CN106542619B - 一种用于高效快速降解难生物降解有机物的电极及其制备方法 - Google Patents

一种用于高效快速降解难生物降解有机物的电极及其制备方法 Download PDF

Info

Publication number
CN106542619B
CN106542619B CN201610928545.8A CN201610928545A CN106542619B CN 106542619 B CN106542619 B CN 106542619B CN 201610928545 A CN201610928545 A CN 201610928545A CN 106542619 B CN106542619 B CN 106542619B
Authority
CN
China
Prior art keywords
electrode
graphite powder
activated carbon
active carbon
carbon electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610928545.8A
Other languages
English (en)
Other versions
CN106542619A (zh
Inventor
王罗春
熊金磊
方田
李琳
马倩倩
凌磊
史亮
陈振旺
田新梅
王军建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201610928545.8A priority Critical patent/CN106542619B/zh
Publication of CN106542619A publication Critical patent/CN106542619A/zh
Application granted granted Critical
Publication of CN106542619B publication Critical patent/CN106542619B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提供了一种用于高效快速降解难生物降解有机物的电极,包括一个石墨粉‑活性炭电极,在石墨粉‑活性炭电极上负载有Pt‑Bi双金属,石墨粉‑活性炭电极由石墨粉、粘结剂和活性炭组成。还提供了上述电极的制备方法,包括一个制备石墨粉‑活性炭复合电极的步骤;将干燥好的石墨粉‑活性炭电极作为工作电极,铂电极作为辅助电极,以Ag/AgCl作为参比电极,进行电沉积,将电沉积好的电极放置在烘箱干燥后得到Pt‑Bi/C电极。本发明采用了Pt‑Bi二元金属纳米粒子负载活性炭电极,利用了活性炭较好的吸附性,对难生物降解的废水进行处理,使高降解率和经济效应能同步实现。

