CN106532680A - 一种基于功率预测的直流微电网系统级控制方法 - Google Patents

一种基于功率预测的直流微电网系统级控制方法 Download PDF

Info

Publication number
CN106532680A
CN106532680A CN201611204704.6A CN201611204704A CN106532680A CN 106532680 A CN106532680 A CN 106532680A CN 201611204704 A CN201611204704 A CN 201611204704A CN 106532680 A CN106532680 A CN 106532680A
Authority
CN
China
Prior art keywords
power
moment
load
energy
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611204704.6A
Other languages
English (en)
Other versions
CN106532680B (zh
Inventor
吴俊勇
郝亮亮
刘自程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weifang Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
Suzhou Haide Electric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Haide Electric Technology Co Ltd filed Critical Suzhou Haide Electric Technology Co Ltd
Priority to CN201611204704.6A priority Critical patent/CN106532680B/zh
Publication of CN106532680A publication Critical patent/CN106532680A/zh
Application granted granted Critical
Publication of CN106532680B publication Critical patent/CN106532680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

本发明公开一种基于功率预测的直流微电网系统级控制方法,该方法在储能单元的荷电系数SOC≤0.4或SOC≥0.8时,基于直流微电网的功率历史数据对直流微电网的分布式电源输出功率和负荷功率进行预测,使直流微电网可进入短时能量透支状态或短时能量过剩状态。本发明可提高直流微电网中储能单元的利用率,且对储能单元的使用寿命的影响很小,可保证直流微电网稳定运行。

Description

一种基于功率预测的直流微电网系统级控制方法
技术领域
本发明涉及直流微电网控制技术领域。更具体地,涉及一种基于功率预测的直流微电网系统级控制方法。
背景技术
随着能源危机和环境保护需求的日益增加,分布式发电技术获得了越来越多的重视和应用。但是分布式电源单机接入成本高,容量小,运行不确定性强,受制于自然条件,缺少灵活可控的特点,对主网而言是一个不可控源。为了解决以上问题,分布式电源可通过微电网形式并入主网。微电网包括直流微电网和交流微电网,当前国内外已经投建的微电网主要为交流微电网,而直流微电网的投建正处于试运行状态,相关技术的研究正逐步趋于成熟。
直流微电网设计主要包括拓扑结构的设计、控制系统的设计以及保护系统的设计。在控制系统上,近年来很多学者提出了很多控制方法。中国专利公开号CN104682376A公开了一种直流微电网控制系统,能够向不同电压等级的负荷提供电能,供电系统稳定可靠,节约能源,实用性强。中国专利公开号CN105305480A公开一种混合储能直流微电网分层控制方法,能够实现根据直流母线电压与电池的荷电系数,各换流器根据直流微电网运行状态的不同调节自身控制方式。但在对储能单元荷电系数SOC的研究上研究尚不深入,且考虑能源的高效利用以及直流微电网的经济性上,该种控制方法仍需优化。
深度充、放电会影响储能单元的使用寿命,不同材料的电池组成的储能单元的SOC工作区间的电化学性能存在差异,但通常来说储能单元的最佳SOC工作区间为0.4-0.8,所以通常认为储能单元在SOC≤0.4时储能单元处于低电量状态、在SOC≥0.8时储能单元处于高电量状态。
现有的直流微电网控制方法是以储能单元为核心,以控制功率稳定为基础的集中式能量管理模式协调控制方法,由于SOC可以反映储能单元的运行状态,分布式电源输出功率PDG与负荷功率PLoad的大小关系表示了直流微电网内部的能量平衡关系,因此直流微电网的系统级控制方法的控制策略中,通过分布式电源的输出功率总和与负荷所需功率总和比较,以及储能单元的SOC作为双判据,控制直流微电网在不同状态时进入如图1所示的6种基本工作模式,具体如下:
当满足0.4<SOC<0.8时,控制直流微电网进入工作模式Mode_1:检测得到的储能单元的SOC满足0.4<SOC<0.8,储能单元处于一个既能充电又能放电的状态,由储能单元作为微电网的主控制单元控制直流母线电压的稳定,并网逆变器停止工作,分布式电源工作在MPPT模式,储能单元工作在稳压模式,即如果PDG>PLoad则分布式电源在保证满足负荷功率的前提下利用剩余的功率为储能单元充电,如果PDG=PLoad则分布式电源提供负荷需要的功率而储能单元既不充电也不放电,如果PDG<PLoad则储能单元放电以填补分布式电源输出功率不足以满足负荷功率的部分。
当满足SOC≥0.8且PDG>PLoad时,控制直流微电网进入工作模式Mode_2:检测得到的储能单元的SOC满足SOC≥0.8说明储能单元处于高电量状态,此时储能单元只能放电,而PDG>PLoad说明直流微电网内部能量增加不平衡,只能做放弃分布式电源部分输出功率的处理,分布式电源进入稳压限流模式。
当满足SOC≥0.8且PDG<PLoad时,控制直流微电网进入工作模式Mode_3:检测得到的储能单元的SOC满足SOC≥0.8说明储能单元处于高电量状态,此时储能单元只能放电,而PDG<PLoad说明分布式电源提供的功率不能满足负荷功率,储能单元放电以填补分布式电源输出功率不足以满足负荷功率的部分,储能单元处于放电稳压模式。
当满足SOC≤0.4、PDG<PLoad且直流微电网处于并网状态时,控制直流微电网进入工作模式Mode_4:检测得到的储能单元的SOC满足SOC≤0.4说明储能单元处于低电量状态,此时储能只能充电,而PDG<PLoad说明分布式电源提供的功率不能满足负荷功率,由于直流微电网处于并网状态,由直流微电网通过并网逆变器给负荷提供分布式电源输出功率不足以满足负荷功率的部分,并网逆变器处于稳压状态。
当满足SOC≤0.4且PDG>PLoad时,控制直流微电网进入工作模式Mode_5:检测得到的储能单元的SOC满足SOC≤0.4说明储能单元处于低电量状态,此时储能只能充电,而PDG>PLoad说明分布式电源提供的功率超过负荷功率,分布式电源在保证满足负荷功率的前提下利用剩余的功率为储能单元充电,储能单元处于充电稳压模式。
当满足SOC≤0.4、PDG<PLoad且直流微电网处于孤岛状态时,控制直流微电网进入工作模式Mode_6:检测得到的储能单元的SOC满足SOC≤0.4说明储能单元处于低电量状态,此时储能只能充电,而PDG<PLoad说明分布式电源提供的功率不能满足负荷功率,由于直流微电网处于孤岛状态,控制负荷开启后备线直接连接大电网。
但考虑在SOC≤0.4时储能单元依然可以放电以及SOC≥0.8时储能单元依然可以充电的实际情况,需要提供一种提高储能单元利用率且尽量不影响储能单元的使用寿命的基于功率预测的直流微电网系统级控制方法。
发明内容
本发明的目的在于提供一种基于功率预测的直流微电网系统级控制方法。
为达到上述目的,本发明采用下述技术方案:
一种基于功率预测的直流微电网系统级控制方法,包括如下步骤:
S1、对直流微电网参数进行实时同步采样,所述直流微电网参数包括储能单元的荷电系数SOC、分布式电源输出功率PDG和负荷功率PLoad
S2、在采样时刻T,若SOC≤0.4且PDG<PLoad则转入步骤S3,若SOC≥0.8且PDG>PLoad则转入步骤S4;
S3、从直流微电网的功率历史数据中调取直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率和负荷功率△T为60分钟,k=1,2,…,60,i=1,2,…,N;计算直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻内的分布式电源输出功率之和与负荷功率之和若满足则自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分,其中QN为储能单元的标称容量;
S4、从直流微电网的功率历史数据中调取直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率和负荷功率计算直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻内的分布式电源输出功率之和与负荷功率之和若满足则自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用剩余的功率为储能单元充电。
优选地,N=7。
本发明的有益效果如下:
本发明所述技术方案可提高直流微电网中储能单元的利用率,且对储能单元的使用寿命的影响很小,可保证直流微电网稳定运行。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出现有的直流微电网控制方法的微电网工作模式示意图。
图2示出基于功率预测的直流微电网系统级控制方法的流程图。
图3示出应用基于功率预测的直流微电网系统级控制方法的直流微电网的拓扑结构图。
图4示出应用基于功率预测的直流微电网系统级控制方法的直流微电网的8种工作模式示意图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
如图2所示,本发明公开的一种基于功率预测的直流微电网系统级控制方法,包括如下步骤:
S1、对直流微电网参数进行实时同步采样,直流微电网参数包括储能单元的荷电系数SOC、分布式电源输出功率PDG和负荷功率PLoad
S2、在采样时刻T,若SOC≤0.4且PDG<PLoad,则说明直流微电网进入低电量状态且可能进入短时能量透支状态,转入步骤S3进行功率预测;若SOC≥0.8且PDG>PLoad,则说明直流微电网进入高电量状态且可能进入短时能量过剩状态,转入步骤S4进行功率预测;
S3、从直流微电网的功率历史数据中调取直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率和负荷功率△T为60分钟,k=1,2,…,60,i=1,2,…,N,N优选为7,即调取采样日期的过去7天的数据;计算直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻内的分布式电源输出功率之和与负荷功率之和若满足进入短时能量透支状态的条件:则控制直流微电网进入短时能量透支状态,自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分;若不满足进入短时能量透支状态的条件,则控制直流微网进入现有的工作模式Mode_4或工作模式Mode_6,工作模式Mode_4或工作模式Mode_6中直流微电网的工作状态参见背景技术中关于直流微电网在不同状态时进入的6种基本工作模式的说明,其中QN为储能单元的标称容量;
S4、从直流微电网的功率历史数据中调取直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率和负荷功率△T为60分钟,k=1,2,…,60,i=1,2,…,N,N优选为7,即调取采样日期的过去7天的数据;计算直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻内的分布式电源输出功率之和与负荷功率之和若满足进入短时能量过剩状态的条件:则控制直流微电网进入短时能量透支状态,自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用其提供给负荷的之外的剩余的功率为储能单元充电;若不满足进入短时能量过剩状态的条件,则控制直流微网进入现有的工作模式Mode_2,工作模式Mode_2中直流微电网的工作状态参见背景技术中关于直流微电网在不同状态时进入的6种基本工作模式的说明,其中QN为储能单元的标称容量。
其中,
是对采样日期之前N天内每天的T+△T时刻的负荷功率取平均值,作为采样当天的T+△T时刻的负荷功率的预测值;
是对采样日期之前N天内每天的T+△T时刻的分布式电源输出功率取平均值,作为采样当天的T+△T时刻的分布式电源输出功率的预测值;
是对采样日期之前N天内每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的负荷功率之和取平均值,作为采样当天的T时刻至T+△T时刻的负荷功率总和的预测值;
是对采样日期之前N天内每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率之和取平均值,作为采样当天的T时刻至T+△T时刻的分布式电源输出功率总和的预测值;
在步骤S3中,直流微电网进入短时能量透支状态的条件中:
说明在采样当天的T+△T时刻,负荷功率的预测值小于分布式电源输出功率的预测值,即,在采样当天的T+△T时刻,分布式电源可以在保证满足负荷功率的前提下利用剩余的功率为储能单元充电;
说明在采样当天的T时刻至T+△T时刻中,负荷功率总和的预测值大于分布式电源输出功率总和的预测值的部分小于等于储能单元的标称容量的1/10,储能单元的标称容量的1/10也就是0.1SOC,即,如果自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分,T时刻至T+△T时刻消耗的储能单元功率不会超过储能单元的标称容量的1/10;
说明:在采样当天的T+△T时刻,分布式电源可以在保证满足负荷功率的前提下利用剩余的功率为储能单元充电,且,如果自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分,T时刻至T+△T时刻消耗的储能单元功率不会超过储能单元的标称容量的1/10。因此,在满足进入短时能量透支状态的条件时控制直流微电网进入短时能量透支状态,自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分,可提高直流微电网中储能单元的利用率,且对储能单元的使用寿命的影响很小。
在步骤S4中,直流微电网进入短时能量过剩状态的条件中:
说明在采样当天的T+△T时刻,分布式电源输出功率的预测值小于负荷功率的预测值,即,在采样当天的T+△T时刻,储能单元需要放电以填补分布式电源输出功率不足以满足负荷功率的部分;
说明在采样当天的T时刻至T+△T时刻中,分布式电源输出功率总和的预测值大于负荷功率总和的预测值的部分小于等于储能单元的标称容量的1/10,储能单元的标称容量的1/10也就是0.1SOC,即,如果自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用剩余的功率为储能单元充电,T时刻至T+△T时刻为储能单元充电的功率不会超过储能单元的标称容量的1/10;
说明:在采样当天的T+△T时刻,储能单元需要放电以填补分布式电源输出功率不足以满足负荷功率的部分,且,如果自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用剩余的功率为储能单元充电,T时刻至T+△T时刻为储能单元充电的功率不会超过储能单元的标称容量的1/10。因此,在满足进入短时能量过剩状态的条件时控制直流微电网进入短时能量透支状态,自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用剩余的功率为储能单元充电,可提高直流微电网中储能单元的利用率,且对储能单元的使用寿命的影响很小。
图3所示的直流微电网以储能单元DC/DC变流器为主控制单元,以并网变流器为后备控制单元。由于考虑到用户电费计量的实际情况,虽然并网变流器为双向的AC/DC,但实际按照单向模式,即能量仅可能由电网流向微电网。于是,某些工作状态下(比如储能单元不能接受能量且直流母线电压上升),分布式电源(光伏)不能工作在MPPT模式下,需切换到稳压(所谓“稳压”为稳定直流母线电压,处于稳压模式的变流器用来控制母线电压)模式。
将本发明公开的一种基于功率预测的直流微电网系统级控制方法应用于如图3所示的100kW直流微电网时,该直流微电网在不同状态时进入如图4所示的8种工作模式,具体如下:
对直流微电网参数进行实时同步采样,直流微电网参数包括储能单元的荷电系数SOC、分布式电源输出功率PDG和负荷功率PLoad
在采样时刻T:
当满足0.4<SOC<0.8时,控制直流微电网进入工作模式Mode_1:如果PDG>PLoad则分布式电源在保证满足负荷功率的前提下利用剩余的功率为储能单元充电,如果PDG=PLoad则分布式电源提供负荷需要的功率而储能单元既不充电也不放电,如果PDG<PLoad则储能单元放电以填补分布式电源输出功率不足以满足负荷功率的部分。
当满足SOC≥0.8且PDG>PLoad,但不满足进入短时能量过剩状态的条件:时,控制直流微电网进入工作模式Mode_2:放弃分布式电源部分输出功率。
当满足SOC≥0.8且PDG<PLoad时,控制直流微电网进入工作模式Mode_3:储能单元放电以填补分布式电源输出功率不足以满足负荷功率的部分。
当满足SOC≤0.4、PDG<PLoad且直流微电网处于并网状态,但不满足进入短时能量透支状态的条件:时,控制直流微电网进入工作模式Mode_4:由直流微电网通过并网逆变器给负荷提供分布式电源输出功率不足以满足负荷功率的部分。
当满足SOC≤0.4且PDG>PLoad时,控制直流微电网进入工作模式Mode_5:分布式电源在保证满足负荷功率的前提下利用剩余的功率为储能单元充电。
当满足SOC≤0.4、PDG<PLoad且直流微电网处于孤岛状态,但不满足进入短时能量透支状态的条件:时,控制直流微电网进入工作模式Mode_6:控制负荷开启后备线直接连接大电网。
当满足SOC≤0.4且PDG<PLoad,并满足进入短时能量透支状态的条件:时,控制直流微电网进入工作模式Mode_7:自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分。
当满足SOC≥0.8且PDG>PLoad,并满足进入短时能量过剩状态的条件:时,控制直流微电网进入工作模式Mode_8:自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用其提供给负荷的之外的剩余的功率为储能单元充电。
最后,利用PSCAD/EMTDC软件对该100kW直流微电网进行了电磁暂态仿真,在仿真中通过设置不同的SOC、PDG和PLoad,仿真上述8种工作模式,验证了本发明提出方法的正确性。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (2)

1.一种基于功率预测的直流微电网系统级控制方法,其特征在于,该方法包括如下步骤:
S1、对直流微电网参数进行实时同步采样,所述直流微电网参数包括储能单元的荷电系数SOC、分布式电源输出功率PDG和负荷功率PLoad
S2、在采样时刻T,若SOC≤0.4且PDG<PLoad则转入步骤S3,若SOC≥0.8且PDG>PLoad则转入步骤S4;
S3、从直流微电网的功率历史数据中调取直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率和负荷功率△T为60分钟,k=1,2,…,60,i=1,2,…,N;计算直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻内的分布式电源输出功率之和与负荷功率之和若满足则自T时刻起至T+△T时刻止,控制储能单元进行放电,以填补分布式电源输出功率不足以满足负荷功率的部分,其中QN为储能单元的标称容量;
S4、从直流微电网的功率历史数据中调取直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻中以1分钟为间隔的各采样时刻的分布式电源输出功率和负荷功率计算直流微电网在采样日期之前N天中每天的T时刻至T+△T时刻内的分布式电源输出功率之和与负荷功率之和若满足则自T时刻起至T+△T时刻止,在保证满足负荷功率的前提下,控制分布式电源利用剩余的功率为储能单元充电。
2.根据权利要求1所述的基于功率预测的直流微电网系统级控制方法,其特征在于,N=7。
CN201611204704.6A 2016-12-23 2016-12-23 一种基于功率预测的直流微电网系统级控制方法 Active CN106532680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611204704.6A CN106532680B (zh) 2016-12-23 2016-12-23 一种基于功率预测的直流微电网系统级控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611204704.6A CN106532680B (zh) 2016-12-23 2016-12-23 一种基于功率预测的直流微电网系统级控制方法

Publications (2)

Publication Number Publication Date
CN106532680A true CN106532680A (zh) 2017-03-22
CN106532680B CN106532680B (zh) 2019-01-01

Family

ID=58337429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611204704.6A Active CN106532680B (zh) 2016-12-23 2016-12-23 一种基于功率预测的直流微电网系统级控制方法

Country Status (1)

Country Link
CN (1) CN106532680B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682408A (zh) * 2015-03-04 2015-06-03 华南理工大学 一种含多类储能的离网型风光储微电网的能量管理方法
CN105552969A (zh) * 2015-12-29 2016-05-04 北京国电通网络技术有限公司 基于功率预测的分布式光伏发电输出功率平滑方法和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682408A (zh) * 2015-03-04 2015-06-03 华南理工大学 一种含多类储能的离网型风光储微电网的能量管理方法
CN105552969A (zh) * 2015-12-29 2016-05-04 北京国电通网络技术有限公司 基于功率预测的分布式光伏发电输出功率平滑方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI ZHANG等: "Power Control of DC Microgrid Using DC Bus Signaling", 《2011 TWENTY-SIXTH ANNUA IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION》 *

Also Published As

Publication number Publication date
CN106532680B (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN103296754B (zh) 一种主动配电网分布式电源资源控制方法
CN102361328B (zh) 一种利用风能、光能互补并与市电综合利用的分布式微网系统
CN104319816B (zh) 一种光储交直流混合微电网系统及其控制方法
CN105634020B (zh) 基于有限时间一致性的孤岛微电网分布式协调控制方法
CN102882237B (zh) 智能型储能机及其工作方法
CN104993478B (zh) 一种适用于用户侧微电网的离网运行控制方法
CN104682408B (zh) 一种含多类储能的离网型风光储微电网的能量管理方法
CN107069807B (zh) 含不确定性预算调节的无平衡节点微网鲁棒调度方法
CN107508303A (zh) 一种面向微电网的模块化储能装置优化配置及控制方法
CN105515083A (zh) 一种支持安全动态增容的电动汽车群充电微网控制方法
CN106549380A (zh) 多模态微电网能量协调优化控制方法
CN110112783A (zh) 光伏蓄电池微电网调度控制方法
CN105337301B (zh) 微电网并网点的选择方法和装置
CN103236718A (zh) 一种智能微网的源-网-荷自动控制系统及控制方法
CN109802396A (zh) 一种基于电压灵敏度配置的光伏台区电能质量治理系统
CN206099371U (zh) 一种社区新能源微网系统
CN104767224A (zh) 一种含多类储能的并网型风光储微电网的能量管理方法
CN108667147B (zh) 一种含多微电网的柔性中压直流配电中心优化调度方法
CN204118759U (zh) 一种光储交直流混合微电网系统
CN202363902U (zh) 一种用于对微网能量进行管理的系统
CN112865075B (zh) 一种交直流混合微电网优化方法
CN104979849A (zh) 一种适用于用户侧微电网的并网运行控制方法
CN109103939A (zh) 一种降低光伏电站损耗的储能系统智能控制装置及方法
CN107658960A (zh) 居民用电的应急供电方法、装置及系统、设备、存储介质
CN112803567B (zh) 基于智能楼宇光储供电设备的参数优化设计方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230517

Address after: 261021 No. 425 Dongfeng West Street, Weicheng District, Weifang City, Shandong Province

Patentee after: STATE GRID SHANDONG ELECTRIC POWER COMPANY WEIFANG POWER SUPPLY Co.

Address before: Room 1216, Building C, Caohu Science and Technology Park, Xijiao University, No.1 Guantang Road, Xiangcheng Economic and Technological Development Zone, Suzhou City, Jiangsu Province, 215000

Patentee before: SUZHOU HAIDELAN ELECTRICAL TECHNOLOGY CO.,LTD.