CN106540311A - 一种自愈合可注射性骨修复材料及其制备方法 - Google Patents

一种自愈合可注射性骨修复材料及其制备方法 Download PDF

Info

Publication number
CN106540311A
CN106540311A CN201611118009.8A CN201611118009A CN106540311A CN 106540311 A CN106540311 A CN 106540311A CN 201611118009 A CN201611118009 A CN 201611118009A CN 106540311 A CN106540311 A CN 106540311A
Authority
CN
China
Prior art keywords
fibroin
preparation
pluralgel
microfibre
healing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611118009.8A
Other languages
English (en)
Inventor
施李杨
朱威
德米特里·奥西波夫
翁习生
许宗溥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611118009.8A priority Critical patent/CN106540311A/zh
Publication of CN106540311A publication Critical patent/CN106540311A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2489/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种自愈合可注射性骨修复材料及其制备方法,该骨修复材料是自愈合可注射性丝素蛋白复合凝胶和力学增强型丝素蛋白复合凝胶。本发明将丝素微纤维进行矿化得到羟基磷灰石沉积的丝素微纤维;通过EDC耦合反应和二硫键互换反应对透明质酸分子进行双基团化学修饰,制备凝胶粘合剂;将羟基磷灰石沉积的丝素微纤维和粘合剂混合后制备自愈合可注射性丝素蛋白复合凝胶,再使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶。本发明的复合凝胶材料性能优越,表现出良好的体内成骨诱导性能,在临床上具有广泛的应用前景。

Description

一种自愈合可注射性骨修复材料及其制备方法
技术领域
本发明属于组织修复领域,涉及一种自愈合可注射性骨修复材料制备方法。
背景技术
水凝胶是一种具有网状结构的三维材料,其具有和细胞外基质相似的微结构,被广泛应用于药物释放载体和组织工程支架(Y.Li,J.Rodrigues and H.Tomas,.Injectableand Biodegradable Hydrogels:Gelation,Biodegradation and BiomedicalApplications.Chemical Society Reviews,2012,41(6):2193-2221)。相对于海绵支架,可注射凝胶材料具有无创或微创植入的优点,可直接通过针头注射到组织缺损部位,从而避免的大型手术带来的风险(Sen Hou,Xuefei Wang,Sean Park,Xiaobing Jin and PeterX.Ma.Rapid Self-Integrating,Injectable Hydrogel for Tissue ComplexRegeneration.Advanced healthcare materials,2015,4(10):1491-1495)。传统的可注射凝胶制备方法是外界刺激引发的原位凝胶法,该方法表现出重复性差;易导致凝胶前体扩散和损失;以及难覆盖形状不规则机体缺损部分等缺点(Liyang Shi,Yuanyuan Han,Hilborn,Dmitri Ossipov,“Smart”drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium–biopolymerchemistry.Chem.Commun.,2016,52,11151-11154)。当自愈合可注射凝胶被注射后,其力学性能和形状能够迅速恢复,而却可以克服传统注射凝胶带来的上述缺点。丝素是一种由家蚕吐丝形成的具有良好力学性能和生物相容性的天然纤维,其被广泛应用于体外和体内成骨性能(Fatemeh Mottaghitalab,Hossein Hosseinkhani,Mohammad Ali Shokrgozar,Chuanbin Mao,Mingying Yang,Mehdi Farokhi.Silk as a potential candidate forbone tissue engineering.Journal of Controlled Release,2015,215,112–128)。然而,制备出具有自愈合和可注射性的丝素蛋白复合凝胶材料并将其应用于骨修复应用则未见报道。
发明内容
本发明的目的在于提供一种自愈合可注射性丝素蛋白复合凝胶,所述复合凝胶被注射后,力学性能和形状能够迅速恢复,克服了传统的可注射凝胶重复性差、易导致凝胶前体扩散和损失、以及难覆盖形状不规则机体缺损部分等缺陷。
为了实现上述目的,本发明采用了如下技术方案:
本发明提供了一种粘合剂,所述粘合剂的结构式如下所示:
,合成所述粘合剂的基础物质为透明质酸,透明质酸的结构式表示如下:
所述粘合剂的简称为Am-HA-BP。
本发明还提供了上述粘合剂的制备方法,所述制备方法包括如下步骤:通过EDC耦合反应和二硫键互换反应对透明质酸分子进行双基团化学修饰,制备粘合剂(Am-HA-BP),透明质酸分子的分子量为50kDa-300kDa。
进一步,所述所述制备方法包括如下步骤:
(1)EDC耦合反应1的条件:室温;pH6;透明质酸:linker 1的摩尔比为1:0.7;溶剂:水。linker 1结构式如下:
(2)EDC耦合反应2的条件:室温;pH4-5;透明质酸:linker 2的摩尔比为1:0.2;溶剂:水。linker 2结构式如下
(3)二硫键互换反应,室温;pH7;透明质酸:linker 3的摩尔比为1:0.2;溶剂:水。linker 3结构式如下
整个反应过程如下所示:
反应式中1、2、3分别代表linker1、linker2、linker3。
进一步,所述透明质酸分子量为150kDa。
本发明还提供了一种自愈合可注射性丝素蛋白复合凝胶的制备方法,所述制备方法包括如下步骤:
1、将丝素微纤维进行矿化得到羟基磷灰石沉积的丝素微纤维(HAP@mSF);
2、HAP@mSF和Am-HA-BP混合,制备出自愈合可注射性丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF)。
进一步,所述步骤1的详细工艺如下:
(1)将茧层置于质量分数为0.5%的Na2CO3沸水溶液中脱胶两次,每次30min,获得的丝素纤维,用去离子水冲洗后烘箱烘干;
(2)将步骤(1)中获得的丝素纤维用1mol/L NaOH溶液降解5h,获得丝素悬浊液,所用的浴比为1:100(g/ml),温度40℃;
(3)将步骤(2)中获得的丝素悬浊液用去离子水洗涤数次,弃上清,烘箱烘干后研磨,获得丝素微纤维;
(4)将步骤(3)中获得的丝素微纤维放入1.5×SBF溶液中矿化7天,所用的浴比为1:250(g/ml),温度37℃;
(5)将步骤(4)中获得的矿化后的丝素微纤维冷冻干燥获得羟基磷灰石沉积的丝素微纤维(HAP@mSF);
进一步,所述步骤2的详细工艺如下:
(1)将2-6mg前面所述的HAP@mSF分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将1-3mg前面所述的粘合剂Am-HA-BP溶解在100μL 0.4%(w/v)2959的PBS溶液中得到前凝胶前驱体2;
(2)将(1)中得到的凝胶前驱体1和2混合后,涡旋混匀后,制备得到所述的自愈合可注射性丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF)。
进一步,所述步骤(1)为:将4mg前面所述的HAP@mSF分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将2mg前面所述的粘合剂溶解在100μL0.4%w/v2959的PBS溶液中得到前凝胶前驱体2。
本发明还提供了一种根据前面所述的制备方法制备而成的自愈合可注射性丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF)。
本发明还提供了一种力学性能增强型丝素蛋白复合凝胶的制备方法,所述制备方法包括如下步骤:
将前面所述的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF-eh)。
进一步,原位化学交联的参数:交联时间5-20min,紫外线波长:400nm-300nm,紫外线强度:10-1000mW/cm2
进一步,所述制备方法包括如下步骤:
(1)将前面所述的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF吸入到注射器中,使用18-25G针头从注射器中注射到直径为8mm的大鼠颅骨缺损模型中,再使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF-eh),交联时间5-20min,紫外线波长:400nm-300nm,紫外线强度:10-1000mW/cm2。该凝胶具有良好的性能和体内成骨诱导性能。
优选地,进行化学交联时,紫外光波长:365nm;强度:100mW/cm2;交联时间为10min。
本发明还提供了一种根据前面所述的制备方法制备而成的力学性能增强型丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF-eh)。
本发明的优点和有益效果:
本发明提供了自愈合可注射性丝素蛋白复合凝胶Am-HA-BP/HAP@mSF以及力学增强型丝素蛋白复合凝胶Am-HA-BP/HAP@mSF-eh的制备方法,该制备方法制备条件温和,所得凝胶材料性能优越,且表现出良好的体内成骨诱导性能。
附图说明
图1显示加入了阿尔新蓝的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF的形态样貌;
图2显示了丝素蛋白复合凝胶Am-HA-BP/HAP@mSF的自愈合性;其中,A:未愈合前,B:愈合后;
图3显示了丝素蛋白复合凝胶Am-HA-BP/HAP@mSF的可注射性。
具体实施方式
以下结合实施例来进一步说明本发明,本发明的优点和特点将会随着描述而更为清楚。但这些实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例1粘合剂Am-HA-BP的制备
通过EDC耦合反应和二硫键互换反应对透明质酸分子分子量(50kDa-300kDa)进行双基团化学修饰,制备凝胶粘合剂(Am-HA-BP)
制备方法包括如下步骤:
(1)EDC耦合反应1的条件:室温;pH6;透明质酸:linker 1的摩尔比为1:0.7;溶剂:水。linker 1结构式如下:
(2)EDC耦合反应2的条件:室温;pH4-5;透明质酸:linker 2的摩尔比为1:0.2;溶剂:水。linker 2结构式如下
(3)二硫键互换反应,室温;pH7;透明质酸:linker 3的摩尔比为1:0.2;溶剂:水。linker 3结构式如下
整个反应过程如下所示:
反应式中1、2、3分别代表linker1、linker2、linker3。
实施例2 Am-HA-BP/HAP@mSF的制备
(1)将茧层置于质量分数为0.5%的Na2CO3沸水溶液中脱胶两次,每次30min,获得的丝素纤维,用去离子水冲洗后烘箱烘干;
(2)将步骤(1)中获得的丝素纤维用1mol/L NaOH溶液降解5h,获得丝素悬浊液,所用的浴比为1:100(g/ml),温度40℃;
(3)将步骤(2)中获得的丝素悬浊液用去离子水洗涤数次,弃上清,烘箱烘干后研磨,获得丝素微纤维;
(4)将步骤(3)中获得的丝素微纤维放入1.5×SBF溶液中矿化7天,所用的浴比为1:250(g/ml),温度37℃;
(5)将步骤(4)中获得的矿化后的丝素微纤维冷冻干燥获得羟基磷灰石沉积的丝素微纤维(HAP@mSF);
(6)将2mg HAP@mSF分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将1mg粘合剂Am-HA-BP溶解在100μL 0.4%(w/v)2959的PBS溶液中得到前凝胶前驱体2;
(7)将(6)中得到的凝胶前驱体1和2混合后,涡旋混匀后,制备得到所述的自愈合可注射性丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF),经阿尔新蓝染色后的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF的形态样貌如图1所示。
实施例3 Am-HA-BP/HAP@mSF的制备
(1)将茧层置于质量分数为0.5%的Na2CO3沸水溶液中脱胶两次,每次30min,获得的丝素纤维,用去离子水冲洗后烘箱烘干;
(2)将步骤(1)中获得的丝素纤维用1mol/L NaOH溶液降解5h,获得丝素悬浊液,所用的浴比为1:100(g/ml),温度40℃;
(3)将步骤(2)中获得的丝素悬浊液用去离子水洗涤数次,弃上清,烘箱烘干后研磨,获得丝素微纤维;
(4)将步骤(3)中获得的丝素微纤维放入1.5×SBF溶液中矿化7天,所用的浴比为1:250(g/ml),温度37℃;
(5)将步骤(4)中获得的矿化后的丝素微纤维冷冻干燥获得羟基磷灰石沉积的丝素微纤维(HAP@mSF);
(6)将4mg HAP@mSF分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将2mg粘合剂Am-HA-BP溶解在100μL 0.4%(w/v)2959的PBS溶液中得到前凝胶前驱体2;
(7)将(6)中得到的凝胶前驱体1和2混合后,涡旋混匀后,制备得到所述的自愈合可注射性丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF),经阿尔新蓝染色后的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF的形态样貌如图1所示。
实施例4 Am-HA-BP/HAP@mSF的制备
(1)将茧层置于质量分数为0.5%的Na2CO3沸水溶液中脱胶两次,每次30min,获得的丝素纤维,用去离子水冲洗后烘箱烘干;
(2)将步骤(1)中获得的丝素纤维用1mol/L NaOH溶液降解5h,获得丝素悬浊液,所用的浴比为1:100(g/ml),温度40℃;
(3)将步骤(2)中获得的丝素悬浊液用去离子水洗涤数次,弃上清,烘箱烘干后研磨,获得丝素微纤维;
(4)将步骤(3)中获得的丝素微纤维放入1.5×SBF溶液中矿化7天,所用的浴比为1:250(g/ml),温度37℃;
(5)将步骤(4)中获得的矿化后的丝素微纤维冷冻干燥获得羟基磷灰石沉积的丝素微纤维(HAP@mSF);
(6)将6mg HAP@mSF分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将3mg粘合剂Am-HA-BP溶解在100μL 0.4%(w/v)2959的PBS溶液中得到前凝胶前驱体2;
(7)将(6)中得到的凝胶前驱体1和2混合后,涡旋混匀后,制备得到所述的自愈合可注射性丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF),经阿尔新蓝染色后的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF的形态样貌如图1所示。
实施例5 Am-HA-BP/HAP@mSF-eh的制备
将前面所述的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF吸入到注射器中,使用18G针头从注射器中注射到直径为8mm的大鼠颅骨缺损模型中,再使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF-eh),交联时间5min,紫外线波长:400nm,紫外线强度:10mW/cm2。该凝胶具有良好的性能和体内成骨诱导性能。
实施例6 Am-HA-BP/HAP@mSF-eh的制备
将前面所述的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF吸入到注射器中,使用20G针头从注射器中注射到直径为8mm的大鼠颅骨缺损模型中,再使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF-eh),交联时间20min,紫外线波长:300nm,紫外线强度:1000mW/cm2。该凝胶具有良好的性能和体内成骨诱导性能。
实施例7 Am-HA-BP/HAP@mSF-eh的制备
将前面所述的丝素蛋白复合凝胶Am-HA-BP/HAP@mSF吸入到注射器中,使用25G针头从注射器中注射到直径为8mm的大鼠颅骨缺损模型中,再使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶(Am-HA-BP/HAP@mSF-eh),交联时间10min,紫外线波长:365nm,紫外线强度:100mW/cm2。该凝胶具有良好的性能和体内成骨诱导性能。
实施例8 Am-HA-BP/HAP@mSF的性能检测
采用实施例3的方法制备丝素蛋白复合凝胶Am-HA-BP/HAP@mSF,检测该凝胶的自愈合性和可注射性。
自愈合性:如图2所示,将两块Am-HA-BP/HAP@mSF凝胶放到一起后,两块凝胶立即愈合为一块,且该愈合过程为添加任何愈合剂和其他化学物理刺激。
可注射性:如图3所示,Am-HA-BP/HAP@mSF凝胶能够从23G针头里注射出来,注射过程中凝胶力学性能并未收到破坏。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (15)

1.一种粘合剂,其特征在于,所述粘合剂的结构式如下所示:
合成所述粘合剂的基础物质为透明质酸,透明质酸的的结构式表示如下:
2.一种权利要求1所述的粘合剂的制备方法,其特征在于,所述制备方法包括如下步骤:通过EDC耦合反应和二硫键互换反应对透明质酸分子进行双基团化学修饰,制备本发明的粘合剂,透明质酸分子的分子量为50kDa-300kD。
3.根据权利要求2所述的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)EDC耦合反应1,反应条件:室温;pH6;透明质酸:linker 1的摩尔比为1:0.7;溶剂:水;linker 1结构式如下:
(2)EDC耦合反应2,反应条件:室温;pH4-5;透明质酸:linker 2的摩尔比为1:0.2;溶剂:水;linker 2结构式如下
(3)二硫键互换反应,反应条件:室温;pH7;透明质酸:linker 3的摩尔比为1:0.2;溶剂:水;linker 3结构式如下
整个反应过程如下所示:
反应式中1、2、3分别代表linker1、linker2、linker3。
4.根据权利要求2或3所述的制备方法,其特征在于,所述透明质酸分子量为150kDa。
5.一种自愈合可注射性丝素蛋白复合凝胶的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将丝素微纤维进行矿化得到羟基磷灰石沉积的丝素微纤维;
(1)将步骤(1)制备的羟基磷灰石沉积的丝素微纤维和权利要求1所述的粘合剂混合,制备出自愈合可注射性丝素蛋白复合凝胶。
6.根据权利要求5所述的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将茧层置于质量分数为0.5%的Na2CO3沸水溶液中脱胶两次,每次30min,获得的丝素纤维,用去离子水冲洗后烘箱烘干;
(2)将步骤(1)中获得的丝素纤维用1mol/L NaOH溶液降解5h,获得丝素悬浊液,所用的浴比为1:100g/ml,温度40℃;
(3)将步骤(2)中获得的丝素悬浊液用去离子水洗涤数次,弃上清,烘箱烘干后研磨,获得丝素微纤维;
(4)将步骤(3)中获得的丝素微纤维放入1.5×SBF溶液中矿化7天,所用的浴比为1:250g/ml,温度37℃;
(5)将步骤(4)中获得的矿化后的丝素微纤维冷冻干燥获得羟基磷灰石沉积的丝素微纤维;
(6)将2-6mg步骤(5)得到的羟基磷灰石沉积的丝素微纤维分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将1-3mg权利要求1所述的粘合剂溶解在100μL 0.4%w/v2959的PBS溶液中得到前凝胶前驱体2;
(7)将(6)中得到的凝胶前驱体1和2混合后,涡旋混匀后,制备得到所述的自愈合可注射性丝素蛋白复合凝胶。
7.根据权利要求6所述的制备方法,其特征在于,所述步骤(6)为:将4mg步骤(5)得到的羟基磷灰石沉积的丝素微纤维分散在100μL含有0.4%w/v2959的PBS溶液中得到前凝胶前驱体1;将2mg权利要求1所述的粘合剂溶解在100μL0.4%w/v2959的PBS溶液中得到前凝胶前驱体2。
8.一种根据权利要求5-7中任一项所述的制备方法制备而成的自愈合可注射性丝素蛋白复合凝胶。
9.一种力学性能增强型丝素蛋白复合凝胶的制备方法,其特征在于,所述制备方法包括如下步骤:
将权利要求8所述的丝素蛋白复合凝胶使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶。
10.根据权利要求9所述的制备方法,其特征在于,所述制备方法包括如下步骤:
将权利要求8所述的丝素蛋白复合凝胶使用紫外光进行原位化学交联,交联时间5-20min,紫外线波长:400nm-300nm,紫外线强度:10-1000mW/cm2,得到力学性能增强型丝素蛋白复合凝胶。
11.根据权利要求10所述的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)将权利要求8所述的丝素蛋白复合凝胶吸入到注射器中,使用针头从注射器中注射到动物颅骨缺损模型中,再使用紫外光进行原位化学交联,得到力学性能增强型丝素蛋白复合凝胶,交联时间5-20min,紫外线波长:400nm-300nm,紫外线强度:10-1000mW/cm2
12.根据权利要求10或11所述的制备方法,其特征在于,进行原位化学交联时,交联时间为10min;紫外光波长:365nm;紫外线强度:100mW/cm2
13.一种根据权利要求9-12中任一项所述的制备方法制备而成的力学性能增强型丝素蛋白复合凝胶。
14.权利要求8所述的丝素蛋白复合凝胶在制备骨修复材料中的应用。
15.权利要求13所述的力学性能增强型丝素蛋白复合凝胶在制备骨修复材料中的应用。
CN201611118009.8A 2016-12-07 2016-12-07 一种自愈合可注射性骨修复材料及其制备方法 Pending CN106540311A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611118009.8A CN106540311A (zh) 2016-12-07 2016-12-07 一种自愈合可注射性骨修复材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611118009.8A CN106540311A (zh) 2016-12-07 2016-12-07 一种自愈合可注射性骨修复材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106540311A true CN106540311A (zh) 2017-03-29

Family

ID=58396467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611118009.8A Pending CN106540311A (zh) 2016-12-07 2016-12-07 一种自愈合可注射性骨修复材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106540311A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107854729A (zh) * 2017-11-02 2018-03-30 福州大学 一种丝素蛋白基自愈合水凝胶及其制备方法
CN110522950A (zh) * 2019-09-26 2019-12-03 华中科技大学同济医学院附属协和医院 丝素蛋白/羟基磷灰石复合支架及其制备方法
CN115581801A (zh) * 2022-09-29 2023-01-10 苏州大学 一种磷酸钙矿化蚕丝微纳米纤维膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562386A (zh) * 2004-03-19 2005-01-12 清华大学 矿化丝蛋白材料及其制备方法
CN105086001A (zh) * 2015-09-13 2015-11-25 长春工业大学 一种透明质酸-明胶/丙烯酰胺双网络水凝胶及其制备方法
CN105107019A (zh) * 2015-09-10 2015-12-02 西南交通大学 一种用于关节软骨修复的红外响应高强水凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1562386A (zh) * 2004-03-19 2005-01-12 清华大学 矿化丝蛋白材料及其制备方法
CN105107019A (zh) * 2015-09-10 2015-12-02 西南交通大学 一种用于关节软骨修复的红外响应高强水凝胶的制备方法
CN105086001A (zh) * 2015-09-13 2015-11-25 长春工业大学 一种透明质酸-明胶/丙烯酰胺双网络水凝胶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. REZANEJADNIK: "Self-healing hybrid nanocomposites consisting of bisphosphonated hyaluronan and calcium phosphate nanoparticles", 《BIOMATERIALS》 *
ZONGPU XU: "Formation of hierarchical bone-like apatites on silk microfiber templates via biomineralization", 《RSC ADVANCES》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107854729A (zh) * 2017-11-02 2018-03-30 福州大学 一种丝素蛋白基自愈合水凝胶及其制备方法
CN110522950A (zh) * 2019-09-26 2019-12-03 华中科技大学同济医学院附属协和医院 丝素蛋白/羟基磷灰石复合支架及其制备方法
CN115581801A (zh) * 2022-09-29 2023-01-10 苏州大学 一种磷酸钙矿化蚕丝微纳米纤维膜及其制备方法
CN115581801B (zh) * 2022-09-29 2024-05-17 苏州大学 一种磷酸钙矿化蚕丝微纳米纤维膜及其制备方法

Similar Documents

Publication Publication Date Title
Cheng et al. Cooperative assembly of a peptide gelator and silk fibroin afford an injectable hydrogel for tissue engineering
Ding et al. Novel self-healing hydrogel with injectable, pH-responsive, strain-sensitive, promoting wound-healing, and hemostatic properties based on collagen and chitosan
Chen et al. Multifunctional chitosan inverse opal particles for wound healing
Nguyen et al. Silk fibroin-based biomaterials for biomedical applications: a review
Su et al. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains
Lu et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics
Sahoo et al. Silk chemistry and biomedical material designs
CN105169483B (zh) 一种脱细胞基质凝胶的制备方法及其脱细胞基质凝胶
Zhu et al. Cellulose/chitosan composite multifilament fibers with two-switch shape memory performance
Silva et al. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies
He et al. Fast contact of solid–liquid interface created high strength multi-layered cellulose hydrogels with controllable size
Lu et al. Insoluble and flexible silk films containing glycerol
Jin et al. Biomaterial films of Bombyx M ori silk Fibroin with Poly (ethylene oxide)
Ahsan et al. An insight on silk protein sericin: from processing to biomedical application
Dong et al. Amorphous silk nanofiber solutions for fabricating silk-based functional materials
Bettini et al. Biocompatible collagen paramagnetic scaffold for controlled drug release
Kundu et al. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering
CN104774337B (zh) 注射用含琼脂糖微球交联透明质酸钠凝胶及制备方法
CN106540311A (zh) 一种自愈合可注射性骨修复材料及其制备方法
Liu et al. Flexible water-absorbing silk-fibroin biomaterial sponges with unique pore structure for tissue engineering
CN106310349A (zh) 一种再生丝素蛋白凝胶膜
Liu et al. Chemical modification of silk proteins: current status and future prospects
CN106693050B (zh) 一种基于胶原及胶原纤维的复合支架材料的制备方法
CN106310380A (zh) 一种纳米纤维化丝素蛋白凝胶及其制备方法
Zhang et al. Engineered tough silk hydrogels through assembling β-sheet rich nanofibers based on a solvent replacement strategy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170329

RJ01 Rejection of invention patent application after publication