CN106541845B - 一种无线电动汽车充电系统及控制方法 - Google Patents

一种无线电动汽车充电系统及控制方法 Download PDF

Info

Publication number
CN106541845B
CN106541845B CN201611050367.XA CN201611050367A CN106541845B CN 106541845 B CN106541845 B CN 106541845B CN 201611050367 A CN201611050367 A CN 201611050367A CN 106541845 B CN106541845 B CN 106541845B
Authority
CN
China
Prior art keywords
energy
wind
power
storage battery
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611050367.XA
Other languages
English (en)
Other versions
CN106541845A (zh
Inventor
龙英文
代伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Engineering Science
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN201611050367.XA priority Critical patent/CN106541845B/zh
Publication of CN106541845A publication Critical patent/CN106541845A/zh
Application granted granted Critical
Publication of CN106541845B publication Critical patent/CN106541845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

本发明涉及一种无线电动汽车充电系统及控制方法,该系统包括依次连接的电能输入装置、电能整流装置、储能电池、DC/AC模块、至少一个无线电源发射模块以及与无线电源发射模块匹配的多个电动汽车接收端,所述的电能输入装置包括相互并联的市电、至少一组风力发电机组以及至少一组太阳能电池板,所述的电动汽车接收端包括依次连接的无线电源接收模块、AC/DC模块和汽车电池。与现有技术相比,本发明具有提高效率、削峰填谷等优点。

Description

一种无线电动汽车充电系统及控制方法
技术领域
本发明涉及无线充电网领域,尤其是涉及一种无线电动汽车充电系统及控制方法。
背景技术
随着社会经济的快速发展,传统的化石能源需求量越来越大,与之带来的温室气体排放问题也越来越多。由太阳能、风能组成的新能源发电系统越来越多,由于太阳能发电和风力发电有很强的互补性,现在安装太阳能和风力混合发电的案例也越来越多。新能源系统虽然可以减少碳排放,但本身发电采用的并网逆变器对电网来说也是污染源,随着新能源系统的兴起,利用储能电池,形成风光储混合发电系统可以有效提高新能源的利用率,有效减少对电网污染。另外随着电动汽车的普及,传统有线的充电方式容易引发多种问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种提高效率、削峰填谷的无线电动汽车充电系统及控制方法。
本发明的目的可以通过以下技术方案来实现:
一种无线电动汽车充电系统,包括依次连接的电能输入装置、电能整流装置、储能电池、DC/AC模块、至少一个无线电源发射模块以及与无线电源发射模块匹配的多个电动汽车接收端,所述的电能输入装置包括相互并联的市电、至少一组风力发电机组以及至少一组太阳能电池板,所述的电动汽车接收端包括依次连接的无线电源接收模块、AC/DC模块和汽车电池。
所述的电能整流装置包括分别与市电和储能电池连接的能量双向流动模块、分别与风力发电机组和储能电池连接的风力整流器以及分别与太阳能电池板和储能电池连接的太阳能整流器。
所述的能量双向流动模块与储能电池之间设有市电可控开关,风力整流器与储能电池之间设有风力可控开关,太阳能整流器与储能电池之间设有太阳能可控开关,该系统还设有与储能电池并联的储能电池开关。
一种无线电动汽车充电系统的控制方法,包括以下步骤:
1)通过采样获取能量双向流动模块DC侧的输入功率Pac、风力发电机组总输出功率Pwind、太阳能电池板总输出功率Ppv,DC/AC模块无线充电直流侧的输入功率Po
2)判断电网是否处于用电高峰期,若是,则进行步骤3),若否,则进行步骤7);
3)判断储能电池当前储存的电能是否大于设定值,若是,则进行步骤4),若否,则进行步骤5);
4)判断太阳能电池板总输出功率Pac与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则市电可控开关k和储能电池开关k0闭合,多余的电能Pwind+Ppv-P0通过与市电连接的能量双向流动模块输送到电网,若否,则市电可控开关k断开,储能电池开关k0闭合,输送到DC/AC模块的差额电能P0-Pwind-Ppv由储能电池提供;
5)判断太阳能电池板总输出功率Pac与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则进行步骤6),若否,则市电可控开关k和储能电池开关k0闭合,差额的电能P0-Pwind+Ppv通过与市电连接的能量双向流动模块由电网提供;
6)判断多余的电能Pwind+Ppv-P0是否大于储能电池充电的额定储能功率Pbat,若是,则市电可控开关k和储能电池开关k0闭合,其它多余电能Pwind+Ppv-P0-Pbat通过与市电连接的能量双向流动模块输送到电网;若否,则市电可控开关k断开,储能电池开关k0闭合,储能电池充电功率为Pwind+Ppv-P0
7)判断储能电池当前储存的电能是否大于设定值,若是,则进行步骤8),若否,则进行步骤11);
8)判断太阳能电池板总输出功率Pac与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则进行步骤9),若否,则市电可控开关k和储能电池开关k0闭合,差额电能P0-Pwind-Ppv通过与市电连接的能量双向流动模块由电网提供;
9)判断储能电池是否储满电能,若是,则进行步骤10),若否,则市电可控开关k和储能电池开关k0闭合,多余的电能Pwind+Ppv-P0通过与市电连接的能量双向流动模块输送到电网;
10)判断太阳能电池板总输出功率Pac与风力发电机组总输出功率Pwind之和减去储能电池充电的额定储能功率Pbat是否大于DC/AC模块无线充电直流侧的输入功率Po,若是,则市电可控开关k断开,储能电池开关k0闭合,储能电池充电功率为Pwind+Ppv-P0,若否,则市电可控开关k和储能电池开关k0闭合,储能电池储能功率为额定储能功率Pbat,多余的电能Pwind+Ppv-P0-Pbat通过与市电连接的能量双向流动模块输送到电网;
11)判断太阳能电池板总输出功率Pac与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则市电可控开关k和储能电池开关k0闭合,储能电池充电功率为额定储能功率Pbat,与市电连接的能量双向流动模块的输出功率为Pbat+P0-Pwind-Ppv;若否,则进行步骤12);
12)判断太阳能电池板总输出功率Pac与风力发电机组总输出功率Pwind之和减去储能电池额定充电功率Pbat后是否大于DC/AC模块无线充电直流侧的输入功率P0,若是,则市电可控开关k和储能电池开关k0闭合,储能电池充电功率为额定储能功率Pbat,其它多余的电能Pwind+Ppv-P0-Pbat通过与市电连接的能量双向流动模块输送到电网,若否,则市电可控开关k断开,储能电池开关k0闭合,储能电池充电功率为Pwind+Ppv-P0
所述的步骤3)和步骤7)中的设定值为储能电池最大储能的70%。
与现有技术相比,本发明具有以下优点:
本发明将太阳能发电、风力发电、储能技术和电动汽车无线充电技术相结合,通过发明一种基于太阳能、风力发电的储能无线电动汽车充电系统及其控制方法来优化带有太阳能发电、风力发电、储能电池的电动汽车无线充电系统,提高了可再生能源的利用率,并通过区分用电高峰期来优化储能电池的充放电动作,提高了利用新能源电能的效率,对电网也可以起到削峰填谷的作用。
附图说明
图1为本发明的无线电动汽车充电系统的结构示意图。
图2为本发明的无线电动汽车充电系统控制方法的方法流程图。
其中,1、市电,2、风力发电机组,3、储能电池,4、无线电源发射模块,5、无线电源接收模块,6、AC/DC模块,7、汽车电池,8、DC/AC模块,9、太阳能电池板独立发电单元。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例:
如图1所示,附图1中能量双向流动模块21为AC/DC整流逆变器,可以把电网交流电转化为直流电,也可以把直流侧电能变为交流电回馈到电网上去;AC/DC1~n为分别接在风力发电机组1~n的风力整流器,完成捕捉最大风能及把各个风力发电机组2产生的交流电转化为直流电的功能;DC/DC1~m为分别接在太阳能电池板独立发电单元PV1~m的太阳能整流器,完成光伏电池板最大功率追踪的功能;k0、k、k1~n、k2~m表示可控开关或继电器;DC/AC模块8可以把太阳能、风能或储能电池上的直流电逆变为高频交流电,通过与之相连接的电源发射模块4进行无线功率发射及电能传输;电源发射模块1~p为分别连接在DC/AC模块8后级用于对各个汽车电池7进行电力无线传输;电源接收模块1~p为分别安装在p辆电动汽车上的无线电能接收模块5,AC/DC模块11~pp为各自连接对于电源接收模块5后端的把高频交流电能转化为直流电给电动汽车电池7充电的模块;
如图2所示,图中Pac为AC/DC模块正向工作时DC侧的输出功率或回馈到市电上AC/DC模块DC侧的输入功率,Ppv为太阳能电池板发电通过太阳能整流器后总的输出功率,Pwind为风力发电通过风力整流器后总的输出功率,Pbat为储能电池充电的额定储能功率,Po为DC/AC模块无线充电直流侧的输入功率。
本发明的无线电动汽车充电系统的控制方法,包括以下步骤:
当第i组风力发电机组无电力输出时,其对应的k1i开关断开,当有电力输出时,其对应的k1i开关闭合。当第i组太阳能电池板无电力输出时,其对应的k2i开关断开,当有电力输出时,其对应的k2i开关闭合。
作为基于太阳能、风力发电的储能无线电动汽车充电系统智能控制算法的控制器采样每个单元风力发电整流器、每个单元太阳能发电整流器、市电、储能电池数据及后级电源发射模块DC/AC输入数据并进行相关功率计算。智能控制器根据输入风力发电功率总和Pwind,输入太阳能发电功率总和Ppv,DC/AC模块充电总的输入功率Po,储能电池存储的电能以及是否当前时刻为用电高峰期按照图2智能控制逻辑进行下列操作步骤:
1、当处于用电高峰期且储能电池当前储存的电能大于设定值(≥最大储能的70%,下同)时,如果太阳能和风力发电输出功率之和不小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv≥P0,k,k0闭合,多余的电能Pwind+Ppv-P0通过与市电连接的AC/DC模块输送到电网;
2、当处于用电高峰期且储能电池当前储存的电能大于设定值时,如果太阳能和风力发电输出功率之和小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv<P0,k断开,k0闭合,输送到DC/AC模块的差额电能P0-Pwind-Ppv由储能电池提供;
3、当处于用电高峰期且储能电池当前储存的电能小于设定值时,如果太阳能和风力发电输出功率之和不小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv≥P0,且多余的电能超过了储能电池充电的额定储能功率,即Pwind+Ppv-P0>Pbat,k和k0都闭合,储能电池充电功率为Pbat,其它多余电能Pwind+Ppv-P0-Pbat通过与市电连接的AC/DC模块输送到电网;
4、当处于用电高峰期且储能电池当前储存的电能小于设定值时,如果太阳能和风力发电输出功率之和大于DC/AC模块无线充电总的输入功率,即Pwind+Ppv>P0,且多余的电能小于或等于储能电池充电的额定储能功率,即Pwind+Ppv-P0≤Pbat,k断开,k0闭合,储能电池充电功率为Pwind+Ppv-P0
5、当处于用电高峰期且储能电池当前储存的电能小于设定值时,如果太阳能和风力发电输出功率之和小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv<P0,k,k0闭合,差额的电能(P0-Pwind+Ppv)通过与市电连接的AC/DC模块由电网提供;
6、当处于非用电高峰期且储能电池当前储存的电能大于设定值时,如果太阳能和风力发电输出功率之和减去储能电池额定充电功率后还不小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv-Pbat≥P0,当储能电池没有储满电能时,k和k0闭合,储能电池储能功率为Pbat,其它多余的电能(Pwind+Ppv-P0-Pbat)通过与市电连接的AC/DC模块输送到电网;
7、当处于非用电高峰期且储能电池当前储存的电能大于设定值时,如果太阳能和风力发电输出功率之和大于DC/AC模块无线充电总的输入功率,即Pwind+Ppv>P0,且多余的电能小于或等于储能电池充电的额定储能功率,即Pwind+Ppv-P0≤Pbat,k断开,k0闭合,储能电池充电功率为Pwind+Ppv-P0
8、当处于非用电高峰期且储能电池当前储存的电能大于设定值时,如果太阳能和风力发电输出功率之和不小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv≥P0,当储能电池已经储满电能时,k和k0闭合,多余的电能(Pwind+Ppv-P0)通过与市电连接的AC/DC模块输送到电网;
9、当处于非用电高峰期且储能电池当前储存的电能大于设定值时,如果太阳能和风力发电输出功率之和小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv<P0,k和k0闭合,差额电能(P0-Pwind-Ppv)通过与市电连接的AC/DC模块由电网提供;
10、当处于非用电高峰期且储能电池当前储存的电能小于设定值时,如果太阳能和风力发电输出功率之和减去储能电池额定充电功率后还不小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv-Pbat≥P0,k和k0闭合,储能电池储能功率为Pbat,其它多余的电能(Pwind+Ppv-P0-Pbat)通过与市电连接的AC/DC模块输送到电网;
11、当处于非用电高峰期且储能电池当前储存的电能小于设定值时,如果太阳能和风力发电输出功率之和大于DC/AC模块无线充电总的输入功率,即Pwind+Ppv>P0,且多余的电能小于或等于储能电池充电的额定储能功率,即Pwind+Ppv-P0≤Pbat,k断开,k0闭合,储能电池充电功率为Pwind+Ppv-P0
12、当处于非用电高峰期且储能电池当前储存的电能小于设定值时,如果太阳能和风力发电输出功率之和小于DC/AC模块无线充电总的输入功率,即Pwind+Ppv<P0,k和k0闭合,储能电池充电功率Pbat,与市电连接的AC/DC模块输出功率为Pbat+P0-Pwind-Ppv
本发明将太阳能发电、风力发电、储能技术和电动汽车无线充电技术相结合,通过发明一种基于太阳能、风力发电的储能无线电动汽车充电系统智能控制算法来优化带有太阳能发电、风力发电、储能电池的电动汽车无线充电系统,提高了可再生能源的利用率,并通过区分用电高峰期来优化储能电池的充放电动作,提高了一种基于太阳能、风力发电的储能无线电动汽车充电系统利用新能源电能的效率,对电网也可以起到削峰填谷的作用。

Claims (2)

1.一种无线电动汽车充电系统,其特征在于,包括依次连接的电能输入装置、电能整流装置、储能电池(3)、DC/AC模块(8)、至少一个无线电源发射模块(4)以及与无线电源发射模块(4)匹配的多个电动汽车接收端,所述的电能输入装置包括相互并联的市电(1)、至少一组风力发电机组(2)以及至少一个太阳能电池板独立发电单元(9),所述的电动汽车接收端包括依次连接的无线电源接收模块(5)、AC/DC模块(6)和汽车电池(7),所述的电能整流装置包括分别与市电(1)和储能电池(3)连接的能量双向流动模块、分别与风力发电机组(2)和储能电池(3)连接的风力整流器以及分别与太阳能电池板(3)和储能电池(3)连接的太阳能整流器,所述的能量双向流动模块与储能电池(3)之间设有市电可控开关(k),风力整流器与储能电池(3)之间设有风力可控开关(k1),太阳能整流器与储能电池(3)之间设有太阳能可控开关(k2),该系统还设有与储能电池(3)并联的储能电池开关(k0);
应用无线电动汽车充电系统的控制方法,包括以下步骤:
1)通过采样获取能量双向流动模块DC侧的输入功率Pac、风力发电机组总输出功率Pwind、太阳能电池板总输出功率Ppv,DC/AC模块无线充电直流侧的输入功率Po
2)判断电网是否处于用电高峰期,若是,则进行步骤3),若否,则进行步骤7);
3)判断储能电池当前储存的电能是否大于设定值,若是,则进行步骤4),若否,则进行步骤5);
4)判断太阳能电池板总输出功率Ppv与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则市电可控开关(k)和储能电池开关(k0)闭合,多余的电能Pwind+Ppv-P0通过与市电连接的能量双向流动模块输送到电网,若否,则市电可控开关(k)断开,储能电池开关(k0)闭合,输送到DC/AC模块的差额电能P0-Pwind-Ppv由储能电池提供;
5)判断太阳能电池板总输出功率Ppv与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则进行步骤6),若否,则市电可控开关(k)和储能电池开关(k0)闭合,差额的电能P0-Pwind+Ppv通过与市电连接的能量双向流动模块由电网提供;
6)判断多余的电能Pwind+Ppv-P0是否大于储能电池充电的额定储能功率Pbat,若是,则市电可控开关(k)和储能电池开关(k0)闭合,其它多余电能Pwind+Ppv-P0-Pbat通过与市电连接的能量双向流动模块输送到电网;若否,则市电可控开关(k)断开,储能电池开关(k0)闭合,储能电池充电功率为Pwind+Ppv-P0
7)判断储能电池当前储存的电能是否大于设定值,若是,则进行步骤8),若否,则进行步骤11);
8)判断太阳能电池板总输出功率Ppv与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则进行步骤9),若否,则市电可控开关(k)和储能电池开关(k0)闭合,差额电能P0-Pwind-Ppv通过与市电连接的能量双向流动模块由电网提供;
9)判断储能电池是否储满电能,若是,则进行步骤10),若否,则市电可控开关(k)和储能电池开关(k0)闭合,多余的电能Pwind+Ppv-P0通过与市电连接的能量双向流动模块输送到电网;
10)判断太阳能电池板总输出功率Ppv与风力发电机组总输出功率Pwind之和减去储能电池充电的额定储能功率Pbat是否大于DC/AC模块无线充电直流侧的输入功率Po,若是,则市电可控开关(k)断开,储能电池开关(k0)闭合,储能电池充电功率为Pwind+Ppv-P0,若否,则市电可控开关(k)和储能电池开关(k0)闭合,储能电池储能功率为额定储能功率Pbat,多余的电能Pwind+Ppv-P0-Pbat通过与市电连接的能量双向流动模块输送到电网;
11)判断太阳能电池板总输出功率Ppv与风力发电机组总输出功率Pwind之和是否大于等于DC/AC模块无线充电直流侧的输入功率Po,若是,则市电可控开关(k)和储能电池开关(k0)闭合,储能电池充电功率为额定储能功率Pbat,与市电连接的能量双向流动模块的输出功率为Pbat+P0-Pwind-Ppv;若否,则进行步骤12);
12)判断太阳能电池板总输出功率Ppv与风力发电机组总输出功率Pwind之和减去储能电池额定充电功率Pbat后是否大于DC/AC模块无线充电直流侧的输入功率P0,若是,则市电可控开关(k)和储能电池开关(k0)闭合,储能电池充电功率为额定储能功率Pbat,其它多余的电能Pwind+Ppv-P0-Pbat通过与市电连接的能量双向流动模块输送到电网,若否,则市电可控开关(k)断开,储能电池开关(k0)闭合,储能电池充电功率为Pwind+Ppv-P0
2.根据权利要求1所述的一种无线电动汽车充电系统,其特征在于,所述的步骤3)和步骤7)中的设定值为储能电池最大储能的70%。
CN201611050367.XA 2016-11-25 2016-11-25 一种无线电动汽车充电系统及控制方法 Active CN106541845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611050367.XA CN106541845B (zh) 2016-11-25 2016-11-25 一种无线电动汽车充电系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611050367.XA CN106541845B (zh) 2016-11-25 2016-11-25 一种无线电动汽车充电系统及控制方法

Publications (2)

Publication Number Publication Date
CN106541845A CN106541845A (zh) 2017-03-29
CN106541845B true CN106541845B (zh) 2018-09-11

Family

ID=58395743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611050367.XA Active CN106541845B (zh) 2016-11-25 2016-11-25 一种无线电动汽车充电系统及控制方法

Country Status (1)

Country Link
CN (1) CN106541845B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139734B (zh) * 2017-05-25 2019-10-11 上海追日电气有限公司 一种光伏漂浮发电的电动汽车无线充电储能系统
CN107248753B (zh) * 2017-06-25 2020-10-20 国网宁夏电力有限公司中卫供电公司 一种光储发电的配电网系统的控制方法
CN107472067A (zh) * 2017-08-17 2017-12-15 上海追日电气有限公司 一种电动汽车的无线充放电控制方法及系统
CN107979157A (zh) * 2017-11-22 2018-05-01 中国电子科技集团公司第四十八研究所 一种平流层太阳能飞艇的能源供给系统及控制方法
CN107933356B (zh) * 2017-12-01 2020-10-02 扬州港信光电科技有限公司 一种电动车供电系统
CN107863809A (zh) * 2017-12-12 2018-03-30 深圳市天福荣科技有限公司 有线和无线的充电设备
CN108494109B (zh) * 2018-03-16 2020-03-20 清华大学 一种不依赖实时无线通讯的双向无线充电系统的控制策略
CN108964229A (zh) * 2018-09-13 2018-12-07 国家电网有限公司 一种适合于风力充足地区的电动汽车移动储能充电装置及控制方法
CN109130904A (zh) * 2018-09-13 2019-01-04 国家电网有限公司 一种适合于北方风力充足地区的电动汽车移动储能无线充电装置及控制方法
CN109066956A (zh) * 2018-09-13 2018-12-21 国家电网有限公司 使用梯次利用电池储能及无线电能传输装置的风-光-储电动汽车移动充电装置及控制方法
EP3678278B1 (en) * 2019-01-02 2022-06-08 ABB Schweiz AG Charging station with high frequency distribution network
CN111711208A (zh) * 2020-05-29 2020-09-25 上海应用技术大学 风光可接入、多端口输出的移动式储能装置及充放电方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202190087U (zh) * 2012-01-17 2012-04-11 天宝电子(惠州)有限公司 一种可供多能源的分布式电动汽车充电系统
JP5692163B2 (ja) * 2012-05-21 2015-04-01 トヨタ自動車株式会社 車両、および送電装置
CN103812140A (zh) * 2012-11-07 2014-05-21 西安艾力特电子实业有限公司 一种风能、太阳能及市电互补的电动汽车充电系统
CN203974579U (zh) * 2014-04-24 2014-12-03 陈业军 一种电动汽车及充电系统
CN104348235A (zh) * 2014-11-24 2015-02-11 天津工业大学 光伏-蓄电池微电网为电动汽车无线充电系统
CN104333101A (zh) * 2014-11-25 2015-02-04 天津工业大学 一种基于无线电能传输技术的电动汽车在线供电系统
CN204669058U (zh) * 2015-06-12 2015-09-23 张洪亮 一种基于风光储离/并网发电的电动汽车无线充电系统

Also Published As

Publication number Publication date
CN106541845A (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN106541845B (zh) 一种无线电动汽车充电系统及控制方法
CN205509635U (zh) 一种分布式新能源充电桩与加氢站
CN105576803A (zh) 一种分布式新能源充电桩与加氢站
CN204190691U (zh) 太阳能电池电源管理控制器
CN204992608U (zh) 一种分布式智能微网结构
CN204179989U (zh) 基于直流母线的风光油互补发电系统
CN104242790A (zh) 一种风光互补发电系统
CN105471075A (zh) 一种电动车光伏充电单元
CN202190087U (zh) 一种可供多能源的分布式电动汽车充电系统
CN109193803A (zh) 多能源智能控制一体化系统及多能源智能控制方法
CN107154657A (zh) 一种最佳工况型燃料电池充电站
CN105720283A (zh) 一种燃料电池混合动力系统及其工作方法
CN103812140A (zh) 一种风能、太阳能及市电互补的电动汽车充电系统
CN205544533U (zh) 一种电动车光伏充电单元
CN202405798U (zh) 一种风光互补发电储能控制器
CN202513586U (zh) 可再生能源发电智能微电网
CN205070576U (zh) 混合式的电路拓扑结构
CN204761126U (zh) 风光互补充电站
CN104767468A (zh) 一种太阳能服务器控制系统和方法
CN105186672A (zh) 一种混合式的电路拓扑结构
CN204615493U (zh) 一种高效离网型太阳能逆变电源
CN205453155U (zh) 一种基于智能电网的分布式发电并网优化系统
CN205429854U (zh) 一种电动汽车太阳能充电系统
CN204190669U (zh) 一种风光互补发电系统
CN203387288U (zh) 一种风力发电机的离网充电一体控制器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant