CN106570790A - Wind farm output power data restoration method considering segmental characteristics of wind speed data - Google Patents
Wind farm output power data restoration method considering segmental characteristics of wind speed data Download PDFInfo
- Publication number
- CN106570790A CN106570790A CN201610989785.9A CN201610989785A CN106570790A CN 106570790 A CN106570790 A CN 106570790A CN 201610989785 A CN201610989785 A CN 201610989785A CN 106570790 A CN106570790 A CN 106570790A
- Authority
- CN
- China
- Prior art keywords
- data
- abnormal
- wind
- wind speed
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000002159 abnormal effect Effects 0.000 claims abstract description 94
- 241001123248 Arma Species 0.000 claims abstract description 21
- 238000001276 Kolmogorov–Smirnov test Methods 0.000 claims description 6
- 238000012216 screening Methods 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims 8
- 238000011084 recovery Methods 0.000 claims 5
- 230000001932 seasonal effect Effects 0.000 claims 3
- 241001269238 Data Species 0.000 claims 2
- 238000004088 simulation Methods 0.000 claims 1
- 230000011218 segmentation Effects 0.000 abstract description 14
- 238000012567 pattern recognition method Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
Landscapes
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Wind Motors (AREA)
Abstract
本发明公开了一种计及风速数据分段特性的风电场出力数据修复方法,包括以下步骤:S1,从得到的数据中筛选重复、缺乏和不合理的异常数据,并根据异常数据所对应连续时间序列的长度,分为连续异常型和局部异常型两类;S2,对于局部异常型数据,采用插值方法得到修复的风电场出力数据;S3,对于连续异常型数据,基于最大后验概率,利用异常数据前后的正常数据判断异常数据是否含有分段点,然后基于每段的风速特性由正常数据或模式识别方法得到,基于该风速特性,采用ARMA模型生成修复的风速,进一步得到修复的风电场出力数据;S4,验证修复数据的有效性,输出修复报告;提高了电网中辅助服务的决策精度,减少了不必要的系统备用。
The invention discloses a method for repairing wind power output data considering the segmentation characteristics of wind speed data. The length of the time series is divided into two types: continuous abnormal type and local abnormal type; S2, for the local abnormal type data, the interpolation method is used to obtain the repaired wind farm output data; S3, for the continuous abnormal type data, based on the maximum posterior probability, Use the normal data before and after the abnormal data to judge whether the abnormal data contains segment points, and then obtain the wind speed characteristics of each segment from the normal data or pattern recognition method, based on the wind speed characteristics, use the ARMA model to generate the repaired wind speed, and further obtain the repaired wind power Field output data; S4, verify the validity of the repair data, and output the repair report; improve the decision-making accuracy of auxiliary services in the power grid, and reduce unnecessary system backup.
Description
技术领域technical field
本发明属于新能源电站出力数据修复领域,尤其涉及一种计及风速数据分段特性的风电场出力数据修复方法。The invention belongs to the field of restoration of output data of new energy power stations, and in particular relates to a restoration method of output data of a wind farm taking into account the segmentation characteristics of wind speed data.
背景技术Background technique
由于风能蕴量巨大、分布广泛、清洁、无污染,目前风力发电已经在全球范围内得到快速发展。但由于风能的随机性、波动性和间歇性的特点,风电大规模接入将对电力系统产生巨大的影响,因此有必要对接入系统的风电场出力历史数据进行分析,进行提取风电场出力特性,为电网运行的调度提供重要的决策依据。Due to the huge amount of wind energy, wide distribution, cleanliness and no pollution, wind power generation has developed rapidly all over the world. However, due to the randomness, volatility and intermittent characteristics of wind energy, the large-scale connection of wind power will have a huge impact on the power system. Therefore, it is necessary to analyze the historical data of wind farm output connected to the system and extract wind farm output. It provides an important decision-making basis for the dispatch of power grid operation.
然而,风电场一般位置比较偏远,通信条件较差,其检测数据与数据中心的实时通信不够稳定,经常出现数据缺失、重复、错误等问题,严重影响风电场出力数据的质量,限制了该数据的应用。因此,针对这些缺失、重复、错误等异常数据的修复,显得十分重要。However, wind farms are generally located in remote locations and have poor communication conditions. The real-time communication between the detection data and the data center is not stable enough, and problems such as data loss, duplication, and errors often occur, which seriously affect the quality of wind farm output data and limit the data. Applications. Therefore, it is very important to repair abnormal data such as missing, repeated, and wrong data.
现有的数据修复技术,多是通过提取风电场出数据的特征,然后利用插值或预测等方式,得到异常数据的修正值。这类数据修复技术,可以较好地确保风电场出力数据的统计特性的一致性,消除了异常数据项对风电场出力数据特征的影响。Existing data restoration technologies mostly extract the characteristics of wind farm data, and then use interpolation or prediction to obtain correction values for abnormal data. This kind of data repair technology can better ensure the consistency of the statistical characteristics of wind farm output data, and eliminate the influence of abnormal data items on the characteristics of wind farm output data.
虽然这种方法可以很大程度上消除异常数据对风电场出力统计特性的干扰,但是这类修复技术往往仅能保证修复的数据在一个较长的时间段内与正常数据保持一致的统计特性。即使有些修复技术中考虑了不同季节或白天与黑夜风电统计特性的差异,但是仍无法有效刻画大风日和小风日等由实时天气信息决定的特性,而这些大风日和小风日的日数和分布特性对于电力系统的规划和运行十分重要,无法修复这些特性将严重影响异常比例较大的风电场出力数据的应用。Although this method can eliminate the interference of abnormal data on the statistical characteristics of wind farm output to a large extent, this kind of restoration technology can only ensure that the restored data maintains the same statistical characteristics as normal data in a long period of time. Even if some restoration techniques take into account the differences in statistical characteristics of wind power in different seasons or between day and night, they still cannot effectively describe the characteristics determined by real-time weather information such as strong wind days and light wind days. The distribution characteristics are very important for the planning and operation of the power system, and the failure to repair these characteristics will seriously affect the application of wind farm output data with a large abnormal proportion.
因此,需要一种新的风电场出力数据修复技术来避免上述缺陷的产生。Therefore, a new wind farm output data repair technology is needed to avoid the above-mentioned defects.
发明内容Contents of the invention
针对现有技术的不足,本发明的目的是提供一种计及风速数据分段特性的风电场出力数据修复方法,以风速的修复为核心,通过对风速序列的分段点的确定和异常数据对应的统计学特征的确定,实现了计及短期风速统计特性差异的风电场出力数据修复技术,使得在修复数据时,不仅起到“去劣”,还能引入有价值的有效信息,对于提高风电场出力数据在电力系统规划和运行中的应用具有十分显著的意义。Aiming at the deficiencies of the prior art, the purpose of the present invention is to provide a wind farm output data restoration method that takes into account the segmental characteristics of wind speed data. Taking the restoration of wind speed as the core, the determination of the segment points of the wind speed sequence and the abnormal data The determination of the corresponding statistical characteristics realizes the restoration technology of wind farm output data that takes into account the differences in short-term wind speed statistical characteristics, so that when repairing data, it not only plays a role in "removing inferiority", but also introduces valuable and effective information, which is helpful for improving The application of wind farm output data in power system planning and operation has very significant significance.
一种计及风速数据分段特性的风电场出力数据修复方法,所述修复方法包括以下步骤:A method for repairing wind farm output data considering the segmentation characteristics of wind speed data, the repair method comprising the following steps:
S1,从得到的数据中筛选重复、缺乏和不合理的异常数据,并根据异常数据所对应连续时间序列的长度,分为连续异常型和局部异常型两类;S1. Screen out repetitive, lacking and unreasonable abnormal data from the obtained data, and divide them into two types: continuous abnormal type and local abnormal type according to the length of the continuous time series corresponding to the abnormal data;
S2,对于局部异常型数据,采用插值方法得到修复的风电场出力数据;S2, for local anomaly data, use the interpolation method to obtain the repaired wind farm output data;
S3,对于连续异常型数据,基于最大后验概率,利用异常数据前后的正常数据判断异常数据是否含有分段点,然后基于每段的风速特性由正常数据或模式识别方法得到,基于该风速特性,采用ARMA模型生成修复的风速,进一步得到修复的风电场出力数据;S3. For continuous abnormal data, based on the maximum posterior probability, use the normal data before and after the abnormal data to judge whether the abnormal data contains segment points, and then based on the wind speed characteristics of each segment obtained by normal data or pattern recognition methods, based on the wind speed characteristics , use the ARMA model to generate the repaired wind speed, and further obtain the repaired wind farm output data;
S4,验证修复数据的有效性,输出修复报告。S4, verifying the validity of the repair data, and outputting a repair report.
优选地,所述S1具体为:Preferably, the S1 is specifically:
查找相同时间点对应多条数据出力的数据记录,这些数据记录为重复数据;查找数据修复时间窗口内无出力数据的时间点,这些时间点所对应的为缺失数据,筛选风电场出力数据中连续4个时间点以上数据相同的数据记录、出力数据大于开机容量的数据记录和夜间存在出力的数据记录,这些数据记录为不合理数据;如果连续不少于5个时间点对应数据记录均为异常数据,则这些时间点所对应的数据记录为连续异常型数据记录,其余异常数据为局部异常型数据记录。Find the data records corresponding to multiple data output at the same time point, these data records are duplicate data; find the time points without output data in the data repair time window, these time points correspond to missing data, and filter the wind farm output data for continuous The data records with the same data at more than 4 time points, the data records with output data greater than the power-on capacity, and the data records with output at night, these data records are unreasonable data; if the corresponding data records at no less than 5 consecutive time points are abnormal data, the data records corresponding to these time points are continuous abnormal data records, and the remaining abnormal data are local abnormal data records.
优选地,所述S2具体为:Preferably, the S2 is specifically:
记局部异常型数据个数为N,取局部异常型数据之前数据[N/2]项,之后数据[N/2]项,这些数据对应的横坐标值分别标为1,2,…,[N/2],N+[N/2],N+[N/2]+1,…,2N;以上述N个点拟合得到N阶多项式拟合函数;计算拟合函数在[N/2]+1,[N/2]+2,…,[N/2]+N的值作为修复的出力数据。Record the number of local abnormal data as N, take the data [N/2] items before the local abnormal data, and [N/2] items after the data, and the abscissa values corresponding to these data are marked as 1, 2, ..., [ N/2], N+[N/2], N+[N/2]+1,..., 2N; the N-order polynomial fitting function is obtained by fitting the above N points; the calculation fitting function is in [N/2] +1, [N/2]+2, ..., [N/2]+N values are used as repair output data.
优选地,所述S3具体包括以下步骤:Preferably, said S3 specifically includes the following steps:
选取该组异常数据前后的正常数据,异常数据前后的正常数据长度均为1天;基于KS检验,利用异常数据前后的正常数据判断异常数据是否含有分段点;若该组异常数据中含有分段点,抽样分段点位置,分段点前后数据分别利用所属分段的正常数据得到ARMA模型,然后利用ARMA模型得到异常数据所对应时间序列的风速;若该组异常数据中不含有分段点,则直接利用异常数据前后的正常数据,得到ARMA模型,然后利用ARMA模型得到异常数据所对应时间序列的风速;基于风机的出力特性公式,由风速得到风电场各类型风机的出力序列;将风电场中开机的风机出力序列求各,得到修复的风电场出力数据。Select the normal data before and after the group of abnormal data, and the length of the normal data before and after the abnormal data is 1 day; based on the KS test, use the normal data before and after the abnormal data to judge whether the abnormal data contains segmentation points; Segment point, the position of the sampling segment point, the data before and after the segment point respectively use the normal data of the segment to obtain the ARMA model, and then use the ARMA model to obtain the wind speed of the time series corresponding to the abnormal data; if the group of abnormal data does not contain segment point, the ARMA model is obtained directly by using the normal data before and after the abnormal data, and then the wind speed of the time series corresponding to the abnormal data is obtained by using the ARMA model; based on the output characteristic formula of the fan, the output sequence of each type of fan in the wind farm is obtained from the wind speed; Calculate the output sequence of the wind turbines started in the wind farm, and obtain the repaired wind farm output data.
本发明的技术方案具有以下有益效果:The technical solution of the present invention has the following beneficial effects:
本发明提供的一种计及风速数据分段特性的风电场出力数据修复方法,该方法可以考虑风速在短期内的非平稳特性,通过短期内的分段,提高了风电场出力数据修复的精度。本发明可以更为有效地修正风电场出力数据中的异常记录,提高风电场出力数据的质量;这有利于提高电网规划和运行的决策水平,提高电网中辅助服务的决策精度,减少不必要的系统备用,从而提高电网建设和运行的经济性。The invention provides a wind farm output data restoration method that takes into account the segmentation characteristics of wind speed data. This method can consider the non-stationary characteristics of wind speed in a short period of time, and improve the accuracy of wind farm output data restoration by short-term segmentation. . The present invention can more effectively correct abnormal records in wind farm output data and improve the quality of wind farm output data; this is conducive to improving the decision-making level of grid planning and operation, improving the decision-making accuracy of auxiliary services in the grid, and reducing unnecessary System backup, thereby improving the economy of power grid construction and operation.
附图说明Description of drawings
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。The technical solution of the present invention will be described in further detail below with reference to the drawings and embodiments.
图1为本发明一种计及风速数据分段特性的风电场出力数据修复方法的整体流程图;Fig. 1 is an overall flowchart of a wind farm output data restoration method that takes into account the segmentation characteristics of wind speed data according to the present invention;
图2为本发明一种计及风速数据分段特性的风电场出力数据修复方法的交流侧故障时换相电压面积示意图。Fig. 2 is a schematic diagram of the commutation voltage area when the AC side is faulty in a wind farm output data restoration method that takes into account the segmentation characteristics of wind speed data according to the present invention.
具体实施方式detailed description
为了清楚了解本发明的技术方案,将在下面的描述中提出其详细的结构。显然,本发明实施例的具体施行并不足限于本领域的技术人员所熟习的特殊细节。本发明的优选实施例详细描述如下,除详细描述的这些实施例外,还可以具有其他实施方式。In order to clearly understand the technical solution of the present invention, its detailed structure will be presented in the following description. Obviously, the implementation of the embodiments of the invention is not limited to specific details familiar to those skilled in the art. The preferred embodiments of the present invention are described in detail below, and there may be other implementations besides those described in detail.
下面结合附图和实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
参照图1,本发明一种计及风速数据分段特性的风电场出力数据修复方法的整体流程图,包含异常数据的筛选与分类、天气信息与光伏出力参数特征提取、异常数据组的修复等主要步骤,具体为:Referring to Fig. 1, the overall flow chart of a method for repairing wind farm output data considering the segmentation characteristics of wind speed data in the present invention includes screening and classification of abnormal data, feature extraction of weather information and photovoltaic output parameters, repair of abnormal data groups, etc. The main steps, specifically:
1)筛选得到数据中重复、缺乏和不合理的异常数据,并根据异常数据所对应连续时间序列的长度,分为连续异常型和局部异常型两类;1) Screen out repetitive, lacking and unreasonable abnormal data in the data, and divide them into two types: continuous abnormal type and local abnormal type according to the length of the continuous time series corresponding to the abnormal data;
2)对于局部异常型数据,采用插值方法得到修复的风电场出力数据;2) For local anomalous data, the output data of the repaired wind farm is obtained by interpolation method;
3)对于连续异常型数据,基于最大后验概率,利用异常数据前后的正常数据判断异常数据是否含有分段点,然后基于每段的风速特性由正常数据或模式识别方法得到,基于该风速特性,采用ARMA模型生成修复的风速,进一步得到修复的风电场出力数据;3) For continuous abnormal data, based on the maximum posterior probability, the normal data before and after the abnormal data is used to judge whether the abnormal data contains segment points, and then the wind speed characteristics of each segment are obtained by normal data or pattern recognition methods, based on the wind speed characteristics , use the ARMA model to generate the repaired wind speed, and further obtain the repaired wind farm output data;
4)验证修复数据的有效性,输出修复报告。4) Verify the validity of the repair data, and output a repair report.
所述步骤1)具体包含以下步骤:查找相同时间点对应多条数据出力的数据记录,这些数据记录为重复数据;查找数据修复时间窗口内无出力数据的时间点,这些时间点所对应的为缺失数据,筛选风电场出力数据中连续4个时间点以上数据相同的数据记录、出力数据大于开机容量的数据记录和夜间存在出力的数据记录,这些数据记录为不合理数据;如果连续不少于5个时间点对应数据记录均为异常数据,则这些时间点所对应的数据记录为连续异常型数据记录,其余异常数据为局部异常型数据记录。The step 1) specifically includes the following steps: searching for data records corresponding to multiple data outputs at the same time point, these data records are repeated data; searching for time points without output data in the data repair time window, corresponding to these time points are For missing data, screen the output data of the wind farm for more than 4 consecutive time points with the same data records, data records with output data greater than the start-up capacity, and data records with output at night, these data records are unreasonable data; if the continuous data is not less than The data records corresponding to the five time points are all abnormal data, then the data records corresponding to these time points are continuous abnormal data records, and the remaining abnormal data are local abnormal data records.
所述步骤2)具体包含以下步骤:记局部异常型数据个数为N,取局部异常型数据之前数据[N/2]项,之后数据[N/2]项,这些数据对应的横坐标值分别标为1,2,…,[N/2],N+[N/2],N+[N/2]+1,…,2N;以上述N个点拟合得到N阶多项式拟合函数;计算拟合函数在[N/2]+1,[N/2]+2,…,[N/2]+N的值作为修复的出力数据。The step 2) specifically includes the following steps: record the number of local abnormal data as N, take the data [N/2] item before the local abnormal data, and then the data [N/2] item, and the corresponding abscissa value of these data Respectively marked as 1, 2, ..., [N/2], N+[N/2], N+[N/2]+1, ..., 2N; the N-order polynomial fitting function is obtained by fitting the above N points; Calculate the value of the fitting function at [N/2]+1, [N/2]+2, ..., [N/2]+N as the repair output data.
所述步骤3)具体包含以下步骤:选取该组异常数据前后的正常数据,异常数据前后的正常数据长度均为1天;基于KS检验,利用异常数据前后的正常数据判断异常数据是否含有分段点;若该组异常数据中含有分段点,抽样分段点位置,分段点前后数据分别利用所属分段的正常数据得到ARMA模型,然后利用ARMA模型得到异常数据所对应时间序列的风速;若该组异常数据中不含有分段点,则直接利用异常数据前后的正常数据,得到ARMA模型,然后利用ARMA模型得到异常数据所对应时间序列的风速;基于风机的出力特性公式,由风速得到风电场各类型风机的出力序列;将风电场中开机的风机出力序列求各,得到修复的风电场出力数据。The step 3) specifically includes the following steps: select the normal data before and after the group of abnormal data, the length of the normal data before and after the abnormal data is 1 day; based on the KS test, use the normal data before and after the abnormal data to judge whether the abnormal data contains segments point; if the group of abnormal data contains segment points, the position of the segment points is sampled, and the data before and after the segment points are respectively used to obtain the ARMA model by using the normal data of the segment to which they belong, and then the wind speed of the time series corresponding to the abnormal data is obtained by using the ARMA model; If the group of abnormal data does not contain segmentation points, the normal data before and after the abnormal data is used directly to obtain the ARMA model, and then the ARMA model is used to obtain the wind speed of the time series corresponding to the abnormal data; based on the output characteristic formula of the fan, the wind speed is obtained The output sequence of various types of wind turbines in the wind farm; calculate the output sequence of the starting wind turbines in the wind farm, and obtain the output data of the repaired wind farm.
其中,异常数据的筛选与分类:异常数据主要指重复数据、缺失数据和不合理数据三种。如图2所示,重复数据是指某一时刻所对应多条不同的光伏电站出力数据记录;缺失数据是指某一时刻对应的不完备的光伏电站出力数据记录,此处“不完备”是指出力数据记录中存有的各数据项不足以由彼此之间的物理意义相互推导;不合理数据是指不符合物理实际的光伏电站出力数据记录。Among them, the screening and classification of abnormal data: abnormal data mainly refers to repeated data, missing data and unreasonable data. As shown in Figure 2, repeated data refers to multiple different photovoltaic power station output data records corresponding to a certain moment; missing data refers to incomplete photovoltaic power station output data records corresponding to a certain moment, where "incomplete" means It points out that the data items stored in the power data records are not enough to be deduced from each other's physical meaning; unreasonable data refers to the output data records of photovoltaic power plants that do not conform to the physical reality.
按照上述分类,依次查找和筛选三类异常数据:查找相同时间点对应多条数据出力的数据记录,这些数据记录为重复数据;查找数据修复时间窗口内无出力数据的时间点,这些时间点所对应的为缺失数据,筛选光伏电站出力数据中连续4个时间点以上数据相同的数据记录、出力数据大于开机容量的数据记录和夜间存在出力的数据记录,这些数据记录为不合理数据。According to the above classification, search and filter three types of abnormal data in turn: find data records corresponding to multiple data outputs at the same time point, these data records are duplicate data; find time points without output data in the data repair time window, all of these Corresponding to the missing data, screen out the output data of photovoltaic power plants with the same data records for more than 4 consecutive time points, the data records with output data greater than the start-up capacity, and the data records with output at night. These data records are unreasonable data.
在筛选不合理数据时,应该考虑数据纪录的精度和误差。当开机容量为Pon时,可以将光伏电站出力在[-αPon,(1+α)Pon]区间时未超出光伏电站开机容量,α可根据数据质量可选0.03~0.1的数值。When screening unreasonable data, the accuracy and error of data records should be considered. When the start-up capacity is P on , the output of the photovoltaic power station can not exceed the start-up capacity of the photovoltaic power station when the output is in the interval [-αP on , (1+α)P on ], and the value of α can be selected from 0.03 to 0.1 according to the data quality.
将时间点相邻的异常数据归并为异常数据组,如果异常数据组的元素个数不少于5,则该组异常数据组中的数据记录为连续异常型数据记录,否则为局部异常型数据记录。Merge the abnormal data adjacent to the time point into an abnormal data group. If the number of elements in the abnormal data group is not less than 5, the data records in this abnormal data group are continuous abnormal data records, otherwise they are local abnormal data Record.
局部异常型数据的修复:局部异常型数据和连续异常型数据的性质不同,前者所对应的时间间隔较短,气象数据在此时间间隔内的变化并不明显,此时影响光伏出力的主要因素为局部区域的特性,不需要利用气象数据进行修复。所以,本发明对于局部异常型数据和连续异常型数据采用不同的修复方法。Repair of local anomaly data: The properties of local anomaly data and continuous anomaly data are different. The time interval corresponding to the former is shorter, and the change of meteorological data in this time interval is not obvious. At this time, the main factors affecting photovoltaic output Because of the characteristics of local areas, it does not need to be repaired with meteorological data. Therefore, the present invention adopts different repair methods for local abnormal data and continuous abnormal data.
对于局部异常型数据,直接利用多项式插值法进行修复。若局部异常型数据个数为N,取局部异常型数据之前数据[N/2]项,之后数据[N/2]项,这些数据对应的横坐标值分别标为1,2,…,[N/2],N+[N/2],N+[N/2]+1,…,2N;以上述N个点拟合得到N阶多项式拟合函数;计算拟合函数在[N/2]+1,[N/2]+2,…,[N/2]+N的值作为修复的出力数据。For local abnormal data, the polynomial interpolation method is directly used for repair. If the number of local abnormal data is N, take the data [N/2] items before the local abnormal data, and the data [N/2] items after, and the abscissa values corresponding to these data are marked as 1, 2, ..., [ N/2], N+[N/2], N+[N/2]+1,..., 2N; the N-order polynomial fitting function is obtained by fitting the above N points; the calculation fitting function is in [N/2] +1, [N/2]+2, ..., [N/2]+N values are used as repair output data.
基于KS检验的分段点判断:在异常数据组前后各取相临一天的风速数据,分别记为S1和S2。本发明用KS检验(柯尔莫哥洛夫-斯米尔诺夫检验)来S1和S2检验是否同分布,步骤如下:Segment point judgment based on KS test: take the wind speed data of the adjacent day before and after the abnormal data group, and record them as S1 and S2 respectively. The present invention uses KS test (Kolmogorov-Smirnov test) to come whether S1 and S2 test are identically distributed, and the steps are as follows:
1)假设S1和S2服从相同分布;1) Assume that S1 and S2 obey the same distribution;
2)统计两组风速数据的累积概率,分别记为F1,n(x)和F1,n(x),其中n为S1和S2的数据量,累积概率定义如下:2) Calculate the cumulative probability of two sets of wind speed data, which are respectively recorded as F1,n(x) and F1,n(x), where n is the data volume of S1 and S2, and the cumulative probability is defined as follows:
其中,I[-∞,x](Xi)为指示函数,即Xi<x为1,否则为0;Among them, I[-∞,x](Xi) is an indicator function, that is, Xi<x is 1, otherwise it is 0;
3)计算KS统计:3) Calculate KS statistics:
其中,sup为上确界运算;Among them, sup is the supremum operation;
4)检验是否拒绝假设4) Test whether to reject the hypothesis
若满足下式,则(在0.05水平下)拒绝假设,S1和S2服从不同分布,即该组异常数据存在分段点,否则不存在分段点。If the following formula is satisfied, the hypothesis is rejected (at the 0.05 level), S1 and S2 obey different distributions, that is, there is a segmentation point in this group of abnormal data, otherwise there is no segmentation point.
若异常数据存在段点,则利用均匀分布,抽样分段点所在位置。If there are segment points in the abnormal data, use the uniform distribution to sample the location of the segment points.
4.ARMA模型的参数估计4. Parameter estimation of ARMA model
ARMA模型(自回归滑动平均模型)是风速模型的典型方法,本发明采用ARMA(3,3)模型来模拟风速,即自回归分量和滑动平均分量均采用3阶模型。ARMA(3,3)的时间序列形式如下:The ARMA model (autoregressive moving average model) is a typical method of the wind speed model. The present invention uses the ARMA (3,3) model to simulate the wind speed, that is, both the autoregressive component and the moving average component use a 3rd order model. The time series form of ARMA(3,3) is as follows:
其中c为常数,εt为白噪音(即服从期望为0、方差为δ2高斯分布的随机变量),φi和θi为模型的参数。Where c is a constant, εt is white noise (that is, a random variable that obeys the Gaussian distribution with an expectation of 0 and a variance of δ2), and φi and θi are the parameters of the model.
本发明利用自回归逼近法来进行参数估计。记参数估计用到的正常风速序列为X,长度为n,需要估计的参数为φ和θ,δ2,c。The present invention utilizes an auto-regressive approximation method for parameter estimation. Note that the normal wind speed sequence used for parameter estimation is X, the length is n, and the parameters to be estimated are φ and θ, δ2, c.
1)由风速序列的期望估计常数c1) Estimated constant c from the expectation of the wind speed sequence
2)估计风速序列对应AR(3)模型的参数φ2) Estimate the parameter φ of the wind speed sequence corresponding to the AR(3) model
记remember
达到s(φ)极小值的即为的φ最小二乘估计。若记reaching the minimum value of s(φ) That is, the least squares estimate of φ. Ruoji
则s(φ)可以写为Then s(φ) can be written as
于是φ的最小二乘估计为Then the least squares estimate of φ is
3)计算风速序列残差3) Calculate the wind speed sequence residual
基于步骤2)得到求风速序列的残差为Based on step 2) get Find the residual error of the wind speed sequence as
4)计算ARMA(3,3)中参数φ,θ和δ24) Calculate the parameters φ, θ and δ2 in ARMA(3,3)
记remember
则达到Q(φ,θ)极小值的和即为的φ和θ的最小二乘估计。Then reach the minimum value of Q(φ,θ) with That is, the least squares estimation of φ and θ.
δ2的最小二乘估计为The least squares estimate of δ2 is
本发明提供的一种计及风速数据分段特性的风电场出力数据修复方法,该方法可以考虑风速在短期内的非平稳特性,通过短期内的分段,提高了风电场出力数据修复的精度。本发明可以更为有效地修正风电场出力数据中的异常记录,提高风电场出力数据的质量;这有利于提高电网规划和运行的决策水平,提高电网中辅助服务的决策精度,减少不必要的系统备用,从而提高电网建设和运行的经济性。The invention provides a wind farm output data restoration method that takes into account the segmentation characteristics of wind speed data. This method can consider the non-stationary characteristics of wind speed in a short period of time, and improve the accuracy of wind farm output data restoration by short-term segmentation. . The present invention can more effectively correct abnormal records in wind farm output data and improve the quality of wind farm output data; this is conducive to improving the decision-making level of power grid planning and operation, improving the decision-making accuracy of auxiliary services in the power grid, and reducing unnecessary System backup, thereby improving the economy of power grid construction and operation.
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art can still implement the present invention Any modification or equivalent replacement that does not deviate from the spirit and scope of the present invention is within the protection scope of the pending claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610989785.9A CN106570790B (en) | 2016-11-10 | 2016-11-10 | Wind power plant output data restoration method considering wind speed data segmentation characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610989785.9A CN106570790B (en) | 2016-11-10 | 2016-11-10 | Wind power plant output data restoration method considering wind speed data segmentation characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106570790A true CN106570790A (en) | 2017-04-19 |
CN106570790B CN106570790B (en) | 2021-05-07 |
Family
ID=58541185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610989785.9A Active CN106570790B (en) | 2016-11-10 | 2016-11-10 | Wind power plant output data restoration method considering wind speed data segmentation characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106570790B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392304A (en) * | 2017-08-04 | 2017-11-24 | 中国电力科学研究院 | A kind of Wind turbines disorder data recognition method and device |
CN109740630A (en) * | 2018-12-06 | 2019-05-10 | 中科恒运股份有限公司 | Method for processing abnormal data and device |
CN109800217A (en) * | 2018-12-28 | 2019-05-24 | 南京天溯自动化控制系统有限公司 | A kind of restorative procedure, device and the electronic equipment of continuous abnormal energy consumption data |
CN110083804A (en) * | 2019-04-24 | 2019-08-02 | 华中科技大学无锡研究院 | Intelligent restorative procedure based on the wind power plant SCADA data missing that condition distribution returns |
CN110513252A (en) * | 2019-08-30 | 2019-11-29 | 湘电风能有限公司 | A kind of wind power plant SCADA system data abnormality alarming repair system and method |
CN111177114A (en) * | 2019-12-09 | 2020-05-19 | 国网甘肃省电力公司电力科学研究院 | Wind power plant output data restoration method based on ARMA model |
CN112067908A (en) * | 2020-08-20 | 2020-12-11 | 国网山东省电力公司电力科学研究院 | Fitting method and system for distortion electric field when transformer substation robot measures power frequency electric field |
CN118604717A (en) * | 2024-08-07 | 2024-09-06 | 保定市兆微软件科技有限公司 | A method and system for monitoring operation error of electric energy meter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104252649A (en) * | 2014-09-25 | 2014-12-31 | 东南大学 | Regional wind power output prediction method based on correlation between multiple wind power plants |
CN104766175A (en) * | 2015-04-16 | 2015-07-08 | 东南大学 | Power system abnormal data identifying and correcting method based on time series analysis |
CN105160181A (en) * | 2015-09-02 | 2015-12-16 | 华中科技大学 | Detection method of abnormal data of numerical control system instruction field sequence |
-
2016
- 2016-11-10 CN CN201610989785.9A patent/CN106570790B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104252649A (en) * | 2014-09-25 | 2014-12-31 | 东南大学 | Regional wind power output prediction method based on correlation between multiple wind power plants |
CN104766175A (en) * | 2015-04-16 | 2015-07-08 | 东南大学 | Power system abnormal data identifying and correcting method based on time series analysis |
CN105160181A (en) * | 2015-09-02 | 2015-12-16 | 华中科技大学 | Detection method of abnormal data of numerical control system instruction field sequence |
Non-Patent Citations (1)
Title |
---|
李社新: "ARMA 模型在振动信号分析中的应用", 《机械科学与技术》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392304A (en) * | 2017-08-04 | 2017-11-24 | 中国电力科学研究院 | A kind of Wind turbines disorder data recognition method and device |
CN109740630A (en) * | 2018-12-06 | 2019-05-10 | 中科恒运股份有限公司 | Method for processing abnormal data and device |
CN109800217A (en) * | 2018-12-28 | 2019-05-24 | 南京天溯自动化控制系统有限公司 | A kind of restorative procedure, device and the electronic equipment of continuous abnormal energy consumption data |
CN109800217B (en) * | 2018-12-28 | 2023-06-06 | 南京天溯自动化控制系统有限公司 | Method and device for repairing continuous abnormal energy consumption data and electronic equipment |
CN110083804A (en) * | 2019-04-24 | 2019-08-02 | 华中科技大学无锡研究院 | Intelligent restorative procedure based on the wind power plant SCADA data missing that condition distribution returns |
CN110513252A (en) * | 2019-08-30 | 2019-11-29 | 湘电风能有限公司 | A kind of wind power plant SCADA system data abnormality alarming repair system and method |
CN111177114A (en) * | 2019-12-09 | 2020-05-19 | 国网甘肃省电力公司电力科学研究院 | Wind power plant output data restoration method based on ARMA model |
CN112067908A (en) * | 2020-08-20 | 2020-12-11 | 国网山东省电力公司电力科学研究院 | Fitting method and system for distortion electric field when transformer substation robot measures power frequency electric field |
CN112067908B (en) * | 2020-08-20 | 2023-06-16 | 国网山东省电力公司电力科学研究院 | Fitting method and system for distorted electric field when substation robot measures power frequency electric field |
CN118604717A (en) * | 2024-08-07 | 2024-09-06 | 保定市兆微软件科技有限公司 | A method and system for monitoring operation error of electric energy meter |
CN118604717B (en) * | 2024-08-07 | 2024-11-29 | 保定市兆微软件科技有限公司 | A method and system for monitoring operation error of electric energy meter |
Also Published As
Publication number | Publication date |
---|---|
CN106570790B (en) | 2021-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106570790A (en) | Wind farm output power data restoration method considering segmental characteristics of wind speed data | |
CN107732970B (en) | Static safety probability evaluation method for new energy grid-connected power system | |
CN111488896B (en) | A Time-varying Fault Probability Calculation Method for Distribution Lines Based on Multi-source Data Mining | |
CN106570593A (en) | Photovoltaic power station output data repairing method based on weather information | |
CN106355512A (en) | Power curve fitting method of wind turbine generator based on optimizing maximum value of probability density | |
CN106816886B (en) | A method for determining the peak-shaving demand of a large-scale wind power grid-connected system | |
CN104504607A (en) | Method for diagnosing photovoltaic power station faults on the basis of fuzzy clustering algorithm | |
CN108074038A (en) | A kind of power generation analogy method for considering regenerative resource and load multi-space distribution character | |
CN109034461A (en) | A kind of voltage dip Stochastic prediction method based on actual electric network monitoring information | |
CN110210660B (en) | An ultra-short-term wind speed prediction method | |
CN110009135B (en) | Wind power prediction method based on width learning | |
CN115019510B (en) | Traffic data restoration method based on dynamic self-adaptive generation countermeasure network | |
CN103825272A (en) | Reliability determination method for power distribution network with distributed wind power based on analytical method | |
CN105825002B (en) | A kind of wind power plant dynamic equivalent modeling method based on dynamic Gray Association Analysis | |
CN105117591A (en) | Power device running status analysis method | |
CN104574221B9 (en) | A kind of photovoltaic plant running status discrimination method based on loss electricity characteristic parameter | |
CN112132344A (en) | A Short-Term Wind Power Prediction Method Based on Similar Days and FRS-SVM | |
CN112287531B (en) | Offshore wind farm multi-state reliability obtaining method considering typhoon influence | |
CN105279384A (en) | Wind turbine cabin wind speed-based method and device for calculating wind speed of incoming flow | |
CN108683658A (en) | An abnormal identification method for industrial control network traffic based on multi-RBM network construction benchmark model | |
CN106410862A (en) | Wind power plant single machine equivalent method based on active recovery slope correction | |
CN114281846B (en) | New energy power generation prediction method based on machine learning | |
CN117333325A (en) | Photovoltaic power station missing power restoration method based on correlation coefficient spline interpolation | |
CN107272643A (en) | The practical unit equivalence method in new energy station | |
CN113007038B (en) | Method and device for comparing power generation performance between power generation devices and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |