window to N, and define the following variables:
其中,ωx、ωy、ωz分别为滑动窗口范围内三轴陀螺仪输出量的极差,max表示极大值,min表示极小值,A为滑动窗口范围内三轴加速度计输出矢量的最大幅值,i=0,1,2,…,N;Among them, ω x , ω y , and ω z are the ranges of the output of the three-axis gyroscope within the range of the sliding window, max represents the maximum value, min represents the minimum value, and A is the output vector of the three-axis accelerometer within the range of the sliding window The maximum magnitude of , i=0,1,2,...,N;
当ωx、ωy、ωz、A中至少有1个变量的值处于预设的阈值范围内,则认为当前传感器模块中的惯性测量单元处于零速状态,进行零速修正;When the value of at least one variable among ω x , ω y , ω z , and A is within the preset threshold range, it is considered that the inertial measurement unit in the current sensor module is in a zero-speed state, and zero-speed correction is performed;
(6)根据5个传感器模块采集的信息,判断人体四肢和头部的相对位置和姿态,从而判断行人的行为模式;(6) According to the information collected by the five sensor modules, judge the relative position and posture of the limbs and the head of the human body, so as to judge the behavior pattern of pedestrians;
(7)结合步骤(6)的结果,采用PDR算法进行导航解算,包括四个步骤:步频探测、步长估计、航向确定和位置计算,具体步骤如下:(7) Combined with the result of step (6), the PDR algorithm is used for navigation solution, including four steps: step frequency detection, step size estimation, course determination and position calculation, the specific steps are as follows:
①步频探测:实时监听加速度计竖直方向变化得出步数,通过设置阈值,过滤掉人体静止和轻微抖动带来的干扰,得到精准步数;① Step frequency detection: monitor the vertical direction changes of the accelerometer in real time to get the number of steps, and filter out the interference caused by the static and slight shaking of the human body by setting the threshold, and obtain the accurate number of steps;
②步长估计:依靠设在双足的传感器模块采集惯性数据,实时解算出行走中的零速时刻,依据零速时刻的长度与间隔求得步长信息;② Step length estimation: Rely on the sensor modules installed on both feet to collect inertial data, calculate the zero-speed moment during walking in real time, and obtain step length information based on the length and interval of the zero-speed moment;
③航向确定:根据传感器模块采集陀螺仪信号和磁传感器信号,结合从远程监控中心获取的导航区域地图信息,得到前进航向的信息;③ Course determination: collect gyroscope signals and magnetic sensor signals according to the sensor module, and combine the map information of the navigation area obtained from the remote monitoring center to obtain the information of the forward course;
④位置计算:根据步骤②和③得到的结果,解得相对上一时刻的位置变化量,从而获得本时刻的具体位置;④Position calculation: According to the results obtained in steps ② and ③, the position change relative to the previous moment is solved, so as to obtain the specific position at this moment;
(8)采用多信息融合滤波算法将惯性导航信息与GNSS信息、无线通信定位信息、视觉定位信息进行融合,得到最终的导航结果。(8) The inertial navigation information is fused with GNSS information, wireless communication positioning information, and visual positioning information by using a multi-information fusion filtering algorithm to obtain the final navigation result.
进一步地,在步骤(3)中,当导航区域为室内时,选择WiFi信号进行无线通信定位;当导航区域为室外时,选择手机基站信号进行无线通信定位。Further, in step (3), when the navigation area is indoors, select WiFi signals for wireless communication positioning; when the navigation area is outdoors, select mobile phone base station signals for wireless communication positioning.
进一步地,在步骤(8)中,所述多信息融合滤波算法为卡尔曼滤波算法。Further, in step (8), the multi-information fusion filtering algorithm is a Kalman filtering algorithm.
进一步地,在整个导航过程中,实时判断GNSS信号是否有效,并将第一次GNSS有效时刻的位置作为惯性导航信息与GNSS信息组合的基准点,之后各种导航信息融合得到的导航结果均是与该基准点的相对位置。Furthermore, during the entire navigation process, it is judged in real time whether the GNSS signal is valid, and the position at the first GNSS effective moment is used as the reference point for the combination of inertial navigation information and GNSS information, and the navigation results obtained by fusion of various navigation information are all The relative position to this datum point.
采用上述技术方案带来的有益效果:The beneficial effect brought by adopting the above-mentioned technical scheme:
本发明基于分布式可穿戴的多点信息采集,在准确判断行人身体形态的基础上,将惯导算法与其他导航算法(视觉传感器、卫星接收机、磁传感器等)进行融合滤波,当惯性导航长时间工作出现较为明显的漂移,通过各类辅助导航方式进行误差修正,从而改善导航精度,实现多层次的、不同范围情况下的定位导航服务。The present invention is based on distributed and wearable multi-point information collection, and on the basis of accurately judging the body shape of pedestrians, the inertial navigation algorithm and other navigation algorithms (visual sensors, satellite receivers, magnetic sensors, etc.) are fused and filtered. There is obvious drift after long-time work, and various auxiliary navigation methods are used to correct errors, thereby improving navigation accuracy and realizing multi-level positioning and navigation services in different ranges.
附图说明Description of drawings
图1是本发明导航系统的组成框图;Fig. 1 is a block diagram of the navigation system of the present invention;
图2是本发明导航系统的穿戴示意图;Fig. 2 is a wearing schematic diagram of the navigation system of the present invention;
图3是本发明导航方法的流程图。Fig. 3 is a flow chart of the navigation method of the present invention.
具体实施方式detailed description
以下将结合附图,对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1、图2所示,一种穿戴式行人自主导航系统,包括5个传感器模块和1个综合处理模块,所述传感器模块和综合处理模块设置在行人身上,其中5个传感器模块分别设置在行人的头部、双臂以及双足上,每个传感器模块包括第一微控制器以及分别与之连接的惯性测量单元、磁传感器、气压传感器和第一蓝牙单元,所述惯性测量单元包括三轴加速度计和三轴陀螺仪,所述综合处理模块包括第二微控制器以及分别与之连接的无线通信单元、视觉传感器、卫星接收机、第二蓝牙单元和显示单元。As shown in Figure 1 and Figure 2, a wearable pedestrian autonomous navigation system includes 5 sensor modules and 1 integrated processing module, the sensor module and integrated processing module are set on the pedestrian, and the 5 sensor modules are respectively set On the pedestrian's head, arms and feet, each sensor module includes a first microcontroller and an inertial measurement unit, a magnetic sensor, an air pressure sensor and a first bluetooth unit respectively connected thereto, and the inertial measurement unit includes A three-axis accelerometer and a three-axis gyroscope, the integrated processing module includes a second microcontroller and a wireless communication unit, a visual sensor, a satellite receiver, a second bluetooth unit and a display unit respectively connected thereto.
综合处理模块通过卫星接收机获取GNSS信号,综合处理模块通过无线通信单元与远程监控中心进行数据交互,各传感器模块与综合处理模块之间通过第一蓝牙单元和第二蓝牙单元实现数据传输。5个传感器模块采集多种导航信息并传送给综合处理模块,综合处理模块将接收到的多种导航信息进行融合,解算出导航结果,将导航结果显示在显示单元上,并上传给远程监控中心。The comprehensive processing module acquires GNSS signals through the satellite receiver, and the comprehensive processing module performs data interaction with the remote monitoring center through the wireless communication unit, and the data transmission between each sensor module and the comprehensive processing module is realized through the first Bluetooth unit and the second Bluetooth unit. Five sensor modules collect various navigation information and transmit them to the comprehensive processing module. The comprehensive processing module fuses the various navigation information received, calculates the navigation result, displays the navigation result on the display unit, and uploads it to the remote monitoring center .
在本实施例中,所述远程监控中心预先存储了导航区域的地图信息。In this embodiment, the remote monitoring center pre-stores map information of the navigation area.
在本实施例中,所述综合处理模块还包括与第二微控制器相连的温度传感器,根据温度信号对其他传感器进行温度补偿,从而提高传感器精度。In this embodiment, the comprehensive processing module further includes a temperature sensor connected to the second microcontroller, and performs temperature compensation on other sensors according to the temperature signal, thereby improving the accuracy of the sensors.
在本实施例中,惯性测量单元采用MPU-6050芯片,磁传感器采用HMC-5883芯片,气压传感器采用BMP-180芯片,第一、第二微控制器采用STM32芯片。In this embodiment, the MPU-6050 chip is used for the inertial measurement unit, the HMC-5883 chip is used for the magnetic sensor, the BMP-180 chip is used for the air pressure sensor, and the STM32 chip is used for the first and second microcontrollers.
本发明还提出了基于上述穿戴式行人自主导航系统的导航方法,如图3所示,包括以下步骤:The present invention also proposes a navigation method based on the above-mentioned wearable pedestrian autonomous navigation system, as shown in Figure 3, comprising the following steps:
(1)利用传感器模块中的惯性测量单元初始化系统的水平姿态角度,惯性测量单元结合磁传感器初始化系统的航向角度;(1) Utilize the inertial measurement unit in the sensor module to initialize the horizontal attitude angle of the system, and the inertial measurement unit combines the heading angle of the magnetic sensor initialization system;
(2)通过卫星接收机获取GNSS信号,若获取的GNSS信号有效,则根据GNSS信号进行初始位置的定位;(2) Obtain GNSS signals through satellite receivers, if the acquired GNSS signals are valid, then perform initial position positioning according to GNSS signals;
(3)若获取的GNSS信号无效,则通过无线通信单元进行无线通信定位,所述无线通信定位包括离线训练阶段和在线定位阶段;离线训练阶段,采集导航区域各个采样点的无线定位参考信息,构造指纹数据库,将指纹数据库上传远程监控中心进行保存;在线定位阶段,通过实际采集的无线信息到指纹数据库去进行查询,寻找到最接近的参考信息,从而进行初始位置的定位;当导航区域为室内时,选择WiFi信号进行无线通信定位,当导航区域为室外时,选择手机基站信号进行无线通信定位;(3) If the GNSS signal obtained is invalid, wireless communication positioning is carried out by the wireless communication unit, and the wireless communication positioning includes an offline training stage and an online positioning stage; the offline training stage collects the wireless positioning reference information of each sampling point in the navigation area, Construct the fingerprint database, upload the fingerprint database to the remote monitoring center for storage; in the online positioning stage, query the fingerprint database through the actually collected wireless information, find the closest reference information, and then locate the initial position; when the navigation area is When indoors, select the WiFi signal for wireless communication positioning; when the navigation area is outdoors, select the mobile phone base station signal for wireless communication positioning;
(4)若无线通信单元无法获得有效或充足的无线信息,则启动综合处理模块中的视觉传感器,进行图像采集,将采集到的信息数据通过综合处理模块上传给远程监控中心,远程监控中心预先建立了导航区域的信息数据库,将视觉传感器采集到的信息数据与信息数据库预先保存的信息数据进行匹配,从而进行初始位置的定位;(4) If the wireless communication unit cannot obtain effective or sufficient wireless information, then start the visual sensor in the comprehensive processing module to collect images, and upload the collected information data to the remote monitoring center through the comprehensive processing module, and the remote monitoring center will The information database of the navigation area is established, and the information data collected by the visual sensor is matched with the information data stored in the information database in advance, so as to locate the initial position;
(5)行人在行走过程中,通过纯捷联结合零速修正的方法对设于双足的2个传感器模块采集的信息进行修正:(5) During the walking process of pedestrians, the information collected by the two sensor modules on the feet is corrected through the method of pure strapdown combined with zero speed correction:
设置滑动窗口的宽度为N,定义如下变量:Set the width of the sliding window to N, and define the following variables:
其中,ωx、ωy、ωz分别为滑动窗口范围内三轴陀螺仪输出量的极差,max表示极大值,min表示极小值,A为滑动窗口范围内三轴加速度计输出矢量的最大幅值,i=0,1,2,…,N;Among them, ω x , ω y , and ω z are the ranges of the output of the three-axis gyroscope within the range of the sliding window, max represents the maximum value, min represents the minimum value, and A is the output vector of the three-axis accelerometer within the range of the sliding window The maximum magnitude of , i=0,1,2,...,N;
当ωx、ωy、ωz、A中至少有1个变量的值处于预设的阈值范围内,则认为当前设于足部的惯性测量单元处于零速状态,进行零速修正;When the value of at least one variable among ω x , ω y , ω z , and A is within the preset threshold range, it is considered that the inertial measurement unit currently installed on the foot is in a zero-speed state, and zero-speed correction is performed;
(6)根据5个传感器模块采集的信息,判断人体四肢和头部的相对位置和姿态,从而判断行人的行为模式(跑、走、跳、卧等);分析各气压传感器采集的气压数据,能够得出各气压传感器所处高度,即行人的头部、手臂、足之间的高度关系,从而判断行人的一些行为模态,例如平躺、站立等,从而辅助惯导进行行为判断;(6) According to the information collected by the five sensor modules, judge the relative position and posture of the limbs and the head of the human body, thereby judging the behavior pattern of pedestrians (running, walking, jumping, lying down, etc.); analyze the air pressure data collected by each air pressure sensor, The height of each air pressure sensor can be obtained, that is, the height relationship between the pedestrian's head, arm, and foot, so as to judge some behavioral modes of the pedestrian, such as lying flat, standing, etc., thereby assisting the inertial navigation to judge the behavior;
(7)结合步骤(6)的结果,采用PDR算法进行导航解算,包括四个步骤:步频探测、步长估计、航向确定和位置计算,具体步骤如下:(7) Combined with the result of step (6), the PDR algorithm is used for navigation solution, including four steps: step frequency detection, step size estimation, course determination and position calculation, the specific steps are as follows:
①步频探测:实时监听加速度计竖直方向变化得出步数,通过设置阈值,过滤掉人体静止和轻微抖动带来的干扰,得到精准步数;① Step frequency detection: monitor the vertical direction changes of the accelerometer in real time to get the number of steps, and filter out the interference caused by the static and slight shaking of the human body by setting the threshold, and obtain the accurate number of steps;
②步长估计:依靠设在双足的传感器模块采集惯性数据,实时解算出行走中的零速时刻,依据零速时刻的长度与间隔求得步长信息;② Step length estimation: Rely on the sensor modules installed on both feet to collect inertial data, calculate the zero-speed moment during walking in real time, and obtain step length information based on the length and interval of the zero-speed moment;
③航向确定:根据传感器模块采集陀螺仪信号和磁传感器信号,结合从远程监控中心获取的导航区域地图信息,得到前进航向的信息;③ Course determination: collect gyroscope signals and magnetic sensor signals according to the sensor module, and combine the map information of the navigation area obtained from the remote monitoring center to obtain the information of the forward course;
④位置计算:根据步骤②和③得到的结果,解得相对上一时刻的位置变化量,从而获得本时刻的具体位置;④Position calculation: According to the results obtained in steps ② and ③, the position change relative to the previous moment is solved, so as to obtain the specific position at this moment;
(8)采用多信息融合滤波算法(如卡尔曼滤波算法)将惯性导航信息与GNSS信息、无线通信定位信息、视觉定位信息进行融合,得到最终的导航结果。(8) Using multi-information fusion filtering algorithm (such as Kalman filtering algorithm) to fuse inertial navigation information with GNSS information, wireless communication positioning information, and visual positioning information to obtain the final navigation result.
在整个导航过程中,实时判断GNSS信号是否有效,并将第一次GNSS有效时刻的位置作为惯性导航信息与GNSS信息组合的基准点,之后各种导航信息融合得到的导航结果均是与该基准点的相对位置。During the entire navigation process, it is judged in real time whether the GNSS signal is valid, and the position at the first GNSS effective moment is used as the reference point for the combination of inertial navigation information and GNSS information. The relative position of the point.
将系统导航定位结果与综合处理模块搜集汇总的信息,通过无线通信模块上传给远端监控中心,进行单人/多人位置和行为识别,同时建立基于位置的多种物理场的模型,并分析多人的群体服务策略,实现基于位置的各种导航增值服务。The system navigation and positioning results and the information collected and summarized by the comprehensive processing module are uploaded to the remote monitoring center through the wireless communication module for single/multiple person position and behavior identification, and at the same time establish a variety of physical field models based on location, and analyze The multi-person group service strategy realizes various location-based navigation value-added services.
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。The embodiment is only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention with this. Any modification made on the basis of the technical solution according to the technical idea proposed in the present invention all falls within the protection scope of the present invention. .
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611121949.2A CN106595653A (en) | 2016-12-08 | 2016-12-08 | Wearable autonomous navigation system for pedestrian and navigation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611121949.2A CN106595653A (en) | 2016-12-08 | 2016-12-08 | Wearable autonomous navigation system for pedestrian and navigation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106595653A true CN106595653A (en) | 2017-04-26 |
Family
ID=58597759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611121949.2A Pending CN106595653A (en) | 2016-12-08 | 2016-12-08 | Wearable autonomous navigation system for pedestrian and navigation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106595653A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107218938A (en) * | 2017-05-22 | 2017-09-29 | 南京航空航天大学 | The Wearable pedestrian navigation localization method and equipment aided in based on modelling of human body motion |
CN107219500A (en) * | 2017-06-01 | 2017-09-29 | 成都希盟泰克科技发展有限公司 | Indoor rapid integrated localization method based on WIFI location fingerprint data |
CN107238384A (en) * | 2017-05-26 | 2017-10-10 | 高武保 | A kind of dual-use intelligent guidance system cooperateed with based on multi-mode |
CN107976187A (en) * | 2017-11-07 | 2018-05-01 | 北京工商大学 | A kind of high-precision track reconstructing method and system in the interior of fusion IMU and visual sensor |
CN108151726A (en) * | 2017-11-24 | 2018-06-12 | 北京奇艺世纪科技有限公司 | A kind of movable information detecting system and method |
CN108318033A (en) * | 2017-12-28 | 2018-07-24 | 和芯星通(上海)科技有限公司 | Pedestrian navigation method and system, electronic equipment and storage medium |
CN108804528A (en) * | 2018-04-28 | 2018-11-13 | 北京猎户星空科技有限公司 | A kind of data fusion method and device |
CN109387200A (en) * | 2018-11-28 | 2019-02-26 | 江苏中利电子信息科技有限公司 | A kind of indoor inertial navigation locating personnel location monitoring system based on ad hoc network |
CN109782318A (en) * | 2018-11-13 | 2019-05-21 | 斯沃德教育科技股份有限公司 | A kind of wearable positioning device, equipment and clothes |
CN109782317A (en) * | 2018-11-13 | 2019-05-21 | 斯沃德教育科技股份有限公司 | It is a kind of based on wearable positioning system |
CN109931926A (en) * | 2019-04-04 | 2019-06-25 | 山东智翼航空科技有限公司 | Unmanned aerial vehicle seamless autonomous navigation algorithm based on station center coordinate system |
CN110030999A (en) * | 2019-05-21 | 2019-07-19 | 杭州鸿泉物联网技术股份有限公司 | A kind of localization method based on inertial navigation, device, system and vehicle |
CN110321902A (en) * | 2019-05-09 | 2019-10-11 | 哈尔滨工业大学 | A kind of indoor automatic vision fingerprint collecting method based on SOCP |
CN110366106A (en) * | 2019-08-20 | 2019-10-22 | 同舟智慧(威海)科技发展有限公司 | A kind of localization method and positioning system of mobile terminal |
CN110579211A (en) * | 2018-06-07 | 2019-12-17 | 北京嘀嘀无限科技发展有限公司 | Walking positioning method and system |
CN111174780A (en) * | 2019-12-31 | 2020-05-19 | 同济大学 | Road inertial navigation positioning system for blind people |
CN111487973A (en) * | 2020-04-26 | 2020-08-04 | 河南科技大学 | Navigation method and system for low-frequency refreshing of navigation signal |
CN113167587A (en) * | 2018-10-12 | 2021-07-23 | 焦点定位有限公司 | Methods for estimating metrics of interest related to subject motion |
CN113419265A (en) * | 2021-06-15 | 2021-09-21 | 湖南北斗微芯数据科技有限公司 | Positioning method and device based on multi-sensor fusion and electronic equipment |
CN114018267A (en) * | 2021-11-04 | 2022-02-08 | 国网新源控股有限公司 | Fusion positioning method based on wearable indoor routing inspection positioning device |
CN117576885A (en) * | 2024-01-12 | 2024-02-20 | 大连连德电力电子科技有限公司 | Visual remote controller |
US11965744B2 (en) | 2018-06-01 | 2024-04-23 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for indoor positioning |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102445200A (en) * | 2011-09-30 | 2012-05-09 | 南京理工大学 | Microminiature personal combined navigation system and navigation positioning method thereof |
CN103076619A (en) * | 2012-12-27 | 2013-05-01 | 山东大学 | System and method for performing indoor and outdoor 3D (Three-Dimensional) seamless positioning and gesture measuring on fire man |
CN103759730A (en) * | 2014-01-16 | 2014-04-30 | 南京师范大学 | Collaborative navigation system based on navigation information bilateral fusion for pedestrian and intelligent mobile carrier and navigation method thereof |
CN103765162A (en) * | 2011-08-26 | 2014-04-30 | 高通股份有限公司 | Identifier generation for visual beacon |
CN104613963A (en) * | 2015-01-23 | 2015-05-13 | 南京师范大学 | Pedestrian navigation system and navigation positioning method based on kinesiology model |
CN104864884A (en) * | 2015-05-12 | 2015-08-26 | 上海大学 | Pedestrian stride measuring system |
-
2016
- 2016-12-08 CN CN201611121949.2A patent/CN106595653A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103765162A (en) * | 2011-08-26 | 2014-04-30 | 高通股份有限公司 | Identifier generation for visual beacon |
CN102445200A (en) * | 2011-09-30 | 2012-05-09 | 南京理工大学 | Microminiature personal combined navigation system and navigation positioning method thereof |
CN103076619A (en) * | 2012-12-27 | 2013-05-01 | 山东大学 | System and method for performing indoor and outdoor 3D (Three-Dimensional) seamless positioning and gesture measuring on fire man |
CN103759730A (en) * | 2014-01-16 | 2014-04-30 | 南京师范大学 | Collaborative navigation system based on navigation information bilateral fusion for pedestrian and intelligent mobile carrier and navigation method thereof |
CN104613963A (en) * | 2015-01-23 | 2015-05-13 | 南京师范大学 | Pedestrian navigation system and navigation positioning method based on kinesiology model |
CN104864884A (en) * | 2015-05-12 | 2015-08-26 | 上海大学 | Pedestrian stride measuring system |
Non-Patent Citations (5)
Title |
---|
徐江颖等: "基于MIMU的室内行人导航方法", 《卫星导航定位与北斗系统应用-星参北斗 位联世界》 * |
杨洲: "基于UWB/MEMS的高精度室内定位技术研究", 《中国优秀硕士学位论文全文数据库》 * |
洪海斌: "基于IMU/GPS/ZigBee室内外无缝导航定位系统的方法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
胡旭科等: "融合GPS与Wi-Fi的室内外无缝定位原型系统研制", 《小型微型计算机系统》 * |
陈伟等: "基于GPS和自包含传感器的行人室内外无缝定位算法研究", 《中国博士学位论文全文数据库信息科技辑》 * |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107218938A (en) * | 2017-05-22 | 2017-09-29 | 南京航空航天大学 | The Wearable pedestrian navigation localization method and equipment aided in based on modelling of human body motion |
CN107238384A (en) * | 2017-05-26 | 2017-10-10 | 高武保 | A kind of dual-use intelligent guidance system cooperateed with based on multi-mode |
CN107219500A (en) * | 2017-06-01 | 2017-09-29 | 成都希盟泰克科技发展有限公司 | Indoor rapid integrated localization method based on WIFI location fingerprint data |
CN107219500B (en) * | 2017-06-01 | 2019-12-03 | 成都希盟泰克科技发展有限公司 | The rapid integrated localization method in interior based on WIFI location fingerprint data |
CN107976187A (en) * | 2017-11-07 | 2018-05-01 | 北京工商大学 | A kind of high-precision track reconstructing method and system in the interior of fusion IMU and visual sensor |
CN107976187B (en) * | 2017-11-07 | 2020-08-04 | 北京工商大学 | An indoor trajectory reconstruction method and system integrating IMU and vision sensor |
CN108151726A (en) * | 2017-11-24 | 2018-06-12 | 北京奇艺世纪科技有限公司 | A kind of movable information detecting system and method |
CN108151726B (en) * | 2017-11-24 | 2021-03-12 | 北京奇艺世纪科技有限公司 | Motion information detection system and method |
CN108318033A (en) * | 2017-12-28 | 2018-07-24 | 和芯星通(上海)科技有限公司 | Pedestrian navigation method and system, electronic equipment and storage medium |
CN108804528A (en) * | 2018-04-28 | 2018-11-13 | 北京猎户星空科技有限公司 | A kind of data fusion method and device |
CN108804528B (en) * | 2018-04-28 | 2021-04-09 | 北京猎户星空科技有限公司 | Data fusion method and device |
US11965744B2 (en) | 2018-06-01 | 2024-04-23 | Beijing Didi Infinity Technology And Development Co., Ltd. | Systems and methods for indoor positioning |
CN110579211B (en) * | 2018-06-07 | 2022-04-05 | 北京嘀嘀无限科技发展有限公司 | Walking positioning method and system |
CN110579211A (en) * | 2018-06-07 | 2019-12-17 | 北京嘀嘀无限科技发展有限公司 | Walking positioning method and system |
CN113167587A (en) * | 2018-10-12 | 2021-07-23 | 焦点定位有限公司 | Methods for estimating metrics of interest related to subject motion |
US12313409B2 (en) | 2018-10-12 | 2025-05-27 | Focal Point Positioning Limited | Method of estimating a metric of interest related to the motion of a body |
CN109782318A (en) * | 2018-11-13 | 2019-05-21 | 斯沃德教育科技股份有限公司 | A kind of wearable positioning device, equipment and clothes |
CN109782317A (en) * | 2018-11-13 | 2019-05-21 | 斯沃德教育科技股份有限公司 | It is a kind of based on wearable positioning system |
CN109387200A (en) * | 2018-11-28 | 2019-02-26 | 江苏中利电子信息科技有限公司 | A kind of indoor inertial navigation locating personnel location monitoring system based on ad hoc network |
CN109931926A (en) * | 2019-04-04 | 2019-06-25 | 山东智翼航空科技有限公司 | Unmanned aerial vehicle seamless autonomous navigation algorithm based on station center coordinate system |
CN110321902A (en) * | 2019-05-09 | 2019-10-11 | 哈尔滨工业大学 | A kind of indoor automatic vision fingerprint collecting method based on SOCP |
CN110030999A (en) * | 2019-05-21 | 2019-07-19 | 杭州鸿泉物联网技术股份有限公司 | A kind of localization method based on inertial navigation, device, system and vehicle |
CN110366106A (en) * | 2019-08-20 | 2019-10-22 | 同舟智慧(威海)科技发展有限公司 | A kind of localization method and positioning system of mobile terminal |
CN111174780A (en) * | 2019-12-31 | 2020-05-19 | 同济大学 | Road inertial navigation positioning system for blind people |
CN111487973A (en) * | 2020-04-26 | 2020-08-04 | 河南科技大学 | Navigation method and system for low-frequency refreshing of navigation signal |
CN111487973B (en) * | 2020-04-26 | 2023-09-05 | 河南科技大学 | A navigation method and system for low-frequency refresh of navigation signals |
CN113419265A (en) * | 2021-06-15 | 2021-09-21 | 湖南北斗微芯数据科技有限公司 | Positioning method and device based on multi-sensor fusion and electronic equipment |
CN114018267A (en) * | 2021-11-04 | 2022-02-08 | 国网新源控股有限公司 | Fusion positioning method based on wearable indoor routing inspection positioning device |
CN117576885B (en) * | 2024-01-12 | 2024-10-22 | 大连连德电力电子科技有限公司 | Visual remote controller |
CN117576885A (en) * | 2024-01-12 | 2024-02-20 | 大连连德电力电子科技有限公司 | Visual remote controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106595653A (en) | Wearable autonomous navigation system for pedestrian and navigation method thereof | |
CN103076619B (en) | System and method for performing indoor and outdoor 3D (Three-Dimensional) seamless positioning and gesture measuring on fire man | |
CN104296750B (en) | A zero-speed detection method and device, and a pedestrian navigation method and system | |
CN111879305B (en) | Multi-mode perception positioning model and system for high-risk production environment | |
CN103776446B (en) | A kind of pedestrian's independent navigation computation based on double MEMS-IMU | |
CN110645979A (en) | Indoor and outdoor seamless positioning method based on GNSS/INS/UWB combination | |
CN202975337U (en) | Firefighter indoor/outdoor 3D seamless positioning and attitude detection system | |
CN107036597A (en) | A kind of indoor positioning air navigation aid based on inertial sensor built in smart mobile phone | |
CN109470238A (en) | A positioning method, device and mobile terminal | |
CN107014375B (en) | Indoor positioning system and method with ultra-low deployment | |
CN107734457A (en) | Wisdom parking ground navigation system and method | |
JP6054535B2 (en) | Pedestrian motion recognition based pedestrian position estimation apparatus and method | |
WO2013182147A1 (en) | Mobile terminal and method for obtaining location information about mobile terminal | |
CN103968827A (en) | Wearable human body gait detection self-localization method | |
CN105865450A (en) | Zero-speed update method and system based on gait | |
CN105510870B (en) | A kind of smart machine indoor locating system and method | |
CN108957510A (en) | Based on inertia/zero-speed/GPS pedestrian is seamless combined navigation locating method | |
Ren et al. | Movement pattern recognition assisted map matching for pedestrian/wheelchair navigation | |
CN106898249A (en) | A kind of map structuring system and its construction method for earthquake-stricken area communication failure region | |
US20200288277A1 (en) | Method and system for determining a direction of movement of an object | |
CN111174780B (en) | Road inertial navigation positioning system for blind people | |
CN113916221B (en) | Self-adaptive pedestrian dead reckoning method integrating visual odometer and BP network | |
CN110285809A (en) | A kind of integrated integrated positioning device of indoor and outdoor | |
Wu et al. | Indoor positioning system based on inertial MEMS sensors: Design and realization | |
Jianhua et al. | MLA-MFL: A Smartphone Indoor Localization Method for Fusing Multi-source Sensors under Multiple Scene Conditions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |
|
RJ01 | Rejection of invention patent application after publication |