Description

一种用于高效快速降解难生物降解有机物的电极及其制备 方法
技术领域
本发明属于材料学领域,涉及一种电极,具体来说是一种用于高效快速降解难生物降解有机物的电极及其制备方法。
背景技术
对于污染物主要为难降解有机物的废水,目前常用的处理方法有微生物法、物理方法、化学方法,相对应的处理工艺包括流化床生物接触工艺,生物膜吸附接触工艺,生物滤池接触工艺,物理吸附降解工艺,活性炭复合材料吸附降解工艺,光催化氧化降解工艺,氧化剂接触降解工艺,电化学降解工艺等。在微生物法、物理方法和化学方法中,化学法的降解效率高于其它方法,而化学法中以电化学法最为有效。
电化学方法处理效率较高,一般效率都能达到90%以上,这也是电化学方法比较受人们青睐的主要原因之一。电化学处理方法要想达到预期的效果,除了操作条件和设备之外,最重要的因素还是电极材料的选择。电极需要具有要可循环性能好、可再生性能好、吸附性强、耐冲击负荷性能高等优点。
但传统电化学方法耗电量大,不具有经济效应,一个可能的解决办法就是施加方波电压。此外,传统电化学方法施加的恒定电极电位会使一些形成的中间体沉积在电极上,减缓反应速率。而方波电势能使电极和各种反应物质在整个电势范围上连续相互作用,使中间体进一步氧化或还原。
李书红等人(Shu-Hong Li, Yue Zhao, Jian Chu, et al. Electrochemicaldegradation of methyl orange on Pt–Bi/C nanostructured electrode by a square-wave potential method[J]. Electrochimica Acta,2013,92:93-101.)利用Pt-Bi/C双金属电极对降解废水中的甲基橙进行了降解试验。Pt纳米粒子具有高效稳定的催化活性, Bi纳米粒子具有独特的半金属半导体性质和阻抗效应,二者组合比单独的催化剂具有大大增强的催化活性。施加方波电压,设置上电位和下电位分别为1.5V和-1.5V,电解180分钟,废水中甲基橙的降解率高达95.6%。此实验中电极使用的碳纸成本较高,约0.6元/cm2, 每片电极(长×宽×厚 = 40×20×1mm)的碳纸成本约4.8元,电沉积所需的氯铂酸和硝酸铋以及电沉积液的成本约8.23元,所以每片电极(长×宽×厚 = 40×20×1mm)所需材料的成本约13.03元,不具有经济效益。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种用于高效快速降解难生物降解有机物的电极及其制备方法,所述的这种用于高效快速降解难生物降解有机物的电极及其制备方法要解决现有技术中的Pt-Bi/C双金属电极成本高的技术问题。
本发明提供了一种用于高效快速降解难生物降解有机物的电极,包括一个石墨粉-活性炭电极,在所述的石墨粉-活性炭电极上负载有Pt-Bi双金属,所述的石墨粉-活性炭电极由石墨粉、粘结剂和活性炭组成,所述的石墨粉、粘结剂和活性炭的质量比为1:1:8。
具体的,所述的粘结剂为质量分数为30%的聚四氟乙烯。
本发明还提供了上述一种用于高效快速降解难生物降解有机物的电极的制备方法,包括如下步骤:
1)一个制备石墨粉-活性炭复合电极的步骤,称取质量分数为30%的聚四氟乙烯、石墨粉和活性炭,质量分数为30%的聚四氟乙烯、石墨粉和活性炭的质量比为1:1:8,先用去离子水稀释聚四氟乙烯溶液,然后将石墨粉加入到聚四氟乙烯溶液中,搅拌均匀,再将活性炭加入,搅拌直至完全混合均匀,将得到的糊状固体物在碳纸上压制成规整且表面光滑的片状,然后放置于烘箱中,40℃恒温条件下干燥2d以上,得到石墨粉-活性炭电极;
2)一个采用电化学沉积法制备Pt-Bi/C电极的步骤,将干燥好的石墨粉-活性炭电极作为工作电极,铂电极作为辅助电极,以Ag/AgCl作为参比电极,在-0.8V恒定电位下电沉积240s,电化学沉积过程中的沉积液含0.5g/L的H2PtCl6,0.5mmol/L的Bi(NO)3,2g/L的柠檬酸和1%的HNO3,沉积液中的溶剂为水,将电沉积好的电极放置在烘箱中,40℃恒温干燥2d以上,即可得到Pt-Bi/C电极。
进一步的,用去离子水稀释聚四氟乙烯溶液的过程中,去离子水和聚四氟乙烯溶液的质量比为7:3。
本发明采用Pt-Bi二元金属纳米粒子负载活性炭电极,在双金属碳纸电极的基础上进行改进,利用了活性炭较好的吸附性,对难生物降解的废水进行处理,使高降解率和经济效应能同步实现。对比Pt-Bi碳纸电极,此新型电极具有相当的降解率。同时,每片碳纸(长×宽×厚 = 40×20×1mm)负载Pt-Bi电极成本为13.03元,每片石墨粉-活性炭(长×宽×厚 = 40×20×1mm)负载Pt-Bi电极的成本为8.53元,成本较Pt-Bi碳纸电极降低34.54%。
本发明和已有技术相比,其技术进步是显著的。本发明采用石墨粉-活性炭,添加的活性炭具有吸附效应,石墨粉具有导电性,且活性炭成本约0.036元/g,石墨粉成本约0.016元/g,粘结剂聚四氟乙烯成本约7元/g,电沉积所需的氯铂酸和硝酸铋以及电沉积液的成本约8.23元,则每片电极(长×宽×厚 = 40×20×1mm)所需的材料成本约8.53元,相比于Pt-Bi碳纸电极的成本要低的多,本发明不仅能确保高降解率,而且还具有经济效益。
具体实施方式
实施例1
一种用于高效快速降解难生物降解有机物的电极的制备方法,包括如下步骤:
(1)石墨粉-活性炭复合电极的制备
按1:1:8的比例称取0.2g质量分数为30%的聚四氟乙烯、0.2g石墨粉和1.6g活性炭,先用5mL去离子水稀释聚四氟乙烯溶液,然后将石墨粉加入到烧杯中,搅拌均匀,再将活性炭加入到烧杯中,搅拌直至完全混合均匀。将得到的糊状固体物在2cm×4cm的碳纸上压制成规整且表面光滑的片状,放置在烘箱中,40℃恒温条件下干燥2d以上,即可得到石墨粉-活性炭电极。
(2)电化学沉积法制备Pt-Bi/C电极
将干燥好的石墨粉-活性炭电极作为工作电极,铂电极作为辅助电极,Ag/AgCl(饱和)作为参比电极,再将50mL含0.5g/L的H2PtCl6,0.5mmol/L的Bi(NO)3,2g/L的柠檬酸和1%HNO3的溶液作为沉积液,在-0.8V恒定电位下电沉积240s。将电沉积好的电极放置在烘箱中,40℃恒温干燥2d,即可得到Pt-Bi/C电极。
实施例2
利用本发明方法快速降解废水中甲基橙的实例。
量取150mL浓度为20mg/L的甲基橙溶液倒入烧杯中,控制溶液中的初始溶解氧浓度为7.8mg/L,磁力搅拌转速为150r/min,以Pt-Bi/C电极为工作电极,以钛网为辅助电极,以Ag/AgCl(饱和)为参比电极,施加方波电位降解。指定方波电位的上电位(Eu)和下电位(El)分别为1.5V和-1.5V,交替周期(T)为1min,施加于Pt-Bi/C电极,电解180min。每隔30min用分光光度计测量一次甲基橙浓度。
计算得出甲基橙降解速率为95.81%,同等条件下Pt-Bi碳纸电极对甲基橙的降解速率95.60%。所以,Pt-Bi负载石墨粉-活性炭电极对甲基橙的降解速率与Pt-Bi碳纸电极相当,Pt-Bi负载石墨粉-活性炭电极成本仅为8.53元,较Pt-Bi碳纸电极降低34.54%。

Claims (2)

1.一种用于高效快速降解难生物降解有机物的电极,其特征在于:包括一个石墨粉-活性炭电极,在所述的石墨粉-活性炭电极上负载有Pt-Bi双金属,所述的石墨粉-活性炭电极由石墨粉、粘结剂和活性炭组成,所述的粘结剂为质量分数为30%的聚四氟乙烯,所述的石墨粉、粘结剂和活性炭的质量比为1:1:8。
2.权利要求1所述的一种用于高效快速降解难生物降解有机物的电极的制备方法,其特征在于包括如下步骤:
1)一个制备石墨粉-活性炭电极的步骤,称取质量分数为30%的聚四氟乙烯、石墨粉和活性炭,质量分数为30%的聚四氟乙烯、石墨粉和活性炭的质量比为1:1:8,先用去离子水稀释聚四氟乙烯溶液,然后将石墨粉加入到聚四氟乙烯溶液中,搅拌均匀,再将活性炭加入,搅拌直至完全混合均匀,将得到的糊状固体物在碳纸上压制成规整且表面光滑的片状,然后放置于烘箱中,40℃恒温条件下干燥2d以上,得到石墨粉-活性炭电极;
2)一个采用电化学沉积法制备Pt-Bi/C电极的步骤,将干燥好的石墨粉-活性炭电极作为工作电极,铂电极作为辅助电极,以Ag/AgCl作为参比电极,在-0.8V恒定电位下电沉积240s,电化学沉积过程中的沉积液含0.5g/L的H2PtCl6,0.5mmol/L的Bi(NO)3,2g/L的柠檬酸和1%的HNO3,沉积液中的溶剂为水,将电沉积好的电极放置在烘箱中,40℃恒温干燥2d以上,即可得到Pt-Bi/C电极。
CN201610928545.8A 2016-10-31 2016-10-31 一种用于高效快速降解难生物降解有机物的电极及其制备方法 Active CN106542619B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610928545.8A CN106542619B (zh) 2016-10-31 2016-10-31 一种用于高效快速降解难生物降解有机物的电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610928545.8A CN106542619B (zh) 2016-10-31 2016-10-31 一种用于高效快速降解难生物降解有机物的电极及其制备方法

Publications (2)

Publication Number Publication Date
CN106542619A CN106542619A (zh) 2017-03-29
CN106542619B true CN106542619B (zh) 2019-06-28

Family

ID=58392535

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610928545.8A Active CN106542619B (zh) 2016-10-31 2016-10-31 一种用于高效快速降解难生物降解有机物的电极及其制备方法

Country Status (1)

Country Link
CN (1) CN106542619B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416951A (zh) * 2017-03-30 2017-12-01 上海电力学院 用于高效快速电解难生物降解有机物的碳电极及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562776A (zh) * 2004-03-19 2005-01-12 太原理工大学 光电催化有机水处理氧电极的制备方法
JP2005046730A (ja) * 2003-07-29 2005-02-24 Permelec Electrode Ltd 電気化学的殺菌及び制菌方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046730A (ja) * 2003-07-29 2005-02-24 Permelec Electrode Ltd 電気化学的殺菌及び制菌方法
CN1562776A (zh) * 2004-03-19 2005-01-12 太原理工大学 光电催化有机水处理氧电极的制备方法

Also Published As

Publication number Publication date
CN106542619A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
Sun et al. Electrocatalytic oxidation of tetracycline by Bi-Sn-Sb/γ-Al2O3 three-dimensional particle electrode
Feng et al. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium
Pu et al. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells
Flox et al. Thermo–chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries
Hosseini et al. UV-cleaning properties of Pt nanoparticle-decorated titania nanotubes in the electro-oxidation of methanol: An anti-poisoning and refreshable electrode
Maiyalagan et al. Electrochemical oxidation of methanol on Pt/V2O5–C composite catalysts
Feng et al. Factors affecting the electro-catalytic characteristics of Eu doped SnO2/Sb electrode
Zhang et al. Oxidative degradation of azo dye by hydrogen peroxide electrogenerated in situ on anthraquinonemonosulphonate/polypyrrole composite cathode with heterogeneous CuO/γ-Al2O3 catalyst
Xiong et al. Insights into the role of Cu in promoting photocatalytic hydrogen production over ultrathin HNb3O8 nanosheets
Chen et al. Enhanced activity and selectivity of electrocatalytic denitrification by highly dispersed CuPd bimetals on reduced graphene oxide
Basiriparsa et al. High-efficiency ozone generation via electrochemical oxidation of water using Ti anode coated with Ni–Sb–SnO 2
Wang et al. Methanol electrooxidation on glassy carbon electrode modified with bimetallic Ni (II) Co (II) salen complexes encapsulated in mesoporous zeolite A
Guo et al. Hydrothermal synthesis of FeMn bimetallic nanocatalysts as high-efficiency cathode catalysts for microbial fuel cells
Kakati et al. Hydrothermal synthesis of PtRu on CNT/SnO2 composite as anode catalyst for methanol oxidation fuel cell
Zhang et al. Iron-based clusters embedded in nitrogen doped activated carbon catalysts with superior cathodic activity in microbial fuel cells
Li et al. Fabrication of Ti/TiO2/SnO2-Sb-Cu electrode for enhancing electrochemical degradation of ceftazidime in aqueous solution
Hassaninejad-Darzi et al. Electrocatalytic oxidation of methanol by ZSM-5 nanozeolite-modified carbon paste electrode in alkaline medium
Maarof et al. Electrochemical properties and electrode reversibility studies of palm shell activated carbon for heavy metal removal
Lu et al. Microwave synthesis and properties of nanodiamond supported PtRu electrocatalyst for methanol oxidation
Jiang et al. Biomass-derived porous graphitic carbon with excellent electrocatalytic performances for vanadium redox reactions
Meza et al. Oxygen reduction on carbon supported Pt-W electrocatalysts
Zheng et al. Enhanced electrocatalytic activity for the oxidation of liquid fuels on PtSn nanoparticles
Shixuan et al. Oxygen reduction activity of a Pt-N4 single-atom catalyst prepared by electrochemical deposition and its bioelectrochemical application
Kavian et al. Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni (OH) 2-X/CPE) for the electrocatalytic oxidation of formaldehyde
Seferlis et al. On the kinetics of photoelectrocatalytic water splitting on nanocrystalline TiO2 films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant