CN106570561A - System and method for predicting insulator surface non-soluble deposit density - Google Patents

System and method for predicting insulator surface non-soluble deposit density Download PDF

Info

Publication number
CN106570561A
CN106570561A CN201610983705.9A CN201610983705A CN106570561A CN 106570561 A CN106570561 A CN 106570561A CN 201610983705 A CN201610983705 A CN 201610983705A CN 106570561 A CN106570561 A CN 106570561A
Authority
CN
China
Prior art keywords
neural network
nsdd
data
prediction
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610983705.9A
Other languages
Chinese (zh)
Other versions
CN106570561B (en
Inventor
李黎
姜昀芃
华奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201610983705.9A priority Critical patent/CN106570561B/en
Publication of CN106570561A publication Critical patent/CN106570561A/en
Application granted granted Critical
Publication of CN106570561B publication Critical patent/CN106570561B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Insulators (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种绝缘子表面不可溶沉积物密度预测系统及方法,其系统包括原始数据采集单元、串联型灰色神经网络预测单元、并联型灰色神经网络预测单元、嵌入型灰色神经网络预测单元、NSDD预测值输出单元和NSDD预警单元;将绝缘子表面不可溶沉积物密度数据和当地气象数据投入串联型灰色神经网络预测单元、并联型灰色神经网络预测单元和嵌入型灰色神经网络预测单元,通过这单个预测单元分别对绝缘子NSDD数值进行预测;然后利用检验样本对这三个预测单元的预测准确度进行判断,以预测准确度高的预测单元的输出作为绝缘子NSDD预测值;通过NSDD预警单元根据是否有两个及以上预测单元输出的预测值达到预设分级预警阈值来发出预警。

The invention discloses a system and method for predicting the density of insoluble deposits on the surface of an insulator. The system includes an original data acquisition unit, a series gray neural network prediction unit, a parallel gray neural network prediction unit, an embedded gray neural network prediction unit, NSDD predicted value output unit and NSDD early warning unit; put the insoluble sediment density data on the surface of the insulator and local meteorological data into the series gray neural network prediction unit, the parallel gray neural network prediction unit and the embedded gray neural network prediction unit, through which A single prediction unit predicts the NSDD value of the insulator respectively; then uses the test sample to judge the prediction accuracy of the three prediction units, and takes the output of the prediction unit with high prediction accuracy as the predicted value of the NSDD of the insulator; through the NSDD early warning unit according to whether An early warning is issued when the predicted values output by two or more predictive units reach the preset grading early warning threshold.

Description

一种绝缘子表面不可溶沉积物密度预测系统及方法A system and method for predicting the density of insoluble deposits on the surface of an insulator

技术领域technical field

本发明属于电力系统外绝缘技术领域,更具体地,涉及一种绝缘子表面不可溶沉积物密度预测系统及方法。The invention belongs to the technical field of external insulation of power systems, and more specifically relates to a system and method for predicting the density of insoluble deposits on the surface of an insulator.

背景技术Background technique

正常工作电压下的绝缘子由于表面污秽物的堆积,在阴雨、大雾等恶劣天气下容易发生污秽闪络事故,对电力系统的安全稳定运行构成严重威胁。对输电线路上绝缘子的污秽度进行预测非常有必要,以便及时预防污闪事故的发生。通常使用不可溶沉积物密度(Non Soluble Deposit Density,NSDD)简称灰密来评估绝缘子表面污秽程度。Due to the accumulation of dirt on the surface of insulators under normal working voltage, pollution flashover accidents are prone to occur in rainy, foggy and other bad weather, which poses a serious threat to the safe and stable operation of the power system. It is very necessary to predict the pollution degree of insulators on transmission lines in order to prevent pollution flashover accidents in time. Non-Soluble Deposit Density (NSDD) is usually used to evaluate the degree of pollution on the surface of insulators.

灰色模型因为其建模所需样本数据少、无须考虑分布规律及变化趋势、建模简单和运算方便的优点在绝缘子表面污秽程度预测方面得到广泛的应用,但是由于灰色系统缺乏自学习、自组织和自适应能力,对信息的处理能力较弱,不能独立完成预测任务。The gray model has been widely used in the prediction of the degree of pollution on the surface of insulators because of the advantages of less sample data required for modeling, no need to consider the distribution law and change trend, simple modeling and convenient operation. However, due to the lack of self-learning and self-organizing And self-adaptive ability, the ability to process information is weak, can not independently complete the prediction task.

发明内容Contents of the invention

针对现有技术的以上缺陷或改进需求,本发明提供了一种绝缘子表面不可溶沉积物密度预测系统及方法,其目的在于结合灰色模型与神经网络、提供一种可广泛应用于任意型号绝缘子的不可溶沉积物密度预测方法,以及污闪预警功能。Aiming at the above defects or improvement needs of the prior art, the present invention provides a system and method for predicting the density of insoluble deposits on the surface of insulators, the purpose of which is to combine gray models and neural networks to provide an Insoluble sediment density prediction method, and pollution flashover warning function.

为实现上述目的,按照本发明的一个方面,提供了一种绝缘子表面不可溶沉积物密度预测系统,包括原始数据采集单元、串联型灰色神经网络预测单元、并联型灰色神经网络预测单元、嵌入型灰色神经网络预测单元和NSDD预测值输出单元;In order to achieve the above object, according to one aspect of the present invention, a system for predicting the density of insoluble deposits on the surface of an insulator is provided, including a raw data acquisition unit, a series gray neural network prediction unit, a parallel gray neural network prediction unit, an embedded Gray neural network prediction unit and NSDD prediction value output unit;

其中,原始数据采集单元用于获取输电线上的绝缘子NSDD数据和气象数据;串联型灰色神经网络预测单元、并联型灰色神经网络预测单元与嵌入型灰色神经网络预测单元分别用于根据输电线上绝缘子NSDD数据和气象数据对输电线上的绝缘子NSDD进行预测;对应的,串联型灰色神经网络预测单元输出第一预测值、并联型灰色神经网络预测单元输出第二预测值、嵌入型灰色神经网络预测单元输出第三预测值;Among them, the original data acquisition unit is used to obtain the insulator NSDD data and meteorological data on the transmission line; the series gray neural network prediction unit, parallel gray neural network prediction unit and embedded gray neural network prediction unit are respectively used for Insulator NSDD data and meteorological data predict the insulator NSDD on the transmission line; correspondingly, the series type gray neural network prediction unit outputs the first predicted value, the parallel type gray neural network prediction unit outputs the second predicted value, and the embedded gray neural network The prediction unit outputs a third predicted value;

NSDD预测值输出单元用于将上述三个预测值与样本数据进行并对,根据比对结果从上述三个预测单元中选取预测准确度最高的预测单元,以该预测单元输出的预测值作为绝缘子NSDD预测值。The NSDD predicted value output unit is used to compare the above three predicted values with the sample data, select the predicted unit with the highest prediction accuracy from the above three predicted units according to the comparison results, and use the predicted value output by the predicted unit as the insulator NSDD predicted value.

优选地,上述绝缘子表面不可溶沉积物密度预测系统,还包括NSDD预警单元;Preferably, the above-mentioned insoluble deposit density prediction system on the surface of insulators also includes an NSDD early warning unit;

NSDD预警单元用于根据上述第一预测值、第二预测值、第三预测值与预设的预警阈值生成预警信号;具体地,当第一预测值、第二预测值、第三预测值中的两个及以上的预测值达到预警阈值,生成预警信号。The NSDD early warning unit is used to generate an early warning signal according to the first predicted value, the second predicted value, the third predicted value and the preset early warning threshold; specifically, when the first predicted value, the second predicted value, and the third predicted value Two or more of the predicted values reach the early-warning threshold, and an early-warning signal is generated.

优选的,上述绝缘子表面不可溶沉积物密度预测系统,其串联型灰色神经网络预测单元包括并列的第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型,以及神经网络;Preferably, the insoluble deposit density prediction system on the surface of an insulator, its serial gray neural network prediction unit includes a parallel first GM (1,1) model, a second GM (1,1) model, a third GM (1 ,1) model, and neural network;

其中,GM(1,1)模型是灰色模型的一种,是一个只包含单变量的一阶微分方程;神经网络包括输入层、隐含层以及输出层,其传递函数采用Sigmoid函数;Among them, the GM(1,1) model is a kind of gray model, which is a first-order differential equation containing only a single variable; the neural network includes an input layer, a hidden layer and an output layer, and its transfer function adopts the Sigmoid function;

第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型的输入接口均与原始数据采集单元相连;神经网络的输入端与第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型的输出接口相连;The input interfaces of the first GM (1,1) model, the second GM (1,1) model, and the third GM (1,1) model are all connected to the original data acquisition unit; the input terminal of the neural network is connected to the first GM ( 1,1) model, the second GM(1,1) model, and the output interface of the third GM(1,1) model are connected;

第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型分别根据输电线上的绝缘子NSDD数据进行绝缘子NSDD预测,获得三组灰化预测结果;由神经网络根据这三组灰化预测结果进行绝缘子NSDD预测,获得第一预测值。The first GM(1,1) model, the second GM(1,1) model, and the third GM(1,1) model predict the insulator NSDD according to the insulator NSDD data on the transmission line respectively, and obtain three sets of graying prediction results ; Predict the NSDD of the insulator according to the three groups of graying prediction results by the neural network, and obtain the first predicted value.

优选的,上述绝缘子表面不可溶沉积物密度预测系统,其并联型灰色神经网络预测单元包括GM(1,1)模型、神经网络和组合预测网络;其中,GM(1,1)模型与神经网络并联;Preferably, the insoluble deposit density prediction system on the surface of an insulator, its parallel gray neural network prediction unit includes a GM (1,1) model, a neural network and a combined prediction network; wherein, the GM (1,1) model and the neural network in parallel;

GM(1,1)模型与神经网络的输入端均与原始数据采集单元相连;组合预测网络的输入端与GM(1,1)模型的输出端、神经网络的输出端相连;The input ends of the GM (1,1) model and the neural network are connected to the original data acquisition unit; the input end of the combined prediction network is connected to the output end of the GM (1,1) model and the output end of the neural network;

GM(1,1)模型和神经网络分别根据输电线上的绝缘子NSDD数据和气象数据进行绝缘子NSDD预测;组合预测网络对GM(1,1)模型和神经网络的预测结果进行加权获得第二预测值。The GM(1,1) model and the neural network perform insulator NSDD prediction based on the insulator NSDD data and meteorological data on the transmission line respectively; the combined prediction network weights the prediction results of the GM(1,1) model and the neural network to obtain the second prediction value.

优选的,上述绝缘子表面不可溶沉积物密度预测系统,其嵌入型灰色神经网络预测单元包括依次串联的灰化层、神经网络和白化层;Preferably, the above-mentioned insoluble deposit density prediction system on the surface of an insulator, its embedded gray neural network prediction unit includes a graying layer, a neural network and a whitening layer in series;

其中,灰化层用于对原始的输电线上的绝缘子NSDD数据和气象数据进行累加变换和平滑处理;神经网络用于根据累加平滑后的数据进行绝缘子NSDD预测,白化层用于对神经网络的输出数据进行累减变换还原处理,获得第三预测值。Among them, the graying layer is used for accumulative transformation and smoothing of the original insulator NSDD data and meteorological data on the transmission line; the neural network is used for insulator NSDD prediction based on the accumulated and smoothed data, and the whitening layer is used for the neural network. The output data is subjected to accumulative transformation and restoration processing to obtain a third predicted value.

按照本发明的另一方面,基于上述绝缘子表面不可溶沉积物密度预测系统,提供了一种绝缘子表面不可溶沉积物密度预测方法,包括如下步骤:According to another aspect of the present invention, based on the above-mentioned insoluble deposit density prediction system on the insulator surface, a method for predicting the insoluble deposit density on the insulator surface is provided, comprising the following steps:

(1)根据采集到的原始的绝缘子NSDD数据建立三个序列长度不同的GM(1,1)模型;以这三个GM(1,1)模型的预测NSDD值为输入量,以测量NSDD为输出量,投入神经网络进行训练获得神经网络的最优权值和阈值;以训练好的神经网络进行绝缘子NSDD预测,获得第一预测值;(1) Establish three GM(1,1) models with different sequence lengths based on the collected original insulator NSDD data; use the predicted NSDD values of these three GM(1,1) models as input, and measure NSDD as The output is put into the neural network for training to obtain the optimal weight and threshold of the neural network; the insulator NSDD prediction is performed with the trained neural network to obtain the first predicted value;

其中,测量NSDD是指采集到的NSDD数据;Among them, measuring NSDD refers to the collected NSDD data;

(2)分别通过灰色模型和神经网络模型进行绝缘子NSDD预测,获得两个初始预测数据;根据检验样本确定这两个初始预测数据的权重系数;根据权重系数对两个初始预测数据进行加权处理,获得第二预测值;(2) Predict the insulator NSDD through the gray model and the neural network model respectively, and obtain two initial prediction data; determine the weight coefficients of the two initial prediction data according to the test samples; carry out weighting processing on the two initial prediction data according to the weight coefficients, obtain a second predicted value;

在本步骤中,对于拟预测NSDD值的时间节点k,以1~(k-10)节点的(k-10)个测量NSDD数据作为训练样本,以(k-10)~k的10个测量NSDD数据值作为检验样本;In this step, for the time node k to predict the NSDD value, the (k-10) measured NSDD data of 1~(k-10) nodes are used as training samples, and the 10 measured NSDD data of (k-10)~k The NSDD data value is used as a test sample;

(3)对神经网络进行训练,并对原始绝缘子NSDD数据进行灰化处理;将灰化处理后的数据投入训练好的神经网络,由训练好的神经网络进行绝缘子NSDD预测;对神经网络的输出数据进行白化处理,获得第三预测值;其中,灰化处理包括累加变化和平滑处理;白化处理是指累减变换;(3) Train the neural network, and ash the original insulator NSDD data; put the ashed data into the trained neural network, and predict the insulator NSDD by the trained neural network; output the neural network Performing whitening processing on the data to obtain a third predicted value; wherein, the graying processing includes cumulative change and smoothing processing; whitening processing refers to cumulative transformation;

(4)将上述第一预测值、第二预测值和第三预测值与检验样本进行并对,根据比对结果从上述三个预测单元中选取预测准确度最高的预测单元,以该预测单元输出的预测值作为最终的绝缘子NSDD预测值。(4) The above-mentioned first predicted value, second predicted value and third predicted value are combined with the test sample, and the predicted unit with the highest prediction accuracy is selected from the above-mentioned three predicted units according to the comparison results, and the predicted unit is used The output predicted value is used as the final insulator NSDD predicted value.

优选地,上述绝缘子表面不可溶沉积物密度预测方法,其步骤(3)包括如下子步骤:Preferably, the method for predicting the density of insoluble deposits on the surface of an insulator, its step (3) includes the following sub-steps:

(3.1)采用气象数据、时间节点m之前的原始绝缘子NSDD数据、以及时间节点m之前的10个时间节点的灰化数据对神经网络进行训练,获得最优权值和阈值;根据最优权值和阈值构建得到训练好的神经网络;(3.1) Use the meteorological data, the original insulator NSDD data before time node m, and the grayed data of 10 time nodes before time node m to train the neural network to obtain the optimal weight and threshold; according to the optimal weight and the threshold to build a trained neural network;

其中,m为训练预测绝缘子NSDD数据值的时间节点,训练神经网络采用的输入数据包括气象数据、时间节点1~时间节点(m-1)的原始绝缘子NSDD数据,(m-10)~m的10个时间节点的原始绝缘子NSDD数据经灰化处理后的灰化数据;气象数据包括风速、降水量、相对湿度;训练神经网络采用的输出数据是指(m-9)~(m+1)共10个时间节点的原始绝缘子NSDD数据经灰化处理后的灰化数据;Among them, m is the time node for training and predicting the NSDD data value of the insulator. The input data used in the training neural network includes meteorological data, the original insulator NSDD data from time node 1 to time node (m-1), (m-10) to m The ashing data of the original insulator NSDD data at 10 time nodes after ashing processing; the meteorological data includes wind speed, precipitation, and relative humidity; the output data used for training the neural network refers to (m-9)~(m+1) The ashing data of the original insulator NSDD data at 10 time nodes after ashing processing;

(3.2)对第m节点的原始绝缘子NSDD数据进行灰化处理;将灰化后的数据投入训练好的神经网络,获得初始预测值;对初始预测值进行白化处理,获得第二预测值。(3.2) Perform graying processing on the original insulator NSDD data of the mth node; put the grayed data into the trained neural network to obtain the initial prediction value; perform whitening processing on the initial prediction value to obtain the second prediction value.

优选地,上述绝缘子表面不可溶沉积物密度预测方法,还包括步骤(5):Preferably, the method for predicting the density of insoluble deposits on the surface of an insulator further includes step (5):

(5)将第一预测值、第二预测值、第三预测值分别与预设的预警阈值进行比较,当第一预测值、第二预测值、第三预测值中的两个及以上达到预警阈值,生成预警信号。(5) Compare the first predicted value, the second predicted value, and the third predicted value with the preset early warning thresholds, when two or more of the first predicted value, the second predicted value, and the third predicted value reach Early warning threshold to generate early warning signals.

总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:Generally speaking, compared with the prior art, the above technical solutions conceived by the present invention can achieve the following beneficial effects:

(1)本发明提供的绝缘子表面不可溶沉积物密度预测系统及方法,将灰色模型与神经网络模型有机融合,既具有灰色系统用小样本数据建模的独特方法,又具有神经网络模型对非线性、非精确规律具有自适应能力的优点;通过组合能从不同的角度、不同的模型得到系统不同的信息,,达到提高预测精度与增加稳定性和结果的可靠性的目的,使组合模型对于数据结构的变化具有更强的鲁棒性,有效弥补了单一预测方法不准确的缺陷;(1) The system and method for predicting the density of insoluble deposits on the surface of insulators provided by the present invention organically integrates the gray model and the neural network model. Linear and inaccurate laws have the advantage of self-adaptability; through combination, different information of the system can be obtained from different angles and different models, so as to achieve the purpose of improving prediction accuracy, increasing stability and reliability of results, so that the combined model can be used for The change of data structure has stronger robustness, which effectively makes up for the inaccurate defect of a single prediction method;

(2)本发明提供的绝缘子表面不可溶沉积物密度预测系统及方法,其采用的串联型灰色神经网络预测单元将神经网络与灰色模型在系统中按串联方式连接,以灰色模型的输出作为神经网络的输入,可用于复杂系统容错分析预测,极大减少了神经网络的训练时长,并有效解决了单一神经网络预测易陷入局部极小值的问题;(2) In the insoluble deposit density prediction system and method on the surface of insulators provided by the present invention, the series type gray neural network prediction unit that it adopts connects the neural network and the gray model in series in the system, and uses the output of the gray model as the neural network. The input of the network can be used for fault-tolerant analysis and prediction of complex systems, which greatly reduces the training time of the neural network and effectively solves the problem that the prediction of a single neural network is easy to fall into a local minimum;

(3)本发明提供的绝缘子表面不可溶沉积物密度预测系统及方法,其通过加权的方式将灰色模型与神经网络进行组合,构建并联型灰色神经网络预测单元,克服了单一模型易丢失信息的缺陷,降低了随机性,具有提高预测精度的效果;(3) The system and method for predicting the density of insoluble deposits on the surface of insulators provided by the present invention combines the gray model and the neural network in a weighted manner to construct a parallel gray neural network prediction unit, which overcomes the problem that a single model is easy to lose information Defects reduce randomness and have the effect of improving prediction accuracy;

(4)本发明提供的绝缘子表面不可溶沉积物密度预测系统及方法,其嵌入型灰色神经网络预测单元通过设置灰化层弱化原始数据的随机性,易为神经网络的非线性激励函数所逼近,极大的缩短了网络学习时长,在提高预测精度的同时加快了收敛进程;(4) In the insoluble sediment density prediction system and method on the surface of insulators provided by the present invention, its embedded gray neural network prediction unit weakens the randomness of the original data by setting the graying layer, and is easily approximated by the nonlinear excitation function of the neural network , which greatly shortens the network learning time and speeds up the convergence process while improving the prediction accuracy;

(5)本发明提供的绝缘子表面不可溶沉积物密度预测系统及方法,用灰色系统辅助构造神经网络,由于灰色系统的信息结构包括确定性信息和不确定性信息,用灰色系统中的确定性信息来辅助构造神经网络,由确定性信息来指导神经网络的结构,改进了神经网络的学习算法;(5) The insoluble sediment density prediction system and method on the surface of insulators provided by the present invention use the gray system to assist in constructing the neural network. Since the information structure of the gray system includes deterministic information and uncertainty information, the certainty information in the gray system is used to Information is used to assist in the construction of neural networks, the structure of neural networks is guided by deterministic information, and the learning algorithm of neural networks is improved;

(6)本发明提供的绝缘子表面不可溶沉积物密度预测系统及方法,其神经网络可有效增强灰色系统;由于灰色系统在信息时区内出现空集(不包括信息的时区),因此只能建立近似的、不完全确定的灰微分方程,而在实际应用中难以直接使用灰色微分方程,需要对灰微分方程进行解析;本发明构造神经网络对灰微分方程的灰参数进行解析,从灰色系统已知的数据中提取样本对神经网络进行训练,当神经网络收敛时从中提取出解析的灰微分方程参数,得到确定的微分方程,实现精确预测。(6) In the insoluble sediment density prediction system and method on the surface of an insulator provided by the present invention, its neural network can effectively enhance the gray system; because the gray system has an empty set (time zone not including information) in the information time zone, it can only be established Approximate, incompletely determined gray differential equation, but it is difficult to directly use the gray differential equation in practical applications, and the gray differential equation needs to be analyzed; the present invention constructs a neural network to analyze the gray parameters of the gray differential equation, from the gray system already Extract samples from the known data to train the neural network. When the neural network converges, the parameters of the analytic gray differential equation are extracted to obtain a definite differential equation and realize accurate prediction.

附图说明Description of drawings

图1是实施例提供的绝缘子表面不可溶沉积物密度预测系统示意图;1 is a schematic diagram of a system for predicting the density of insoluble deposits on the surface of an insulator provided in an embodiment;

图2是实施例中GM(1,1)模型的预测流程示意图;Fig. 2 is a schematic diagram of the prediction process of the GM (1,1) model in the embodiment;

图3是实施例中的神经网络模型结构示意图;Fig. 3 is the structural representation of neural network model in the embodiment;

图4是实施例中的神经网络预测流程示意图;Fig. 4 is the neural network prediction flowchart schematic diagram in the embodiment;

图5是实施例中的串联型灰色神经网络模型的结构示意图;Fig. 5 is the structural representation of the serial gray neural network model in the embodiment;

图6是实施例中的并联型灰色神经网络模型的结构示意图;Fig. 6 is the structural representation of the parallel type gray neural network model in the embodiment;

图7是实施例中的嵌入型灰色神经网络模型的结构示意图。Fig. 7 is a schematic structural diagram of the embedded gray neural network model in the embodiment.

具体实施方式detailed description

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention. In addition, the technical features involved in the various embodiments of the present invention described below can be combined with each other as long as they do not constitute a conflict with each other.

本发明实施例提供的绝缘子表面不可溶沉积物密度预测系统,如图1所示,包括原始数据采集单元、串联型灰色神经网络预测单元、并联型灰色神经网络预测单元、嵌入型灰色神经网络预测单元、NSDD预测值输出单元和NSDD预警单元;The insoluble sediment density prediction system on the surface of insulators provided by the embodiment of the present invention, as shown in Figure 1, includes a raw data acquisition unit, a series gray neural network prediction unit, a parallel gray neural network prediction unit, and an embedded gray neural network prediction unit. Unit, NSDD predicted value output unit and NSDD early warning unit;

其中,原始数据采集单元用于获取输电线上绝缘子NSDD数据和气象数据;串联型灰色神经网络预测单元、并联型灰色神经网络预测单元与嵌入型灰色神经网络预测单元分别根据输电线上绝缘子NSDD数据和气象数据对绝缘子NSDD进行预测,对应的,获得第一预测值、第二预测值、第三预测值;本实施例中,利用光传感器输变电灰密在线监测设备或其它在线监测装置采集输电线上绝缘子NSDD数据;气象数据则是在待预测绝缘子周围采集到的数据;Among them, the original data acquisition unit is used to obtain NSDD data and meteorological data of insulators on the transmission line; the series gray neural network prediction unit, the parallel gray neural network prediction unit and the embedded gray neural network prediction unit are respectively based on the NSDD data Predict the NSDD of the insulator with the meteorological data, correspondingly, obtain the first predicted value, the second predicted value, and the third predicted value; NSDD data of insulators on transmission lines; meteorological data are data collected around insulators to be predicted;

NSDD预测值输出单元将上述三个预测值与样本数据进行并对,从上述三个预测单元中选取预测准确度最高的预测单元,以该预测单元输出的预测值作为绝缘子NSDD预测值;The NSDD prediction value output unit combines the above three prediction values with the sample data, selects the prediction unit with the highest prediction accuracy from the above three prediction units, and uses the prediction value output by the prediction unit as the insulator NSDD prediction value;

NSDD预警单元根据第一预测值、第二预测值、第三预测值与预设的分级预警阈值生成预警信号;具体地,当第一预测值、第二预测值、第三预测值中的两个及以上的预测值达到分级预警阈值,生成预警信号。The NSDD early warning unit generates an early warning signal according to the first predicted value, the second predicted value, the third predicted value and the preset hierarchical warning threshold; specifically, when two of the first predicted value, the second predicted value, and the third predicted value If one or more predicted values reach the hierarchical early-warning threshold, an early-warning signal is generated.

本实施例中所采用的GM(1,1)模型的预测流程如图2所示意,据图如下:The prediction process of the GM (1,1) model adopted in the present embodiment is shown in Figure 2, according to the figure as follows:

首先输入原始数据序列X(0)=[x(0)(1),x(0)(2),…,x(0)(n)];First input the original data sequence X (0) = [x (0) (1), x (0) (2), ..., x (0) (n)];

然后判断上述原始数据序列X(0)是否符合建模条件;若否,则进行数据的平滑处理,若是,则对原始数据做累加处理获得累加序列X(1);x(1)=[x(1)(1),x(1)(2),…,x(1)(n)];其中 Then judge whether the above-mentioned original data sequence X (0) meets the modeling condition; If not, then carry out the smoothing processing of data, if so, then do accumulation processing to original data and obtain accumulation sequence X (1) ; x (1) =[x (1) (1),x (1) (2),…,x (1) (n)]; where

然后构建关于X(1)的一阶线性微分方程经最小二乘法求解获得参数a和b; Then construct a first-order linear differential equation with respect to X (1) The parameters a and b are obtained by solving the least squares method;

其中, in,

由此获得X(1)的预测值, From this, the predicted value of X(1) is obtained,

经累减还原得到X(0)的预测值, The predicted value of X(0) is obtained through cumulative reduction and reduction,

本实施例中所采用的神经网络模型的结构如图3所示意的,包括输入层、隐含层、输出层;Wij为输入层到隐含层的权值,θj为隐含层神经元的阈值,Vij为隐含层到输出层的连接权值,为输出层的阈值;神经网络的连接权值Wij、Vij和阈值θj通过训练获得;The structure of the neural network model adopted in the present embodiment is as shown in Figure 3, comprises input layer, hidden layer, output layer; Wij is the weight value of input layer to hidden layer, and θ j is hidden layer neuron The threshold of the element, V ij is the connection weight from the hidden layer to the output layer, is the threshold of the output layer; the connection weights W ij , V ij and thresholds θ j , acquired through training;

隐含层各神经元的输入其中Xi为神经网络各输入节点的输入量;The input of each neuron in the hidden layer Among them, Xi is the input amount of each input node of the neural network;

神经网络的传递函数采用Sigmoid函数f(x)=1/(1+e-x);The transfer function of neural network adopts Sigmoid function f(x)=1/(1+e- x );

隐含层的输出 The output of the hidden layer

输出层神经元的输入 The input to the neurons in the output layer

输出层神经元的输出,即神经网络的预测值 The output of the neurons in the output layer, that is, the predicted value of the neural network

通过上述神经网络进行预测的流程如图4所示,包括如下步骤:The process of predicting through the above neural network is shown in Figure 4, including the following steps:

首先构建神经网络的基本结构:设置神经网络的输入层、隐含层和输出层节点数,输入隐含层的初始权值和阈值,输入输出层的初始权值和阈值;First construct the basic structure of the neural network: set the number of nodes in the input layer, hidden layer, and output layer of the neural network, the initial weights and thresholds of the input hidden layer, and the initial weights and thresholds of the input and output layers;

然后从样本库中选取一个样本来训练神经网络;在训练的过程的中,根据隐含层的误差和输出,以及输出层的误差和输出,来不断调整隐含层的权值和阈值,以及输出层的权值和阈值;Then select a sample from the sample library to train the neural network; during the training process, according to the error and output of the hidden layer, and the error and output of the output layer, the weights and thresholds of the hidden layer are continuously adjusted, and The weights and thresholds of the output layer;

经过全部样本训练过的神经网络,在符合学习次数和误差条件的要求下,结束神经网络的训练。After the neural network has been trained by all samples, the training of the neural network ends when the requirements of the learning times and error conditions are met.

实施例中,所采用的串联型灰色神经网络预测单元的结构如图5所示;包括3个GM(1,1)模型,GM1、GM2和GM3,以及一个3×7×1型神经网络;In the embodiment, the structure of the series-type gray neural network prediction unit used is shown in Figure 5; it includes three GM(1,1) models, GM 1 , GM 2 and GM 3 , and a 3×7×1 type Neural Networks;

该神经网络包括3个输入层节点、7个隐含层节点、1个输出层节点;3个GM(1,1)模型GM1,GM2,GM3为神经网络的输入量;输出层到隐含层、隐含层到输出层的传递函数为Sigmoid型函数,隐含层的设置依据Kolmogorov定理;神经网络的输出即为第一预测值。The neural network includes 3 input layer nodes, 7 hidden layer nodes, and 1 output layer node; 3 GM (1,1) models GM 1 , GM 2 , and GM 3 are the input quantities of the neural network; the output layer to The hidden layer and the transfer function from the hidden layer to the output layer are Sigmoid functions, and the setting of the hidden layer is based on Kolmogorov's theorem; the output of the neural network is the first predicted value.

采用上述串联型灰色神经网络预测单元进行NSDD预测的步骤具体如下:The steps for NSDD prediction using the above series gray neural network prediction unit are as follows:

(1.1)利用数据采集模块获取的NSDD数据建立3个GM(1,1)模型,3个GM(1,1)模型的序列长度分别为10、8和6;即第(k-20)~(k-10)、(k-18)~(k-10)和(k-16)~(k-10)个时间节点的数据;其中,k是指需要进行绝缘子NSDD预测的时间节点;(1.1) Use the NSDD data acquired by the data acquisition module to establish three GM(1,1) models, and the sequence lengths of the three GM(1,1) models are 10, 8 and 6 respectively; (k-10), (k-18)~(k-10) and (k-16)~(k-10) time nodes data; where k refers to the time node that needs to be predicted for insulator NSDD;

(1.2)用这3个GM(1,1)模型分别进行预测,获得3组NSDD预测数据,每组包括(k-10)~k时间节点的10个NSDD预测数据值;(1.2) Use the three GM(1,1) models to predict respectively, and obtain three groups of NSDD prediction data, each group includes 10 NSDD prediction data values at (k-10)~k time nodes;

(1.3)上述3个GM(1,1)模型共有的NSDD预测值为(k-16)~k这16个NSDD数据,以这16个NSDD预测数据值作为神经网络的输入量,以实际采集到的原始绝缘子NSDD数据作为神经网络的输出量对神经网络进行训练,获得得神经网络的最优权值和阈值;实施例中,本步骤采用的神经网络结构为3×7×1型;(1.3) The above-mentioned 3 GM(1,1) models share the NSDD prediction values (k-16)~k of these 16 NSDD data, and these 16 NSDD prediction data values are used as the input of the neural network, and the actual collection The original insulator NSDD data obtained is used as the output of the neural network to train the neural network to obtain the optimal weight and threshold of the neural network; in the embodiment, the neural network structure used in this step is 3 × 7 × 1 type;

(1.4)采用训练好的神经网络对k时间节点之后的未来时刻的绝缘子NSDD值进行预测,获得第一预测值。(1.4) Use the trained neural network to predict the NSDD value of the insulator at the future moment after the k time node, and obtain the first predicted value.

实施例中,所采用的并联型灰色神经网络预测单元的结构如图6所示,包括GM(1,1)模型、神经网络和组合预测网络;GM(1,1)模型与神经网络并联,两者的输出作为组合预测网络的输入,组合预测网络的输出即为第二预测值;采用该并联型灰色神经网络预测单元进行NSDD预测的步骤具体如下:In the embodiment, the structure of the adopted parallel gray neural network prediction unit is as shown in Figure 6, including GM (1,1) model, neural network and combination prediction network; GM (1,1) model is connected in parallel with neural network, The output of the two is used as the input of the combination prediction network, and the output of the combination prediction network is the second prediction value; the steps of using the parallel gray neural network prediction unit for NSDD prediction are as follows:

(2.1)利用灰色预测模型GM(1,1)模型与神经网络模型分别进行预测,获得初始预测NSDD值y1和y2(2.1) Utilize the gray prediction model GM (1,1) model and the neural network model to predict respectively, obtain the initial prediction NSDD value y 1 and y 2 ;

(2.2)利用检验值Y(0)(t)分别减去初始预测NSDD值y1和y2,得到预测误差e1和e2(2.2) Use the test value Y (0) (t) to subtract the initial predicted NSDD values y 1 and y 2 respectively to obtain the prediction errors e 1 and e 2 ;

根据预测误差计算得到GM(1,1)模型的权重系数ω1和神经网络模型的权重系数ω2;ω12=1;Calculate the weight coefficient ω 1 of the GM (1,1) model and the weight coefficient ω 2 of the neural network model according to the prediction error ; ω 12 =1;

(2.3)根据yc=ω1y12y2获得第二预测值。(2.3) Obtain the second predicted value according to y c1 y 12 y 2 .

其中,权重系数ω1和权重系数ω2根据以下方法获取:Among them, the weight coefficient ω 1 and the weight coefficient ω 2 are obtained according to the following method:

根据检验序列Y(0)(t)获取e1、e2和ecObtain e 1 , e 2 and e c according to the test sequence Y (0) (t) as

绝缘子NSDD第二预测值yc的方差为The variance of the second predicted value y c of the insulator NSDD is

对Var(ec)求极小值获得 Find the minimum value of Var(e c ) to get

由于,ω2=1-ω1因此,权重系数ω1和权重系数ω2分别为:Because, ω 2 =1-ω 1 therefore, weight coefficient ω 1 and weight coefficient ω 2 are respectively:

其中,Var(e1)=σ11,Var(e2)=σ22,cov(e1,e2)=σ12Wherein, Var(e 1 )=σ 11 , Var(e 2 )=σ 22 , cov(e 1 ,e 2 )=σ 12 .

本实施例中所采用的嵌入型灰色神经网络预测单元的结构如图7所示,依次串联的灰化层、神经网络和白化层;灰化层对原始数据做累加变换和平滑处理,白化层对神经网络的输出数据进行累减变换还原处理;其中,神经网络的结构为4×9×1型;神经网络的输入层为气象数据、NSDD数据;其中NSDD数据是第(k-10)节点~第k节点共10个时间节点的累加数据;其隐含层依据Kolmogorov定理设置;输出层为预测的NSDD数据,其值为第(k-9)~第(k+1)共10个时间节点的累加数据;The structure of the embedded gray neural network prediction unit used in this embodiment is shown in Figure 7, the ashing layer, neural network and whitening layer are connected in series in sequence; the ashing layer performs cumulative transformation and smoothing processing on the original data, and the whitening layer The output data of the neural network is processed by cumulative transformation and restoration; the structure of the neural network is 4×9×1; the input layer of the neural network is meteorological data and NSDD data; the NSDD data is the (k-10)th node The accumulative data of 10 time nodes from the kth node; its hidden layer is set according to the Kolmogorov theorem; the output layer is the predicted NSDD data, and its value is a total of 10 time nodes from (k-9) to (k+1) Accumulated data of nodes;

采用该嵌入型灰色神经网络预测单元进行NSDD预测的步骤具体如下:The steps of NSDD prediction using the embedded gray neural network prediction unit are as follows:

(3.1)对原始数据序列X(0)=(x(0)(1),x(0)(2),…,x(0)(n))进行累加变换获得1-AGO序列X(1)=(x(1)(1),x(1)(2),…,x(1)(n));(3.1) Perform cumulative transformation on the original data sequence X (0) = (x (0) (1), x (0) (2), ..., x (0) (n)) to obtain the 1-AGO sequence X (1 ) = (x (1) (1),x (1) (2),...,x (1) (n));

其中,x(0)(k)≥0,k=1,2,…,n; Among them, x (0) (k)≥0, k=1,2,...,n;

(3.2)对上述1-AGO序列进行三点平滑处理;(3.2) Carry out three-point smoothing processing to above-mentioned 1-AGO sequence;

对于k=2,3,…,n-1的节点:For k=2,3,...,n-1 nodes:

平滑处理公式为 The smoothing formula is

对k=1和k=n的两个端点:For both endpoints k=1 and k=n:

平滑处理公式为 The smoothing formula is

(3.3)通过神经网络根据灰化处理的结果进行预测;(3.3) Predict according to the result of graying processing by neural network;

(3.4)对神经网络的输出序列X(3)=(x(3)(1),x(3)(2),…,x(3)(n))进行一次累减变换,(3.4) Perform a cumulative transformation on the output sequence X (3) = (x (3) (1), x (3) (2), ..., x (3) (n)) of the neural network,

获得第三预测值X(4)=(x(4)(1),x(4)(2),…,x(4)(n)),其中x(3)(k)≥0,k=1,2,…,n;Obtain the third predicted value X (4) = (x (4) (1), x (4) (2), ..., x (4) (n)), where x (3) (k) ≥ 0, k =1,2,...,n;

x(3)(k)=x(2)(k)-x(2)(k-1)。x (3) (k)=x (2) (k)-x (2) (k-1).

本实施例中,采用NSDD预警单元根据上述各单元的预测值可进行预警预测;预警单元设置A、B、C、D共4个预警等级。In this embodiment, the NSDD early warning unit can be used to perform early warning prediction according to the predicted values of the above units; the early warning unit is set with four early warning levels of A, B, C, and D.

其中,当本系统的三个预测单元中有两个预测单元输出的NSDD预测值达到可能发生污闪时绝缘子NSDD数值ρF的95%时,即95%ρF,系统发出A级预警;当本系统的三个预测模型中有两个预测模型的NSDD预测值达到可能发生污闪时绝缘子NSDD数值ρF的90%时,即90%ρF,系统发出B级预警;当本系统的三个预测模型中有两个预测模型的NSDD预测值达到可能发生污闪时绝缘子NSDD数值ρF的85%时,即85%ρF,系统发出C级预警;当本系统的三个预测模型中有两个预测模型的NSDD预测值达到可能发生污闪时绝缘子NSDD数值ρF的80%时,即80%ρF,系统发出D级预警。Among them, when the NSDD prediction value output by two of the three prediction units in the system reaches 95% of the NSDD value ρ F of the insulator when pollution flashover may occur, that is, 95% ρ F , the system issues an A-level early warning; when When the NSDD prediction value of two of the three prediction models in this system reaches 90% of the NSDD value ρ F of the insulator when pollution flashover may occur, that is, 90% ρ F , the system issues a B-level early warning; when the three of the system When the NSDD prediction value of two of the prediction models reaches 85% of the NSDD value ρ F of the insulator when pollution flashover may occur, that is, 85% ρ F , the system issues a C-level early warning; when the three prediction models of the system When the NSDD prediction value of the two prediction models reaches 80% of the NSDD value ρ F of the insulator when pollution flashover may occur, that is, 80% ρ F , the system issues a D-level warning.

通过NSDD预警单元将绝缘子NSDD预测值与发生污闪时的绝缘子NSDD值对比来生成预警信息以供运行人员处理,可起到及时有效防止输电线路发生污秽闪络事故的作用。Through the NSDD early warning unit, the predicted NSDD value of the insulator is compared with the NSDD value of the insulator when pollution flashover occurs to generate early warning information for the operator to process, which can play a role in timely and effective prevention of pollution flashover accidents on the transmission line.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (8)

1.一种绝缘子表面不可溶沉积物密度预测系统,其特征在于,包括原始数据采集单元、串联型灰色神经网络预测单元、并联型灰色神经网络预测单元、嵌入型灰色神经网络预测单元和NSDD预测值输出单元;1. A prediction system for insoluble deposit density on the surface of an insulator, characterized in that it comprises an original data acquisition unit, a series gray neural network prediction unit, a parallel gray neural network prediction unit, an embedded gray neural network prediction unit and NSDD prediction value output unit; 所述原始数据采集单元用于获取输电线上的绝缘子NSDD数据和气象数据;所述串联型灰色神经网络预测单元、并联型灰色神经网络预测单元与嵌入型灰色神经网络预测单元用于分别根据输电线上绝缘子NSDD数据和气象数据对输电线上的绝缘子NSDD进行预测,获得三个预测值;The original data acquisition unit is used to obtain the insulator NSDD data and meteorological data on the transmission line; the series gray neural network prediction unit, the parallel gray neural network prediction unit and the embedded gray neural network prediction unit are used for respectively according to the power transmission line Online insulator NSDD data and meteorological data are used to predict the insulator NSDD on the transmission line, and three predicted values are obtained; 所述NSDD预测值输出单元用于将所述三个预测值与样本数据进行并对,根据比对结果从三个预测单元中选取预测准确度最高的预测单元,以该预测单元输出的预测值作为绝缘子NSDD预测值。The NSDD predictive value output unit is used to combine the three predictive values with the sample data, select the predictive unit with the highest predictive accuracy from the three predictive units according to the comparison results, and use the predictive value output by the predictive unit As an insulator NSDD prediction value. 2.如权利要求1所述的绝缘子表面不可溶沉积物密度预测系统,其特征在于,还包括NSDD预警单元;2. The insoluble deposit density prediction system on the surface of an insulator according to claim 1, further comprising an NSDD early warning unit; 所述NSDD预警单元用于根据所述三个预测值与预设的预警阈值生成预警信号;具体地,当所述三个预测值的两个或三个预测值达到预警阈值,则生成预警信号。The NSDD early warning unit is used to generate an early warning signal according to the three predicted values and a preset early warning threshold; specifically, when two or three of the three predicted values reach the early warning threshold, an early warning signal is generated . 3.如权利要求1或2所述的绝缘子表面不可溶沉积物密度预测系统,其特征在于,所述串联型灰色神经网络预测单元包括并列的第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型,以及神经网络;3. the insoluble deposit density prediction system on the surface of insulators as claimed in claim 1 or 2, is characterized in that, described series type gray neural network prediction unit comprises the first GM (1,1) model that is juxtaposed, the second GM (1,1) model, the third GM (1,1) model, and neural network; 所述第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型的输入接口均与所述原始数据采集单元相连;所述神经网络的输入端与第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型的输出接口相连;The input interfaces of the first GM (1,1) model, the second GM (1,1) model, and the third GM (1,1) model are all connected to the original data acquisition unit; the input of the neural network The end is connected to the output interface of the first GM (1,1) model, the second GM (1,1) model, and the third GM (1,1) model; 所述第一GM(1,1)模型、第二GM(1,1)模型、第三GM(1,1)模型分别根据输电线上的绝缘子NSDD数据进行绝缘子NSDD预测,获得三组灰化预测结果;由神经网络根据所述三组灰化预测结果进行绝缘子NSDD预测,获得第一预测值。The first GM(1,1) model, the second GM(1,1) model, and the third GM(1,1) model respectively predict the insulator NSDD according to the insulator NSDD data on the transmission line, and obtain three groups of graying Prediction result: the neural network performs NSDD prediction of the insulator according to the three groups of ashing prediction results, and obtains the first prediction value. 4.如权利要求1或2所述的绝缘子表面不可溶沉积物密度预测系统,其特征在于,所述并联型灰色神经网络预测单元包括GM(1,1)模型、神经网络和组合预测网络;4. the insoluble deposit density prediction system on the surface of insulators as claimed in claim 1 or 2, is characterized in that, described parallel type gray neural network prediction unit comprises GM (1,1) model, neural network and combined prediction network; 所述GM(1,1)模型与神经网络并联;所述GM(1,1)模型与神经网络的输入端均与原始数据采集单元相连;所述组合预测网络的输入端与GM(1,1)模型的输出端、神经网络的输出端相连;The GM (1,1) model is connected in parallel with the neural network; the input ends of the GM (1,1) model and the neural network are connected with the original data acquisition unit; the input end of the combined prediction network is connected with the GM (1, 1) The output end of the model is connected to the output end of the neural network; 所述GM(1,1)模型和神经网络用于分别根据输电线上的绝缘子NSDD数据和气象数据进行绝缘子NSDD预测;所述组合预测网络用于对GM(1,1)模型和神经网络的预测结果进行加权获得第二预测值。The GM (1,1) model and the neural network are used to carry out insulator NSDD prediction according to the insulator NSDD data and meteorological data on the transmission line respectively; the combined prediction network is used for the GM (1,1) model and the neural network The prediction results are weighted to obtain the second prediction value. 5.如权利要求1或2所述的绝缘子表面不可溶沉积物密度预测系统,其特征在于,所述嵌入型灰色神经网络预测单元包括依次串联的灰化层、神经网络和白化层;5. The insoluble deposit density prediction system on the surface of an insulator as claimed in claim 1 or 2, wherein said embedded gray neural network prediction unit comprises a graying layer, a neural network and a whitening layer connected in succession; 所述灰化层用于对输电线上的绝缘子NSDD数据和气象数据进行累加变换和平滑处理;所述神经网络用于根据累加平滑后的数据进行绝缘子NSDD预测,所述白化层用于对神经网络的输出数据进行累减变换还原处理,获得第三预测值。The ashing layer is used for accumulative transformation and smoothing of the insulator NSDD data and meteorological data on the transmission line; The output data of the network is processed by cumulative subtraction transformation and restoration to obtain the third predicted value. 6.一种基于权利要求1~5任一项所述的绝缘子表面不可溶沉积物密度预测系统的绝缘子表面不可溶沉积物密度预测方法,其特征在于,包括如下步骤:6. A method for predicting the density of insoluble deposits on the surface of insulators based on the prediction system for the density of insoluble deposits on the surface of insulators according to any one of claims 1 to 5, characterized in that it comprises the following steps: (1)根据采集到的原始的绝缘子NSDD数据建立三个序列长度不同的GM(1,1)模型;以这三个GM(1,1)模型输出的预测NSDD值为输入量,以测量NSDD数据为输出量进行神经网络训练;以训练好的神经网络进行绝缘子NSDD预测,获得第一预测值;(1) Establish three GM(1,1) models with different sequence lengths based on the collected original insulator NSDD data; use the predicted NSDD values output by these three GM(1,1) models as input to measure NSDD The data is used as the output to carry out neural network training; use the trained neural network to predict the NSDD of the insulator, and obtain the first predicted value; 其中,测量NSDD是指采集到的NSDD数据;Among them, measuring NSDD refers to the collected NSDD data; (2)分别通过灰色模型和神经网络模型进行绝缘子NSDD预测,获得两个初始预测数据;根据检验样本确定所述两个初始预测数据的权重系数;根据所述权重系数对两个初始预测数据进行加权处理,获得第二预测值;(2) Carry out insulator NSDD prediction by gray model and neural network model respectively, obtain two initial prediction data; Determine the weight coefficient of described two initial prediction data according to test sample; Carry out two initial prediction data according to described weight coefficient Weighting processing to obtain a second predicted value; (3)对神经网络进行训练,并对测量NSDD数据进行灰化处理;以灰化处理后的数据作为输入数据,采用训练好的神经网络进行绝缘子NSDD预测;对神经网络的输出数据进行白化处理,获得第三预测值;所述灰化处理包括累加变化和平滑处理;所述白化处理是指累减变换;(3) Train the neural network, and perform graying processing on the measured NSDD data; use the grayed data as input data, and use the trained neural network to predict the NSDD of the insulator; perform whitening processing on the output data of the neural network , to obtain a third predicted value; the graying process includes cumulative change and smoothing; the whitening process refers to cumulative transformation; (4)将所述第一预测值、第二预测值和第三预测值与检验样本进行并对,根据比对结果从三个预测值中选取预测准确度最高一个作为绝缘子NSDD预测值。(4) Combine the first predicted value, the second predicted value and the third predicted value with the test sample, and select the one with the highest prediction accuracy from the three predicted values as the predicted value of the insulator NSDD according to the comparison results. 7.如权利要求6所述的绝缘子表面不可溶沉积物密度预测系统,其特征在于,所述步骤(3)包括如下子步骤:7. The insoluble deposit density prediction system on the surface of an insulator as claimed in claim 6, wherein said step (3) comprises the following sub-steps: (3.1)采用气象数据、时间节点m之前的原始绝缘子NSDD数据、以及时间节点m之前的10个时间节点的灰化数据对神经网络进行训练,获得最优权值和阈值;根据最优权值和阈值构建得到训练好的神经网络;(3.1) Use the meteorological data, the original insulator NSDD data before time node m, and the grayed data of 10 time nodes before time node m to train the neural network to obtain the optimal weight and threshold; according to the optimal weight and the threshold to build a trained neural network; 其中,m为训练预测绝缘子NSDD数据值的时间节点,训练神经网络采用的输入数据包括气象数据、时间节点1~时间节点(m-1)的原始绝缘子NSDD数据,(m-10)~m的10个时间节点的原始绝缘子NSDD数据经灰化处理后的灰化数据;气象数据包括风速、降水量、相对湿度;训练神经网络采用的输出数据是指(m-9)~(m+1)共10个时间节点的原始绝缘子NSDD数据经灰化处理后的灰化数据;Among them, m is the time node for training and predicting the NSDD data value of the insulator. The input data used in the training neural network includes meteorological data, the original insulator NSDD data from time node 1 to time node (m-1), (m-10) to m The ashing data of the original insulator NSDD data at 10 time nodes after ashing processing; the meteorological data includes wind speed, precipitation, and relative humidity; the output data used for training the neural network refers to (m-9)~(m+1) The ashing data of the original insulator NSDD data at 10 time nodes after ashing processing; (3.2)对第m节点的原始绝缘子NSDD数据进行灰化处理;将灰化后的数据投入训练好的神经网络,获得初始预测值;对初始预测值进行白化处理,获得第二预测值。(3.2) Perform graying processing on the original insulator NSDD data of the mth node; put the grayed data into the trained neural network to obtain the initial prediction value; perform whitening processing on the initial prediction value to obtain the second prediction value. 8.如权利要求6所述的绝缘子表面不可溶沉积物密度预测系统,其特征在于,还包括步骤(5):8. The insoluble deposit density prediction system on the surface of an insulator according to claim 6, further comprising step (5): (5)将所述第一预测值、第二预测值、第三预测值分别与预设的预警阈值进行比较,当第一预测值、第二预测值、第三预测值中的两个或三个达到预警阈值,生成预警信号。(5) Comparing the first predicted value, the second predicted value, and the third predicted value with preset warning thresholds respectively, when two of the first predicted value, the second predicted value, and the third predicted value or Three reach the warning threshold, generating a warning signal.
CN201610983705.9A 2016-11-08 2016-11-08 A kind of insoluble sediment density forecasting system of insulator surface and method Active CN106570561B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610983705.9A CN106570561B (en) 2016-11-08 2016-11-08 A kind of insoluble sediment density forecasting system of insulator surface and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610983705.9A CN106570561B (en) 2016-11-08 2016-11-08 A kind of insoluble sediment density forecasting system of insulator surface and method

Publications (2)

Publication Number Publication Date
CN106570561A true CN106570561A (en) 2017-04-19
CN106570561B CN106570561B (en) 2019-04-12

Family

ID=58540708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610983705.9A Active CN106570561B (en) 2016-11-08 2016-11-08 A kind of insoluble sediment density forecasting system of insulator surface and method

Country Status (1)

Country Link
CN (1) CN106570561B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841150A (en) * 2019-05-16 2021-12-24 大金工业株式会社 Learning model generation method, program, storage medium, learning completion model

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590677A (en) * 2012-02-28 2012-07-18 浙江省电力试验研究院 Analyzing and processing method for test data of manual pollution flashover of insulator
CN104502410A (en) * 2013-07-21 2015-04-08 国家电网公司 Prediction method for insulator equivalent salt deposit density and non-soluble deposit density by least squares support vector machine and genetic algorithm
CN104992055A (en) * 2015-06-16 2015-10-21 哈尔滨工业大学 Pollution-flashover-caused trip probability calculation method of overhead lines in sand and dust environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590677A (en) * 2012-02-28 2012-07-18 浙江省电力试验研究院 Analyzing and processing method for test data of manual pollution flashover of insulator
CN104502410A (en) * 2013-07-21 2015-04-08 国家电网公司 Prediction method for insulator equivalent salt deposit density and non-soluble deposit density by least squares support vector machine and genetic algorithm
CN104992055A (en) * 2015-06-16 2015-10-21 哈尔滨工业大学 Pollution-flashover-caused trip probability calculation method of overhead lines in sand and dust environment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张寒,文习山,丁辉: "用神经网络预测基于气象因素的绝缘子等值附盐密度", 《高压电器》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113841150A (en) * 2019-05-16 2021-12-24 大金工业株式会社 Learning model generation method, program, storage medium, learning completion model
CN113841150B (en) * 2019-05-16 2024-04-09 大金工业株式会社 Learning model generation method, article evaluation determination and output method, and storage medium

Also Published As

Publication number Publication date
CN106570561B (en) 2019-04-12

Similar Documents

Publication Publication Date Title
CN110829417B (en) Electric power system transient stability prediction method based on LSTM double-structure model
CN105825271B (en) Satellite failure diagnosis and prediction method based on evidential reasoning
CN109284938A (en) A comprehensive evaluation method and device for power cable line condition
CN110309609B (en) A method for evaluating indoor air quality in buildings based on rough sets and WNN
CN104318347A (en) Power transmission line icing state assessment method based on information fusion of multiple sensors
CN106656357B (en) Power frequency communication channel state evaluation system and method
CN106991491A (en) A kind of environment pollution monitoring system of the RBF neural based on genetic algorithm optimization
CN105678417A (en) Prediction method and device for tunnel face water inflow of construction tunnel
CN104318485A (en) Power transmission line fault identification method based on nerve network and fuzzy logic
CN117407770A (en) Classification and prediction method of high-voltage switchgear failure modes based on neural network
CN106815635A (en) A kind of forecasting system and method for insulator surface equivalent salt deposit density
CN112130086A (en) A method and system for predicting the remaining life of a power battery
CN110991776A (en) Method and system for realizing water level prediction based on GRU network
CN113988210A (en) Distorted data restoration method, device and storage medium for structural monitoring sensor network
CN114912356A (en) Construction method of segmented probability harmonic model of impact load
CN111985684B (en) Long-wave ground wave propagation time delay time-varying characteristic prediction method applied to long distance
CN106529816A (en) Power line channel adjusting method and system
CN106570582A (en) Method and system for building transmission line dancing tripping risk prediction network model
CN109615027B (en) An intelligent prediction method for wind speed feature extraction along high-speed railway
CN106570561B (en) A kind of insoluble sediment density forecasting system of insulator surface and method
CN106503793B (en) A kind of neural network short-term wind speed forecasting method based on improvement difference algorithm
CN112069621A (en) Prediction Method of Remaining Service Life of Rolling Bearing Based on Linear Reliability Index
CN118094230A (en) Method for constructing underground water level monitoring and early warning model based on big data
CN117407675A (en) Lightning arrester leakage current prediction method based on multi-variable reconstruction combined dynamic weight
CN106682651A (en) Monitoring method for cable insulation leather damage based on neural network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant