CN106532423B - 一种共振泵浦1.5-1.6微米波段固体激光器 - Google Patents

一种共振泵浦1.5-1.6微米波段固体激光器 Download PDF

Info

Publication number
CN106532423B
CN106532423B CN201611157697.9A CN201611157697A CN106532423B CN 106532423 B CN106532423 B CN 106532423B CN 201611157697 A CN201611157697 A CN 201611157697A CN 106532423 B CN106532423 B CN 106532423B
Authority
CN
China
Prior art keywords
laser
waveband
pumping
crystal
gain media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611157697.9A
Other languages
English (en)
Other versions
CN106532423A (zh
Inventor
黄建华
陈雨金
黄艺东
龚兴红
林炎富
罗遵度
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201611157697.9A priority Critical patent/CN106532423B/zh
Publication of CN106532423A publication Critical patent/CN106532423A/zh
Application granted granted Critical
Publication of CN106532423B publication Critical patent/CN106532423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1655Solid materials characterised by a crystal matrix silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0007Applications not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)

Abstract

一种共振泵浦1.5‑1.6微米波段固体激光器,涉及激光晶体和器件领域。本发明采用具有高的热和力学性能的单掺Er3+硅酸盐晶体作为固体激光器的增益介质,利用1470或1530nm附近波长的半导体激光作为泵浦源,可实现高效和高功率的1.55μm附近波长激光运转,输出激光波长接近室温Ge和InGaAs探测器的最灵敏响应区以及石英光纤的最低损耗窗口,更适合应用于激光测距和雷达等军事和民用领域。

Description

一种共振泵浦1.5-1.6微米波段固体激光器
技术领域
本发明涉及激光晶体和器件领域。
背景技术
利用铒离子4I13/24I15/2跃迁获得的1.5-1.6μm波段激光处于光纤通信和大气传输窗口,且对人眼安全,可被广泛应用于国防和民用领域。获得该波段激光的一种技术途径是将Er3+离子从4I15/2基态直接泵浦到激光上能级4I13/2,然后通过4I13/24I15/2跃迁实现1.5-1.6μm波段的固体激光输出。这种共振泵浦的特点是泵浦光波长和激光发射波长接近,量子损耗低,具有高的能量转换效率,同时由无辐射弛豫引起的材料热负荷低,因而采用共振泵浦具有高的热和力学性能的单掺Er3+晶体可实现高效和高功率的1.5-1.6μm波段固体激光输出。
目前已报道的可实现该波段连续固体激光高效和高功率运转的单掺Er3+晶体主要是Er:YAG和Er:YVO4。然而采用1470或1530nm半导体激光共振泵浦上述晶体,Er:YAG激光输出波长位于1617和1645nm,Er:YVO4激光输出波长位于1593.5nm,均偏离室温Ge和InGaAs探测器的最灵敏响应区以及石英光纤的最低损耗窗口(1.55μm附近波长),极大限制了该波段固体激光器件的应用价值。采用共振泵浦实现1.5-1.6μm波段固体激光输出的还有单掺Er3+氟化物和钨酸盐晶体,但由于上述晶体的热性能较差,无法实现高功率的连续激光运转,也很难有实际应用价值。因此,迫切需要获得一类既有高的热和力学性能,又能采用共振泵浦实现1.55μm附近波长激光输出的晶体作为增益介质,以实现高功率的1.55μm附近波长激光运转,满足激光测距和雷达等军事和民用领域的应用需求。
发明内容
本发明的目的在于提供一种采用共振泵浦方式的激光器,该激光器采用一类具有高的热和力学性能的单掺Er3+硅酸盐晶体作为增益介质,可获得高效和高功率的1.55μm附近波长的固体激光输出,激光输出波长接近室温Ge和InGaAs探测器的最灵敏响应区以及石英光纤的最低损耗窗口。
本发明包括如下技术方案:
1.一种共振泵浦1.5-1.6μm波段固体激光器,由增益介质,激光谐振腔和半导体激光泵浦系统组成,其特征在于:该激光器以单掺Er3+硅酸盐晶体作为增益介质;激光谐振腔由输入和输出镜组成,输入镜设计为在1470nm或1530nm附近波长透过率T≥80%,在1.5-1.6μm波段处透过率T≤0.5%,输出镜设计为在1.5-1.6μm波段处透过率0.5%≤T≤20%;半导体激光泵浦系统包括1470nm或1530nm附近波长半导体激光以及放置在半导体激光和增益介质之间的光学耦合器。
2.如项1所述激光器的增益介质,其特征在于:单掺Er3+硅酸盐晶体的分子式为:Er2xRe2(1-x)Si2O7,其中x=0.002~0.02,Re为La、Y、Gd、Lu、Sc元素中某一元素或若干元素的组合。
3.如项1所述激光器的增益介质,其特征在于:单掺Er3+硅酸盐晶体的分子式为:Er2xRe2(1-x)SiO5,其中x=0.002~0.02,Re为La、Y、Gd、Lu、Sc元素中某一元素或若干元素的组合。
4.一种共振泵浦1.5-1.6μm波段固体脉冲激光器,其特征在于:在项1所述的激光器的增益介质和输出镜之间插入1.5-1.6μm波段的调Q或锁模元件,实现1.5-1.6μm波段的脉冲激光运转。
5.一种共振泵浦1.5-1.6μm波段可调谐固体激光器,其特征在于:在项1所述的激光器的增益介质和输出镜之间插入1.5-1.6μm波段的调谐元件,实现1.5-1.6μm波段的可调谐激光运转。
6.一种共振泵浦1.5-1.6μm波段倍频激光器,其特征在于:在项1所述的激光器的增益介质和输出镜之间插入1.5-1.6μm波段的倍频晶体,激光谐振腔输出镜设计为在1.5-1.6μm波段处透过率小于0.5%,在倍频波段处透过率大于80%,实现1.5-1.6μm波段的倍频激光运转。
实施本发明技术方案具有的有益效果是:以具有高的热和力学性能的单掺Er3+硅酸盐晶体为增益介质,能获得高效和高功率的连续以及高脉冲能量、高重复频率和窄脉宽的脉冲1.55μm附近波长的固体激光,更适合应用于激光测距和雷达等军事和民用领域。
具体实施方式
实例1:1473nm半导体激光端面泵浦Er:Lu2Si2O7晶体实现1537nm固体激光输出。
利用提拉法生长(Er0.004Lu0.996)2Si2O7激光晶体。利用偏光显微镜定出晶体的三个光学主轴X、Y、Z。由于该晶体沿E//Y和E//X方向在泵浦光1473nm处的吸收系数均约为0.6cm-1;按照80%的吸收率,沿Z方向切割出厚度为27mm(端面积一般为平方毫米到平方厘米)的晶体样品作为激光增益介质,端面抛光后置于激光腔中。激光腔输入镜在1473nm波长处透过率T=90%,在1537nm处透过率T=0.1%;激光腔输出镜在1537nm处透过率T=10%,采用10W的1473nm半导体激光端面泵浦该增益介质,可获得连续功率高于5.0W的1537nm波长的固体激光输出。另外,使用但不限于使用如下表格中的掺杂不同Er3+离子浓度的晶体作为1.5-1.6μm波段固体激光器的增益介质,采用以上的技术方案也可以实现同样的效果。
实例2:1532nm半导体激光端面泵浦Er:Lu2Si2O7晶体实现1564nm固体激光输出。
利用提拉法生长(Er0.004Lu0.996)2Si2O7激光晶体。利用偏光显微镜定出晶体的三个光学主轴X、Y、Z。由于该晶体沿E//Y和E//X方向在泵浦光1532nm处的吸收系数均约为0.5cm-1;按照80%的吸收率,沿Z方向切割出厚度为32mm(端面积一般为平方毫米到平方厘米)的晶体样品作为激光增益介质,端面抛光后置于激光腔中。激光腔输入镜在1532nm波长处透过率T=90%,在1564nm波长处透过率T=0.1%;激光腔输出镜在1564nm波长处透过率T=9%,采用10W的1532nm半导体激光端面泵浦该增益介质,可获得连续功率高于4.5W的1564nm波长的固体激光输出。另外,使用但不限于使用如下表格中的掺杂不同Er3+离子浓度的晶体作为1.5-1.6μm波段固体激光器的增益介质,采用以上的技术方案也可以实现同样的效果。
实例3:1473nm半导体激光端面泵浦Er:Lu2Si2O7晶体实现1537nm固体脉冲激光输出。
直接将1.5-1.6μm波段的被动调Q片(如Co2+:MgAl2O4,Co2+:ZnSe,Cr2+:ZnSe等)或声光调Q模块插入实例1中的激光增益介质和输出镜之间,采用1473nm半导体激光端面泵浦该增益介质,可实现1537nm调Q脉冲激光运转。
实例4:1473nm半导体激光端面泵浦Er:Lu2Si2O7晶体实现1520-1570nm可调谐固体激光输出。
将1.5-1.6μm波段的调谐元件(双折射滤光片、光栅或棱镜等)插入实例1中的激光增益介质和输出镜之间,采用1473nm半导体激光端面泵浦该增益介质,可获得1520-1570nm可调谐激光输出。
实例5:1473nm半导体激光端面泵浦Er:Lu2Si2O7晶体实现1.5-1.6μm波段可倍频激光输出。
直接将1.5-1.6μm波段的非线性光学晶体(如KTP、LBO、β-BBO等)插入实例1中激光晶体和输出镜之间。在激光腔输入镜镀上1473nm波长处透过率T=90%,在1537nm和倍频波长768nm处高反(T≤0.5%)的介质膜;在输出镜上镀上1537nm波长处高反(T≤0.5%),倍频波长768nm处高透(T≥80%)的介质膜。采用1473nm半导体激光端面泵浦该增益介质,即可实现1.5-1.6μm波段倍频激光输出。
实例6:1526nm半导体激光端面泵浦Er:Gd2SiO5晶体实现1561nm固体激光输出。
利用提拉法生长(Er0.005Gd0.995)2SiO5激光晶体。利用偏光显微镜定出晶体的三个光学主轴X、Y、Z。由于该晶体沿E//Z和E//X方向在泵浦光1526nm处的吸收系数均约为1.06cm-1;按照80%的吸收率,沿Y方向切割出厚度为15mm(端面积一般为平方毫米到平方厘米)的晶体样品作为激光增益介质,端面抛光后置于激光腔中。激光腔输入镜在1526nm波长处透过率T=90%,在1561nm波长处透过率T=0.1%;激光腔输出镜在1561nm波长处透过率T=9%,采用10W的1526nm半导体激光端面泵浦该增益介质,可获得连续功率高于4.0W的1561nm波长的固体激光输出。另外,使用但不限于使用如下表格中的掺杂不同Er3+离子浓度的晶体作为1.5-1.6μm波段固体激光器的增益介质,采用以上的技术方案也可以实现同样的效果。

Claims (4)

1.一种共振泵浦1.5-1.6μm波段固体激光器,由增益介质,激光谐振腔和半导体激光泵浦系统组成,其特征在于:该激光器以单掺Er3+硅酸盐晶体作为增益介质;激光谐振腔由输入和输出镜组成,输入镜设计为在1470nm或1530nm附近波长透过率T≥80%,在1.5-1.6μm波段处透过率T≤0.5%,输出镜设计为在1.5-1.6μm波段处透过率0.5%≤T≤20%;半导体激光泵浦系统包括1470nm或1530nm附近波长半导体激光以及放置在半导体激光和增益介质之间的光学耦合器,所述单掺Er3+硅酸盐晶体的分子式为:Er2xRe2(1-x)Si2O7或Er2xRe2(1-x)SiO5,其中x=0.002~0.02,Re为La、Y、Gd、Sc元素中某一元素或若干元素的组合。
2.一种共振泵浦1.5-1.6μm波段固体脉冲激光器,其特征在于:在权利要求1所述的激光器的增益介质和输出镜之间插入1.5-1.6μm波段的调Q或锁模元件,实现1.5-1.6μm波段的脉冲激光运转。
3.一种共振泵浦1.5-1.6μm波段可调谐固体激光器,其特征在于:在权利要求1所述的激光器的增益介质和输出镜之间插入1.5-1.6μm波段的调谐元件,实现1.5-1.6μm波段的可调谐激光运转。
4.一种共振泵浦1.5-1.6μm波段倍频激光器,其特征在于:在权利要求1所述的激光器的增益介质和输出镜之间插入1.5-1.6μm波段的倍频晶体,激光谐振腔输出镜设计为在1.5-1.6μm波段处透过率小于0.5%,在倍频波段处透过率大于80%,实现1.5-1.6μm波段的倍频激光运转。
CN201611157697.9A 2016-12-15 2016-12-15 一种共振泵浦1.5-1.6微米波段固体激光器 Active CN106532423B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611157697.9A CN106532423B (zh) 2016-12-15 2016-12-15 一种共振泵浦1.5-1.6微米波段固体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611157697.9A CN106532423B (zh) 2016-12-15 2016-12-15 一种共振泵浦1.5-1.6微米波段固体激光器

Publications (2)

Publication Number Publication Date
CN106532423A CN106532423A (zh) 2017-03-22
CN106532423B true CN106532423B (zh) 2019-07-30

Family

ID=58339485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611157697.9A Active CN106532423B (zh) 2016-12-15 2016-12-15 一种共振泵浦1.5-1.6微米波段固体激光器

Country Status (1)

Country Link
CN (1) CN106532423B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428257B (zh) * 2017-09-01 2020-05-05 中国科学院福建物质结构研究所 一类铒离子掺杂的硅酸盐晶体及其1.5微米波段激光器件
CN107516812A (zh) * 2017-09-28 2017-12-26 中国计量科学研究院 激光器
CN109149351B (zh) * 2018-10-16 2020-02-21 中国科学院福建物质结构研究所 调q激光器
CN114142333A (zh) * 2021-10-13 2022-03-04 闽都创新实验室 一种脉冲激光器及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1179546A (zh) * 1996-05-10 1998-04-22 莱兰斯坦福初级大学评议会 偏振超荧光光纤光源
CN1211841A (zh) * 1997-09-12 1999-03-24 三星电子株式会社 用于光纤放大的大功率泵浦器件
CN103682959A (zh) * 2013-11-12 2014-03-26 上海交通大学 基于铒铥钕共掺光纤的超宽带光源
CN105063755B (zh) * 2015-09-06 2018-02-16 中国科学院福建物质结构研究所 铒离子激活的焦硅酸盐晶体及其1.55微米波段固体激光器件
CN105244760A (zh) * 2015-10-16 2016-01-13 中国科学院福建物质结构研究所 铒、镱和铈离子掺杂的正硅酸盐晶体及其激光器件

Also Published As

Publication number Publication date
CN106532423A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106532423B (zh) 一种共振泵浦1.5-1.6微米波段固体激光器
Taira et al. Diode-pumped tunable Yb: YAG miniature lasers at room temperature: modeling and experiment
US9891500B1 (en) Systems and methods for optical frequency comb generation using a microring resonator
US8094368B2 (en) Optical parametric oscillator
CN105063755B (zh) 铒离子激活的焦硅酸盐晶体及其1.55微米波段固体激光器件
US20200119512A1 (en) High-Power Mode-Locked Laser System and Methods of Use
Zhang et al. Efficient laser operations of unprocessed thin plate of Nd: YPO 4 crystal
CN105244760A (zh) 铒、镱和铈离子掺杂的正硅酸盐晶体及其激光器件
CN106229804B (zh) 一种大功率光纤基单频脉冲激光器
Zhang et al. Passively Q-switched YVO 4 Raman operation with 816 and 890 cm-1 shifts by respective Raman configurations
Chen et al. Spectra and diode-pumped continuous-wave 1.55 µm laser of Er: Yb: Ca 3 NbGa 3 Si 2 O 14 crystal
EP3092689B1 (en) A method and a system for converting an input light into an output light beam
CN101499612B (zh) 一种自倍频近红外固体激光器
CN104577701B (zh) 1.55微米波段铒镱双掺磷酸盐晶体激光器
CN110048300B (zh) 基于磷酸钆晶体的激光器
CN101588009B (zh) 一类掺杂铒、镱和铈离子的钨酸盐激光晶体及其用途
US11616336B2 (en) Erbium-doped silicate crystals and 1.5 μm lasers using the same
Quan et al. 7.25 W LD side-pumped Er: YGG CW laser operated at 2.8 μm
Duan et al. Room temperature efficient continuous wave and Q-switched operation of a Ho: YAP laser
Šulc et al. Tm: GGAG crystal for 2µm tunable diode-pumped laser
Xiong et al. Tunable continuous-wave Yb: GdCOB laser with an electro-optic crystal
Dou et al. Lasing properties of a Yb ion in tetragonal LuPO4 and LuVO4 isomorphic crystals: A comparative study
Yang et al. Efficient Tm: LuYAG laser resonantly pumped by an Er: LuYAG laser
Liu et al. 1881 nm Tm: YAG ceramic laser with a volume bragg grating as a cavity mirror
CN107154577A (zh) 基于光谱控制的短脉冲被动调q激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant