CN106543360A - 一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用 - Google Patents

一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用 Download PDF

Info

Publication number
CN106543360A
CN106543360A CN201611054135.1A CN201611054135A CN106543360A CN 106543360 A CN106543360 A CN 106543360A CN 201611054135 A CN201611054135 A CN 201611054135A CN 106543360 A CN106543360 A CN 106543360A
Authority
CN
China
Prior art keywords
ultraviolet
composite aquogel
room temperature
healing properties
temperature self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611054135.1A
Other languages
English (en)
Other versions
CN106543360B (zh
Inventor
何晓燕
王萌
张彩芸
刘利琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201611054135.1A priority Critical patent/CN106543360B/zh
Publication of CN106543360A publication Critical patent/CN106543360A/zh
Application granted granted Critical
Publication of CN106543360B publication Critical patent/CN106543360B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/606Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明提供了一种二氧化钛掺杂的具有紫外屏蔽和自修复性能的复合水凝胶P(NaSS‑MPTC)/TiO2,是以二氧化钛纳米溶胶作为紫外屏蔽剂、光引发剂和交联剂,阳离子液体和阴离子液体为共聚单体,在NaCl溶液中,通过光引发自由基聚合法聚合而得。通过紫外‑可见光谱检测其透光率,进一步探究了复合水凝胶的紫外防护性能。该复合水凝胶不仅具有优异的常温自修复性能,而且具有很好的紫外保护性能,因此可作为紫外线屏蔽剂应用于紫外屏蔽领域。

Description

一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和 应用
技术领域
本发明涉及一种基于二氧化钛纳米粒子的复合水凝胶,尤其涉及一种二氧化钛掺杂的具有紫外屏蔽和常温自修复性能复合水凝胶P(NaSS-MPTC)/TiO2的合成方法,属于复合材料技术领域及紫外屏蔽领域。
背景技术
众所周知,紫外线辐射问题已严重的威胁着人类皮肤、涂料、塑料等有机制品,从而给人的正常生活带来了很大的危害。自从1995年3月在伦敦召开了紫外线防护国际研讨会表明,在世界范围内紫外线的防护已经引起各国的广泛重视。因此紫外屏蔽剂的研究已受到科研工作者广泛且持久的关注。
二氧化钛纳米粒子因具有粒径小、比表面积大、高的热力学和化学稳定性、低毒性,不仅能吸收紫外光透过可见光,同时还可以很大程度的反射和折射紫外光,因而被广泛的应用于紫外屏蔽领域的研究。其中,将二氧化钛掺杂到水凝胶体系中得到的纳米复合水凝胶不仅具有很好的紫外防护性能,同时还具有水凝胶体系所具有的超吸水性、生物相容性、环境响应性、自修复性、黏弹性等特性,具有更大的实际应用价值,因而成为近几年紫外防护领域研究的热点。
二氧化钛纳米粒子不仅因其特殊的结构和可吸收紫外光而作为紫外屏蔽剂和光引发剂,而且由于其表面含有大量的羟基具有亲水性可以均匀的分散到含有亲水性聚合物的矩阵中,同时还因可以与带有羟基、胺基、磺酸根等官能团的亲水性聚合物之间形成氢键作用而交联形成具有优异机械性能的物理水凝胶。已有大量文献报道,以二氧化钛作为交联剂制备的物理水凝胶应用于具有优异机械性能的紫外屏蔽材料中。然而由于其通过一种非共价键很难达到常温自修复而无法重复使用,从而很大程度上限制了它的实际使用范围。
发明内容
本发明的目的是提供一种基于二氧化钛纳米粒子的具有紫外屏蔽和常温自修复性能的复合水凝胶——P(NaSS-MPTC)/TiO2的合成方法。
一、水凝胶P(NaSS-MPTC)/TiO2的合成
以二氧化钛纳米溶胶作为紫外屏蔽剂、光引发剂和交联剂,阳离子液体(MPTC)和阴离子液体(NaSS)为共聚单体,在NaCl溶液中,通过光引发自由基聚合法,合成了复合水凝胶P(NaSS-MPTC)/TiO2——常温自修复的凝胶基紫外线屏蔽剂材料。
其具体合成工艺为:将阳离子液单体和阴离子液单体溶解到超纯水中,充分搅拌后加入氯化钠,超声3~5min使其充分分散后,在氮气气氛下搅拌12~15min;迅速加入二氧化钛溶液,再继续用高纯氮气除去O2,然后置于紫外灯下光照30~36h,得到复合水凝胶P(NaSS-MPTC)/TiO2
所述阳离子液单体为3-(异丁烯酰胺)丙基三甲基氯化铵(MPTC),阴离子液单体为对苯乙烯磺酸钠(NaSS);阳离子液单体与阴离子液单体的质量比为1:1~1:1.1。
二氧化钛纳米粒子的加入量为阳离子液单体与阴离子液单体总质量的0.4~2.4%,得到的复合水凝胶P(NaSS-MPTC)/TiO2中二氧化钛纳米粒子的掺杂量为0.16~0.96%。
氯化钠的添加有助于进一步提高该凝胶的黏弹性,其加入量为阳离子液单体与阴离子液单体的总质量的6.5~6.6%。
二、复合水凝胶P(NaSS-MPTC)/TiO2的紫外屏蔽性能和常温自修复性能
1、紫外屏蔽性能
用于紫外屏蔽性能的水凝胶薄膜,是将上述配置好的含有阳离子液单体3-(异丁烯酰胺)丙基三甲基氯化铵(MPTC)、阴离子液单体对苯乙烯磺酸钠(NaSS)、超纯水、氯化钠以及二氧化钛纳米粒子含量分别为0.16%、0.32%、0.48%和0.96%的四种混合液体分别注入由两片石英玻璃和厚度为0.5mm的硅胶垫所组成的反应池中,然后将此反应装置密封后放到365nm的紫外灯下光照6~10h。通过紫外-可见光谱检测其透光率,进一步探究了该复合水凝胶的紫外防护性能。
图1显示的是厚度均为0.5mm,二氧化钛含量分别为0.16%、0.32%、0.48%、0.96%的复合水凝胶(NaSS-MPTC)/TiO2的紫外透射光谱。由图1可以看出,在可见区(400-900nm)范围内,虽然该凝胶薄膜的透光率随着波长的降低而不断减小,但减小的很慢而且均大于零;然而当波长降低到紫外区(200-400nm),该凝胶薄膜的透光率将迅速下降,直到降低到零,而且二氧化钛含量越大其越先在波长较大处到零,从而表现出更为优异的紫外屏蔽性能。仔细对比二氧化钛含量不同的该凝胶薄膜,虽然随着二氧化钛含量增大而具有更优异的紫外屏蔽性能,但在可见区随着二氧化钛含量的不断增加其透光率也不断降低。
2、自修复性能
图2所示为紫外屏蔽剂P (NaSS-MPTC)/TiO2在室温下的自修复光学照片图,其中(a)为上述制备的直径约为2cm的P (NaSS-MPTC)/TiO2。将其用刀片切开(b)后,在4~6s内切开的新鲜断面合在了一起,用力挤压,然后封装放置2~3h,发现刚切开的切痕基本消失。
为了定性探究其自修复效果,用两个小夹子沿着切面两端拉至原紫外屏蔽剂长度的2倍,自修复好的紫外屏蔽剂仍保持完整,并未从切痕处裂开,由此充分显示,水凝胶P(NaSS-MPTC)/TiO2具有良好的常温自修复性能。
综上所述,以二氧化钛纳米粒子与阴阳离子液单体为基础,“一锅法”成功合成了复合水凝胶P (NaSS-MPTC)/TiO2,不仅具有优异的常温自修复性能,而且具有很好的紫外保护性能,因此可作为紫外线屏蔽剂应用于紫外屏蔽领域。
附图说明
图1为相同厚度不同二氧化钛含量的复合水凝胶P (NaSS-MPTC)/TiO2薄膜的紫外-可见透射光谱;
图2为水凝胶 P(NaSS-MPTC)/TiO2的常温自修复光学照片图。
具体实施方式
下面通过具体实施例对本发明具有紫外屏蔽和自修复性能的复合水凝胶——P(NaSS-MPTC)/TiO2的合成及性能作进一步说明。
实施例1
取3-(异丁烯酰胺)丙基三甲基氯化铵0.9006g,对苯乙烯磺酸钠0.4503g,溶解到盛有0.855g超纯水的反应瓶中充分搅拌;再取氯化钠 0.0585g加入到上述溶液中,超声3~5min,氮气气氛下充分搅拌12~15min,随后迅速将0.045g的二氧化钛溶液注入其中,再继续用高纯氮气鼓泡12~15min除去氧气,最后将反应瓶密封置于365nm紫外灯下光照36h,得到二氧化钛纳米粒子掺杂量为0.16%的复合水凝胶P(NaSS-MPTC)/TiO2
上述制备的复合水凝胶P(NaSS-MPTC)/TiO2的紫外屏蔽性能;在可见区(400-900nm)范围内,虽然该凝胶薄膜的透光率随着波长的降低而不断减小,但减小的很慢而且均大于零,然而当波长降低到紫外区(200−400 nm),该凝胶薄膜的透光率将迅速下降,直到当波长为278nm时透光率降低到零,说明波长小于278nm的紫外光可以被厚度为0.5mm的水凝胶(NaSS-MPTC)/TiO2薄膜完全阻挡住,显示出优异的紫外屏蔽效应。
自修复性能:在常温下切开的新鲜断面可在4~6s内合在了一起,用力挤压,然后封装放置2~3h,发现刚切开的切痕基本消失。
实施例 2
取3-(异丁烯酰胺)丙基三甲基氯化铵0.8957g,对苯乙烯磺酸钠0.4505g,溶解到盛有0.81g超纯水的反应瓶中充分搅拌;再取氯化钠 0.0585g加入到上述溶液中,超声3~5min,氮气气氛下充分搅拌12~15min,随后迅速将0.09g的二氧化钛溶液注入其中,再继续用高纯氮气鼓泡12~15min除去氧气,最后将反应瓶密封置于365nm紫外灯下光照34h,得到二氧化钛纳米粒子掺杂量为0.32%的复合水凝胶P(NaSS-MPTC)/TiO2
上述制备的复合水凝胶P(NaSS-MPTC)/TiO2的紫外屏蔽性能;在可见区(400-900nm)范围内,虽然该凝胶薄膜的透光率随着波长的降低而不断减小,但减小的很慢而且均大于零,然而当波长降低到紫外区(200−400 nm),该凝胶薄膜的透光率将迅速下降,直到当波长为287nm时透光率降低到零,说明波长小于287nm的紫外光可以被厚度为0.5mm的水凝胶(NaSS-MPTC)/TiO2薄膜完全阻挡住,显示出优异的紫外屏蔽效应。
自修复性能:在常温下切开的新鲜断面可在4~6s内合在了一起,用力挤压,然后封装放置2~3h,发现刚切开的切痕基本消失。
实施例 3
取3-(异丁烯酰胺)丙基三甲基氯化铵0.8914g,对苯乙烯磺酸钠0.4507g,溶解到盛有0.765g超纯水的反应瓶中充分搅拌;再取氯化钠 0.0585g加入到上述溶液中,超声3~5min,氮气气氛下充分搅拌12~15min,随后迅速将0.135g的二氧化钛溶液注入其中,再继续用高纯氮气鼓泡12~15min除去氧气,最后将反应瓶密封置于365nm紫外灯下光照32h,得到二氧化钛纳米粒子掺杂量为0.48%的复合水凝胶P(NaSS-MPTC)/TiO2
上述制备的复合水凝胶P(NaSS-MPTC)/TiO2的紫外屏蔽性能;在可见区(400-900nm)范围内,虽然该凝胶薄膜的透光率随着波长的降低而不断减小,但减小的很慢而且均大于零,然而当波长降低到紫外区(200−400 nm),该凝胶薄膜的透光率将迅速下降,直到当波长为335nm时透光率降低到零,说明波长小于335nm的紫外光可以被厚度为0.5mm的水凝胶(NaSS-MPTC)/TiO2薄膜完全阻挡住,显示出优异的紫外屏蔽效应。
自修复性能:在常温下切开的新鲜断面可在4~6s内合在了一起,用力挤压,然后封装放置2~3h,发现刚切开的切痕基本消失。
实施例 4
取3-(异丁烯酰胺)丙基三甲基氯化铵水溶液0.8902g,对苯乙烯磺酸钠0.4509g,溶解到盛有0.63g超纯水的反应瓶中充分搅拌;再取氯化钠0.0585g 加入到上述溶液中,超声3~5min,氮气气氛下充分搅拌12~15min,随后迅速将0.27g的二氧化钛溶液注入其中,再继续用高纯氮气鼓泡12~15min除去氧气,最后将反应瓶密封置于365nm紫外灯下光照30h,得到二氧化钛纳米粒子掺杂量为0.96%的复合水凝胶P(NaSS-MPTC)/TiO2
上述制备的复合水凝胶P(NaSS-MPTC)/TiO2的紫外屏蔽性能;在可见区(400-900nm)范围内,虽然该凝胶薄膜的透光率随着波长的降低而不断减小,但减小的很慢而且均大于零,然而当波长降低到紫外区(200−400 nm),该凝胶薄膜的透光率将迅速下降,直到当波长为355nm时透光率降低到零,说明波长小于355nm的紫外光可以被厚度为0.5mm的水凝胶(NaSS-MPTC)/TiO2薄膜完全阻挡住,显示出优异的紫外屏蔽效应。
自修复性能:在常温下切开的新鲜断面可在4~6s内合在了一起,用力挤压,然后封装放置2~3h,发现刚切开的切痕基本消失。

Claims (7)

1.一种具有紫外屏蔽和常温自修复性能复合水凝胶的合成方法,是以二氧化钛纳米溶胶作为紫外屏蔽剂、光引发剂和交联剂,阳离子液体和阴离子液体为共聚单体,在NaCl溶液中,通过光引发自由基聚合法聚合,得到复合水凝胶,即为目标产物。
2.如权利要求1所述具有紫外屏蔽和常温自修复性能复合水凝胶的合成方法,其特征在于:将阳离子液单体和阴离子液单体溶解到超纯水中,充分搅拌后加入氯化钠,超声3~5min使其充分分散后,在氮气气氛下搅拌12~15min;迅速加入二氧化钛溶液,再继续用高纯氮气鼓泡以除去O2,然后置于紫外灯下光照30~36h即得产物。
3.如权利要求1或2所述具有紫外屏蔽和常温自修复性能复合水凝胶的合成方法,其特征在于:所述阳离子液单体为3-(异丁烯酰胺)丙基三甲基氯化铵,阴离子液单体为对苯乙烯磺酸钠。
4.如权利要求1或2所述具有紫外屏蔽和常温自修复性能复合水凝胶的合成方法,其特征在于:阳离子液单体与阴离子液单体的质量比为1:1~1:1.1。
5.如权利要求1或2所述具有紫外屏蔽和常温自修复性能复合水凝胶的合成方法,其特征在于:二氧化钛纳米粒子的加入量为阳离子液单体与阴离子液单体总质量的0.4~2.4%。
6.如权利要求1或2所述具有紫外屏蔽和常温自修复性能复合水凝胶的合成方法,其特征在于:氯化钠的加入量为阳离子液单体与阴离子液单体的总质量的6.5~6.6%。
7.如权利要求1所述方法制备的具有紫外屏蔽和常温自修复性能复合水凝胶作为紫外线屏蔽剂的应用。
CN201611054135.1A 2016-11-25 2016-11-25 一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用 Expired - Fee Related CN106543360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611054135.1A CN106543360B (zh) 2016-11-25 2016-11-25 一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611054135.1A CN106543360B (zh) 2016-11-25 2016-11-25 一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用

Publications (2)

Publication Number Publication Date
CN106543360A true CN106543360A (zh) 2017-03-29
CN106543360B CN106543360B (zh) 2019-05-31

Family

ID=58395839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611054135.1A Expired - Fee Related CN106543360B (zh) 2016-11-25 2016-11-25 一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用

Country Status (1)

Country Link
CN (1) CN106543360B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216467A (zh) * 2017-04-25 2017-09-29 同济大学 一种高强聚阴阳离子智能功能凝胶的制备方法
CN108404980A (zh) * 2018-02-06 2018-08-17 西北师范大学 一种负载金纳米粒子的高性能高强度复合凝胶的合成及应用
CN108586679A (zh) * 2018-04-24 2018-09-28 浙江理工大学 一种氮化碳纳米片-丙烯酰胺复合水凝胶及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558412A (zh) * 2012-02-10 2012-07-11 北京理工大学 一种高强度二氧化钛纳米复合水凝胶的制备方法
CN104311860A (zh) * 2014-10-10 2015-01-28 齐鲁工业大学 一种高强度双网络纳米二氧化钛复合水凝胶的制备方法
CN104707486A (zh) * 2015-03-03 2015-06-17 浙江大学 一种高强度水凝胶过滤膜的制备方法
CN104845301A (zh) * 2015-05-27 2015-08-19 北京服装学院 一种紫外线屏蔽剂及其制备方法和包含该紫外线屏蔽剂的聚乳酸薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558412A (zh) * 2012-02-10 2012-07-11 北京理工大学 一种高强度二氧化钛纳米复合水凝胶的制备方法
CN104311860A (zh) * 2014-10-10 2015-01-28 齐鲁工业大学 一种高强度双网络纳米二氧化钛复合水凝胶的制备方法
CN104707486A (zh) * 2015-03-03 2015-06-17 浙江大学 一种高强度水凝胶过滤膜的制备方法
CN104845301A (zh) * 2015-05-27 2015-08-19 北京服装学院 一种紫外线屏蔽剂及其制备方法和包含该紫外线屏蔽剂的聚乳酸薄膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FENG LUO ET AL.: "Crack Blunting and Advancing Behaviors of Tough and Self-healing Polyampholyte Hydrogel", 《MACROMOLECULES》 *
TAO LIN SUN ET AL.: "Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity", 《NATURE MATERIALS》 *
张敏东 等: "纳米复合水凝胶的研究进展", 《高分子通报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216467A (zh) * 2017-04-25 2017-09-29 同济大学 一种高强聚阴阳离子智能功能凝胶的制备方法
CN108404980A (zh) * 2018-02-06 2018-08-17 西北师范大学 一种负载金纳米粒子的高性能高强度复合凝胶的合成及应用
CN108404980B (zh) * 2018-02-06 2020-06-23 西北师范大学 一种负载金纳米粒子的高性能高强度复合凝胶的合成及应用
CN108586679A (zh) * 2018-04-24 2018-09-28 浙江理工大学 一种氮化碳纳米片-丙烯酰胺复合水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN106543360B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
Mahon et al. Swelling performance of sodium polyacrylate and poly (acrylamide-co-acrylic acid) potassium salt
Wu et al. Spectrally selective smart window with high near-infrared light shielding and controllable visible light transmittance
CN106543360A (zh) 一种具有紫外屏蔽和常温自修复性能复合水凝胶及其合成和应用
Deng et al. Poly (vinyl alcohol)(PVA)-enhanced hybrid hydrogels of hyperbranched poly (ether amine)(hPEA) for selective adsorption and separation of dyes
CN102816268B (zh) 一种纳米复合防雾膜的制备方法
KR102447936B1 (ko) 고흡수성 수지 및 이의 제조 방법
Choudhary et al. Microwave-assisted synthesis of gum gellan-cl-poly (acrylic-co-methacrylic acid) hydrogel for cationic dyes removal
Chen et al. Citrate-based fluorophores in polymeric matrix by easy and green in situ synthesis for full-band UV shielding and emissive transparent display
CN104877147B (zh) Pva‑hea紫外线三维剂量计的制备方法及应用
CN110857889A (zh) 一种温感智能复合光学玻璃
JP2004359943A5 (zh)
Wang et al. Novel Macromolecular Emulsifiers as Coatings with Water‐Tolerant Antifogging Properties Based on Coumarin‐Containing Copolymeric Micelles
CN113088148B (zh) 一种紫外线屏蔽纳米镀膜液及其在光学镜片上的应用
Erizal et al. Radiation synthesis of superabsorbent poly (acrylamide-co-acrylic acid)-sodium alginate hydrogels
JP2021014533A (ja) フィルム及びフィルムの製造方法
Hayase et al. Ultralow-bulk-density transparent boehmite nanofiber cryogel monoliths and their optical properties for a volumetric three-dimensional display
US20200115539A1 (en) Hydrogel-forming composition and highly transparent hydrogel prepared therefrom
Amri et al. Studies on equilibrium swelling, dye adsorption, and dynamic shear rheology of polymer systems based on chitosan-poly (vinyl alcohol) and montmorillonite
JP5256565B2 (ja) コロイド結晶ゲル、コロイド結晶ゲルを製造する方法、および、素子
CN115190897B (zh) 用于超吸收性聚合物膜的制备方法
Nazarova et al. New water‐soluble copolymers of 2‐methacryloyloxyethyl phosphorylcholine for surface modification
Friedrich et al. Photoisomerizable and Thermoresponsive N‐isopropylacrylamide–Surfmer Copolymer Hydrogels Prepared upon Electrostatic Self‐Assembly of an Azobenzene Bolaamphiphile
JP2009256629A (ja) 有機無機複合ヒドロゲル及びその製造方法
JP5654208B2 (ja) 有機無機複合ゲル
Mariani et al. Transparent wood-based materials: A new step toward sustainability and circularity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190531

CF01 Termination of patent right due to non-payment of annual fee