CN106529818B - Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network - Google Patents

Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network Download PDF

Info

Publication number
CN106529818B
CN106529818B CN201611034364.7A CN201611034364A CN106529818B CN 106529818 B CN106529818 B CN 106529818B CN 201611034364 A CN201611034364 A CN 201611034364A CN 106529818 B CN106529818 B CN 106529818B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
wavelet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611034364.7A
Other languages
Chinese (zh)
Other versions
CN106529818A (en
Inventor
付立华
王刚
张晓玫
邓丽霞
李小魁
韩大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201611034364.7A priority Critical patent/CN106529818B/en
Publication of CN106529818A publication Critical patent/CN106529818A/en
Application granted granted Critical
Publication of CN106529818B publication Critical patent/CN106529818B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/043Architecture, e.g. interconnection topology based on fuzzy logic, fuzzy membership or fuzzy inference, e.g. adaptive neuro-fuzzy inference systems [ANFIS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Software Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Primary Health Care (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Computational Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明了提供一种基于模糊小波神经网络的水质评价预测方法,目的在于解决BP神经网络在进行水质预测时收敛速度较慢,逼近效果差,预测结果不精准的问题,以已知水质分析指标个数为、预测指标个数、模糊规则数构建模糊小波神经网络预测模型,模糊小波神经网络预测模型包括输入层、隶属层、模糊规则层、小波层、输出层和解模糊层;对隶属函数参数、小波层的小波参数进行调整,并定义代价函数,使用以梯度下降法为基础的BP算法进行参数调整,为避免收敛速度慢、容易陷于震荡效应和局部最优,增加模型稳定性,采用人工蜂群算法优化初始参数,本专利方法主要用于预测水质指标。

The present invention provides a water quality evaluation and prediction method based on fuzzy wavelet neural network. The purpose is to solve the problems of slow convergence speed, poor approximation effect and inaccurate prediction results of BP neural network in water quality prediction. Based on the known water quality analysis index The number is, the number of prediction indicators, and the number of fuzzy rules to construct a fuzzy wavelet neural network prediction model, which includes an input layer, a membership layer, a fuzzy rule layer, a wavelet layer, an output layer and a defuzzification layer; the membership function parameters Adjust the wavelet parameters of wavelet layer and wavelet layer, and define the cost function, and use the BP algorithm based on the gradient descent method to adjust the parameters. The worker bee colony algorithm optimizes the initial parameters, and the patented method is mainly used to predict water quality indicators.

Description

基于模糊小波神经网络的水质评价预测方法Water Quality Evaluation and Prediction Method Based on Fuzzy Wavelet Neural Network

技术领域technical field

本发明涉及水文评价预测领域,特别是涉及基于模糊小波神经网络的水质评价预测方法。The invention relates to the field of hydrological evaluation and prediction, in particular to a water quality evaluation and prediction method based on fuzzy wavelet neural network.

背景技术Background technique

水质预测是在水污染控制单元内建立水域功能区,利用水质指标与陆域相应污染源之间对应的关系,得到目标水质信息的技术。国内外在水环境和水污染控制中,对水质模型的研究和应用取得了很大发展。水质预测方法主要有水质模拟模型、数理统计模型和人工神经网络模型,传统BP神经网络模型方法在水质预测与评价方面的应用研究已取得很大发展,但存在着收敛速度较慢、泛化能力差,预测精度不够高的缺点,不能达到满意的预测结果。Water quality prediction is a technology to establish water functional areas in water pollution control units, and use the corresponding relationship between water quality indicators and corresponding pollution sources in land areas to obtain target water quality information. In the water environment and water pollution control at home and abroad, the research and application of water quality models have made great progress. Water quality prediction methods mainly include water quality simulation models, mathematical statistics models and artificial neural network models. The traditional BP neural network model method has made great progress in the application research of water quality prediction and evaluation, but there are slow convergence speed and generalization ability. Poor, the prediction accuracy is not high enough, and the satisfactory prediction results cannot be achieved.

发明内容Contents of the invention

针对上述情况,为克服现有技术之缺陷,本发明了提供一种基于模糊小波神经网络的水质评价预测方法,目的在于解决BP神经网络在进行水质预测时收敛速度较慢,逼近效果差,预测结果不精准的问题。For above-mentioned situation, in order to overcome the defective of prior art, the present invention provides a kind of water quality evaluation prediction method based on fuzzy wavelet neural network, the purpose is to solve BP neural network when carrying out water quality prediction, convergence speed is relatively slow, approximation effect is poor, and prediction The problem of inaccurate results.

其技术方案为:Its technical solution is:

a、以已知水质分析指标个数为m、预测指标个数为o、模糊规则数为n构建模糊小波神经网络预测模型,所述模糊小波神经网络预测模型包括输入层、隶属层、模糊规则层、小波层、输出层和解模糊层;A, with the number of known water quality analysis indicators as m, the number of prediction indicators as o, and the number of fuzzy rules as n to build a fuzzy wavelet neural network prediction model, the fuzzy wavelet neural network prediction model includes an input layer, a subordinate layer, and fuzzy rules layer, wavelet layer, output layer and defuzzification layer;

所述输入层用于输入已知水质分析指标,也即输入变量:x1,x2,…,xmThe input layer is used to input known water quality analysis indicators, that is, input variables: x 1 , x 2 , . . . , x m ;

所述隶属层用于计算每个输入变量的隶属度值,隶属函数为:The membership layer is used to calculate the membership degree value of each input variable, and the membership function is:

其中m为输入变量数,n为模糊规则数,即第三层的隐层神经元数,cij、dij高斯隶属函数的中心和宽度,ηj(xi)为第i个语言变量相对于第j条规则的隶属函数;Among them, m is the number of input variables, n is the number of fuzzy rules, that is, the number of neurons in the hidden layer of the third layer, the center and width of the Gaussian membership functions of c ij and d ij , η j ( xi ) is the relative value of the i-th language variable Membership function of rule j;

所述模糊规则层其节点数对应模糊规则数n,每个节点表示一条模糊规则,各节点模糊规则层输出表示如下:Its node number of described fuzzy rule layer corresponds to fuzzy rule number n, and each node represents a fuzzy rule, and each node fuzzy rule layer output represents as follows:

μj(x)=ηj(x1)*ηj(x2)*…ηj(xm),j=1,2,…,n;μ j (x)=η j (x 1 )*η j (x 2 )*…η j (x m ),j=1,2,…,n;

所述小波层引入小波函数,利用小波函数改进网络模型的计算和逼近能力,小波定义如下:Described wavelet layer introduces wavelet function, utilizes wavelet function to improve the computation of network model and approximation capability, and wavelet is defined as follows:

ψj(x)由母小波函数ψ(x)平移与扩展形成,其中aj={a1j,a2j,…amj},bj={b1j,b2j,…bmj}分别代表伸缩与平移因子,母小波取为墨西哥草帽小波如下:ψ j (x) is formed by the translation and extension of the mother wavelet function ψ(x), where a j ={a 1j ,a 2j ,…a mj }, b j ={b 1j ,b 2j ,…b mj } represent Scaling and translation factors, the mother wavelet is taken as the Mexican sombrero wavelet as follows:

小波层的第j个小波网络输出为:The jth wavelet network output of the wavelet layer is:

其中,aij、bij为小波参数;in, a ij and b ij are wavelet parameters;

所述输出层为模糊规则层输出与小波层网络输出的乘积,The output layer is the product of fuzzy rule layer output and wavelet layer network output,

Kj=μj(x)*yj=ηj(x1)*ηj(x2)*…ηj(xm)*ωjψj(z),K jj (x)*y jj (x 1 )*η j (x 2 )*...η j (x m )*ω j ψ j (z),

所述解模糊层用于计算整个神经网络的输出,其表示为:The defuzzification layer is used to calculate the output of the whole neural network, which is expressed as:

b、对隶属函数参数cij、dij、小波层的小波参数ωj、aij、bij进行调整,定义代价函数为:b. Adjust the membership function parameters c ij , d ij , wavelet parameters ω j , a ij , b ij of the wavelet layer, and define the cost function as:

其中与ui分别为网络的期望输出与实际输出,o为输出变量数,使用以梯度下降法为基础的BP算法进行参数调整,为避免收敛速度慢、容易陷于震荡效应和局部最优,增加模型稳定性,采用人工蜂群算法优化初始参数,包括如下步骤:in and u i are the expected output and actual output of the network respectively, o is the number of output variables, and the parameters are adjusted using the BP algorithm based on the gradient descent method. Stability, using the artificial bee colony algorithm to optimize the initial parameters, including the following steps:

步骤1:初始化蜜蜂种群,蜜蜂总数SN,采蜜蜂与跟随蜂各占SN/2,,最大搜索次数Limit,迭代次数iter=0,最大迭代次数maxCycle;所有蜜蜂均为侦查蜂模式,随机产生SN个可行解;Step 1: Initialize the bee population, the total number of bees is SN, the collecting bees and the following bees each account for SN/2, the maximum number of searches is Limit, the number of iterations iter=0, the maximum number of iterations is maxCycle; all bees are scout bees, and SN is randomly generated a feasible solution;

步骤2:初始化网络模型的各部分参数cij、dij、ωj、aij、bijStep 2: Initialize the parameters c ij , d ij , ω j , a ij , b ij of each part of the network model;

步骤3:将各参数赋值给网络模型;Step 3: assign each parameter to the network model;

步骤4:使用训练样本训练网络模型;Step 4: Use the training samples to train the network model;

步骤5:计算适应度值,将蜂群分为采蜜蜂和跟随蜂两种,初始化标志向量trial(i)=0,记录采蜜蜂在同一蜜源的连续停留次数;Step 5: Calculate the fitness value, divide the bee colony into two kinds of honey bees and follower bees, initialize the flag vector trial (i)=0, record the number of consecutive stays of the honey bees in the same nectar source;

步骤6:采蜜蜂局部搜索新蜜源,计算适应度值,若优于当前蜜源,则更新当前采蜜蜂所在的蜜源位置,令trial(i)=0,否则更新trial(i)=trial(i)+1;Step 6: The honey bees search locally for a new honey source, and calculate the fitness value. If it is better than the current honey source, then update the current honey source location where the bees are located, and set trial(i)=0, otherwise update trial(i)=trial(i) +1;

步骤7:计算跟随蜂选择概率,每只跟随蜂以此概率寻找新蜜源,并转化为采蜜蜂进行邻域搜索,计算适应度值,判断是否保留蜜源,更新trial(i);Step 7: Calculate the selection probability of the follower bees, each follower bee looks for a new honey source with this probability, and transforms into a bee harvesting bee for neighborhood search, calculates the fitness value, judges whether to keep the honey source, and updates trial(i);

步骤8:若trial(i)>Limit,则执行步骤9,否则执行步骤10;Step 8: If trial(i)>Limit, go to step 9, otherwise go to step 10;

步骤9:第i个采蜜蜂放弃当前蜜源称为侦查蜂,在解空间随机产生新蜜源;Step 9: The i-th honeybee abandons the current nectar source and is called a scout bee, and randomly generates a new nectar source in the solution space;

步骤10:记录当前所有蜜蜂找到的全局最优解,iter=iter+1;Step 10: Record the global optimal solution currently found by all bees, iter=iter+1;

步骤11:若iter>maxCycle,则得到网络模型参数优化初始值,否则返回步骤4;Step 11: If iter>maxCycle, get the initial value of network model parameter optimization, otherwise return to step 4;

算法中每个蜜源表示搜索空间的一个解,对于含有D个变量的问题,则第i个蜜源位置为Xi=[xi1,xi2,…,xiD]T,随机产生的可行解如下:In the algorithm, each nectar source represents a solution of the search space. For a problem with D variables, the position of the i-th nectar source is X i =[x i1 ,x i2 ,…,x iD ] T , and the randomly generated feasible solution is as follows :

其中,i∈{1,2,…,SN},j∈{1,2,…,D};Among them, i∈{1,2,…,SN}, j∈{1,2,…,D};

C、将寻优得到的参数初始值赋值给网络模型,将水质分析指标,也即输入变量:x1,x2,…,xm,输入到网络模型的输入层,得到预测输出值。C. Assign the initial value of the parameters obtained by optimization to the network model, and input the water quality analysis indicators, namely input variables: x 1 , x 2 ,..., x m , into the input layer of the network model to obtain the predicted output value.

本发明用小波函数代替传统T-S型模糊神经网络结论部分的线性函数,将小波变换与模糊神经网络有机地结合,使得预测网络具有收敛速度快,逼近能力强以及可避免陷入局部最优等优势,并利用人工蜂群算法优化待确定参数的初始值,避免因其网络中待确定参数较多、梯度计算工作量大、受初值影响较大等缺陷,使得水质评价预测模型的稳定性提高。The present invention replaces the linear function of the conclusion part of the traditional T-S fuzzy neural network with the wavelet function, and organically combines the wavelet transform with the fuzzy neural network, so that the prediction network has the advantages of fast convergence speed, strong approximation ability, and avoiding falling into local optimum. The artificial bee colony algorithm is used to optimize the initial values of the parameters to be determined, avoiding defects such as the large number of parameters to be determined in the network, the heavy workload of gradient calculation, and the large influence of the initial values, which improves the stability of the water quality evaluation prediction model.

附图说明Description of drawings

图1为本发明水质预测方法所使用的模糊小波神经网络的拓扑图。Fig. 1 is a topological diagram of the fuzzy wavelet neural network used in the water quality prediction method of the present invention.

图2为将绝对平均误差和相对平均误差作为评价指标情况下,本方法与传统T-S型模糊神经网络以及BP神经网络对比数据。Figure 2 is the comparison data between this method and the traditional T-S fuzzy neural network and BP neural network when the absolute average error and relative average error are used as evaluation indicators.

图3为本发明方法水质预测结果坐标图。Fig. 3 is a coordinate diagram of the water quality prediction result of the method of the present invention.

图4为T-S型模糊神经网络水质预测结果坐标图。Figure 4 is a coordinate diagram of the water quality prediction results of the T-S fuzzy neural network.

图5为BP神经网络水质预测结果坐标图。Fig. 5 is the coordinate diagram of the water quality prediction result of BP neural network.

图6为本专利、传统T-S型模糊神经网络以及BP神经网络的网络进化过程图。Fig. 6 is a network evolution process diagram of this patent, traditional T-S type fuzzy neural network and BP neural network.

具体实施方式detailed description

以下结合附图对本发明的具体实施方式作进一步详细的说明。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings.

在一实施例中:如图1所示,本文采用基于T-S模型的模糊神经网络,模糊逻辑有一型和二型两种类型,传统一型模糊系统不能处理模糊规则的不确定性,因此面对复杂的系统,不能建立有效合理的模糊规则。二型模糊系统主要包括Mamdani型和T-S型,T-S型模糊模型使用IF-THEN模糊规则,每一条规则的前提部分包括前提变量和模糊集合,其作用是定义一个模糊子空间,结论部分通常是一个线性函数。研究表明,T-S型网络在学习准确方面要优于Mamdani网络。传统小波神经网络是把BP神经网络中的非线性Sigmoid函数采用非线性小波基代替,把非线性函数的拟合通过用所取的非线性小波基进行线性叠加来实现,即用小波级数的有限项拟合。为了结合模糊神经网络及小波神经网络的优点,本发明用小波函数代替传统T-S型模型结论部分的线性函数,形成新型模糊小波神经网络模型,该模糊小波神经网络模型的模糊规则可描述为Rn:If x1is An1and x2is An2and…and xm is Anm,In an embodiment: as shown in Figure 1, this paper uses a fuzzy neural network based on the TS model. There are two types of fuzzy logic, type I and type II. The traditional type I fuzzy system cannot handle the uncertainty of fuzzy rules, so in the face of Complex systems cannot establish effective and reasonable fuzzy rules. Type II fuzzy systems mainly include Mamdani type and TS type. The TS type fuzzy model uses IF-THEN fuzzy rules. The premise part of each rule includes premise variables and fuzzy sets. Its function is to define a fuzzy subspace, and the conclusion part is usually a linear function. Studies have shown that TS-type networks are better than Mamdani networks in terms of learning accuracy. In the traditional wavelet neural network, the nonlinear Sigmoid function in the BP neural network is replaced by a nonlinear wavelet basis, and the fitting of the nonlinear function is realized by linear superposition with the nonlinear wavelet basis taken, that is, using the wavelet series Finite term fitting. In order to combine the advantages of fuzzy neural network and wavelet neural network, the present invention replaces the linear function of the conclusion part of the traditional TS type model with wavelet function to form a new fuzzy wavelet neural network model. The fuzzy rule of this fuzzy wavelet neural network model can be described as R n : If x 1 is A n1 and x 2 is A n2 and…and x m is A nm ,

其中,x1,x2,…,xm为输入变量,y1,y2,…,yn为小波函数的输出,Aij为高斯隶属函数,表示第j个输入变量的第i条规则,n为模糊规则数;上述模糊小波神经网络模型的小波定义如下:Among them, x 1 , x 2 ,..., x m are the input variables, y 1 , y 2 ,..., y n are the output of the wavelet function, A ij is the Gaussian membership function, representing the i-th rule of the j-th input variable , n is the number of fuzzy rules; the wavelet of the above fuzzy wavelet neural network model is defined as follows:

ψj(x)由母小波函数ψ(x)平移与扩展形成,其中aj={a1j,a2j,…amj},bj={b1j,b2j,…bmj}分别代表伸缩与平移因子,母小波取为墨西哥草帽小波如下:ψ j (x) is formed by the translation and extension of the mother wavelet function ψ(x), where a j ={a 1j ,a 2j ,…a mj }, b j ={b 1j ,b 2j ,…b mj } represent Scaling and translation factors, the mother wavelet is taken as the Mexican sombrero wavelet as follows:

小波神经网络的输出可表示为:The output of the wavelet neural network can be expressed as:

其中,ψj(x)为隐层的第j个单元小波函数,ωj为输入层和隐层的权重系数,小波神经网络(WNN)具有较好的逼近能力,相对于其他类型的多层感知器和径向基网络等具有容易训练的特点,同时小波神经网络参数的初始值对其收敛速度有较大影响,优化后的初始参数可以增加网络的稳定性以及收敛速度。in, ψ j (x) is the jth unit wavelet function of the hidden layer, ω j is the weight coefficient of the input layer and the hidden layer, the wavelet neural network (WNN) has better approximation ability, compared with other types of multi-layer perceptron and radial basis network have the characteristics of easy training. At the same time, the initial value of wavelet neural network parameters has a great influence on its convergence speed. The optimized initial parameters can increase the stability and convergence speed of the network.

由公式(1)表明了每个小波函数对模糊小波神经网络模型(FWNN)输出的影响,IF-THEN规则形式的模糊模型可以通过不断学习调整前提部分的隶属函数参数、结论部分的伸缩和平移因子来完善,因此小波函数可以改进FWNN的计算和逼近能力。Formula (1) shows the influence of each wavelet function on the output of the fuzzy wavelet neural network model (FWNN). The fuzzy model in the form of IF-THEN rules can adjust the membership function parameters of the premise part, the expansion and translation of the conclusion part through continuous learning. factor, so the wavelet function can improve the calculation and approximation ability of FWNN.

本实例选择水体水质分析的6种指标,分别为氨氮量、溶解氧、化学需氧量、高锰酸钾指数、总磷、总氮,上述六项指标作为FWNN的输入变量,而水质等级则作为FWNN的输出量,也即输入层节点数m=6,解模糊层的输出节点数o=1,同时模糊规则层的模糊规则数n=4,在MatlabR2010b环境下建立模糊小波神经网络模型,并采用等值插值水质指标标准数据生成训练样本,构建训练数据350个,另利用人工蜂群(ABC)算法进行优化初始参数,ABC参数确定为:SN=40、Limit=8、maxCycle=50,则FWNN需要优化的参数个数为(4m+1)×n=100个,则每个解为100维向量。In this example, six indicators of water quality analysis are selected, namely ammonia nitrogen, dissolved oxygen, chemical oxygen demand, potassium permanganate index, total phosphorus, and total nitrogen. The above six indicators are used as input variables of FWNN, and the water quality level is As the output of FWNN, that is, the number of nodes in the input layer m=6, the number of output nodes in the defuzzification layer o=1, and the number of fuzzy rules in the fuzzy rule layer n=4, the fuzzy wavelet neural network model is established under the MatlabR2010b environment, And use the equivalent interpolation water quality index standard data to generate training samples, construct 350 training data, and use the artificial bee colony (ABC) algorithm to optimize the initial parameters. The ABC parameters are determined as: SN=40, Limit=8, maxCycle=50, Then the number of parameters to be optimized by FWNN is (4m+1)×n=100, and each solution is a 100-dimensional vector.

优化模糊小波神经网络(FWNN)的初始值如下:The initial value of the optimized fuzzy wavelet neural network (FWNN) is as follows:

步骤1:初始化蜜蜂种群,蜜蜂总数40,采蜜蜂与跟随蜂各占20,,最大搜索次数Limit=8,迭代次数iter=0,最大迭代次数maxCycle=50;所有蜜蜂均为侦查蜂模式,随机产生40个可行解;Step 1: Initialize the bee population, the total number of bees is 40, the number of bees collecting and following bees each account for 20, the maximum number of searches Limit = 8, the number of iterations iter = 0, the maximum number of iterations maxCycle = 50; all bees are scout bees, random Generate 40 feasible solutions;

步骤2:初始化网络模型的各部分参数cij、dij、ωj、aij、bijStep 2: Initialize the parameters c ij , d ij , ω j , a ij , b ij of each part of the network model;

步骤3:将各参数赋值给模糊小波神经网络(FWNN);Step 3: Assign each parameter to the fuzzy wavelet neural network (FWNN);

步骤4:使用训练样本训练模糊小波神经网络(FWNN);Step 4: use the training samples to train the fuzzy wavelet neural network (FWNN);

步骤5:计算适应度值,将蜂群分为采蜜蜂和跟随蜂两种,初始化标志向量trial(i)=0,记录采蜜蜂在同一蜜源的连续停留次数;Step 5: Calculate the fitness value, divide the bee colony into two kinds of honey bees and follower bees, initialize the flag vector trial (i)=0, record the number of consecutive stays of the honey bees in the same nectar source;

步骤6:采蜜蜂局部搜索新蜜源,计算适应度值,若优于当前蜜源,则更新当前采蜜蜂所在的蜜源位置,令trial(i)=0,否则更新trial(i)=trial(i)+1;Step 6: The honey bees search locally for a new honey source, and calculate the fitness value. If it is better than the current honey source, then update the current honey source location where the bees are located, and set trial(i)=0, otherwise update trial(i)=trial(i) +1;

步骤7:计算跟随蜂选择概率,每只跟随蜂以此概率寻找新蜜源,并转化为采蜜蜂进行邻域搜索,计算适应度值,判断是否保留蜜源,更新trial(i);Step 7: Calculate the selection probability of the follower bees, each follower bee looks for a new honey source with this probability, and transforms into a bee harvesting bee for neighborhood search, calculates the fitness value, judges whether to keep the honey source, and updates trial(i);

步骤8:若trial(i)>8,则执行步骤9,否则执行步骤10;Step 8: If trial(i)>8, go to step 9, otherwise go to step 10;

步骤9:第i个采蜜蜂放弃当前蜜源称为侦查蜂,在解空间随机产生新蜜源;Step 9: The i-th honeybee abandons the current nectar source and is called a scout bee, and randomly generates a new nectar source in the solution space;

步骤10:记录当前所有蜜蜂找到的全局最优解,iter=iter+1;Step 10: Record the global optimal solution currently found by all bees, iter=iter+1;

步骤11:若iter>50,则得到寻优后的网络模型参数初始值,否则返回步骤4;Step 11: If iter>50, get the initial value of the optimized network model parameters, otherwise return to step 4;

算法中每个蜜源表示搜索空间的一个解,对于含有D个变量的问题,则第i个蜜源位置为Xi=[xi1,xi2,…,xiD]T,随机产生的可行解如下:In the algorithm, each nectar source represents a solution of the search space. For a problem with D variables, the position of the i-th nectar source is X i =[x i1 ,x i2 ,…,x iD ] T , and the randomly generated feasible solution is as follows :

其中,i∈{1,2,…,SN},j∈{1,2,…,D};Among them, i∈{1,2,…,SN}, j∈{1,2,…,D};

然后将通过人工蜂群算法得到的网络参数初始值赋值给模糊小波神经网络(FWNN),将水质分析指标也即输入变量:x1,x2,…,xm,输入到网络模型的输入层,得到预测输出值。Then assign the initial value of the network parameters obtained by the artificial bee colony algorithm to the fuzzy wavelet neural network (FWNN), and input the water quality analysis indicators, namely input variables: x 1 , x 2 ,..., x m , into the input layer of the network model , to get the predicted output value.

为了验证本专利方法的有益效果,本文采用绝对平均误差(MAE)与相对平均误差(MAPE)作为评价指标:In order to verify the beneficial effect of the patented method, this article uses the absolute mean error (MAE) and relative mean error (MAPE) as evaluation indicators:

将模糊小波神经网络与传统T-S型模糊神经网以及BP神经网络进行了对比,测试样本组序号1-50,每组数据包含6个输入变量,具体数据及组号如下:The fuzzy wavelet neural network is compared with the traditional T-S type fuzzy neural network and BP neural network. The test sample group numbers are 1-50, and each group of data contains 6 input variables. The specific data and group numbers are as follows:

构建具有相同输入节点数、相同输出节点数的传统T-S型模糊神经网络、BP神经网络,上述两网络模型与模糊小波神经网络(FWNN)具有相同的输入节点数和输出节点数,将上述1-50组数据分别输入到训练好的各网络模型中,以测试样本的组号为横坐标,网络输出指标水质等级作为纵坐标得到图3至图5,并根据各网络输出的平均误差(MAE)、相对平均误差(MAPE)制作表格如图2,可以明显得出模糊小波神经网络拥有更精准的预测,其误差值更小。Construct the traditional T-S type fuzzy neural network and BP neural network with the same number of input nodes and the same number of output nodes. The above two network models have the same number of input nodes and output nodes as the fuzzy wavelet neural network (FWNN), and the above 1- 50 sets of data were input into the trained network models respectively, with the group number of the test sample as the abscissa, and the network output index water quality level as the ordinate to obtain Figures 3 to 5, and according to the average error (MAE) output by each network , The relative average error (MAPE) is made into a table as shown in Figure 2. It can be clearly concluded that the fuzzy wavelet neural network has a more accurate prediction, and its error value is smaller.

传统T-S型模糊神经网络、BP神经网络、模糊小波神经网络(FWNN)模型建立后都需要进行参数的调整,参数的调整过程中需要不断的迭代以获得更为优化的参数值,因此以在构建上述三种网络模型中参数调整时其训练误差和迭代次数构建如图6坐标,其中训练误差为纵坐标,参数优化时其迭代次数为横坐标,可以看出模糊小波神经网络(FWNN)拥有更快的收敛速度,也即其获得最优参数的过程更为快捷方便,要优于传统T-S型模糊神经网络、BP神经网络。After the traditional T-S type fuzzy neural network, BP neural network, and fuzzy wavelet neural network (FWNN) models are established, parameters need to be adjusted. During the parameter adjustment process, continuous iterations are required to obtain more optimal parameter values. The training error and the number of iterations of the above three network models are constructed as coordinates in Figure 6, where the training error is the ordinate, and the number of iterations is the abscissa when the parameters are optimized. It can be seen that the fuzzy wavelet neural network (FWNN) has more The fast convergence speed, that is, the process of obtaining the optimal parameters is faster and more convenient, which is better than the traditional T-S fuzzy neural network and BP neural network.

Claims (1)

1. The water quality evaluation and prediction method based on the fuzzy wavelet neural network is characterized by comprising the following steps of:
a. constructing a fuzzy wavelet neural network prediction model by taking the known water quality analysis index number as m, the prediction index number as o and the fuzzy rule number as n, wherein the fuzzy wavelet neural network prediction model comprises an input layer, an affiliation layer, a fuzzy rule layer, a wavelet layer, an output layer and a de-fuzzification layer;
the input layer is used for inputting known water quality analysis indexes, namely input variables: x is the number of1,x2,…,xm
The affiliation layer is used for calculating the affiliation value of each input variable, and the affiliation function is as follows:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mn>2</mn> <msubsup> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </mfrac> </mrow> </msup> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>m</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>n</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
where m is the number of input variables, n is the number of fuzzy rules, i.e. the number of cryptic neurons in the third layer, cij、dijCenter and width of Gaussian membership function, ηj(xi) Membership functions for the ith linguistic variable relative to the jth rule;
the node number of the fuzzy rule layer corresponds to the fuzzy rule number n, each node represents a fuzzy rule, and the output of each node fuzzy rule layer is represented as follows:
μj(x)=ηj(x1)*ηj(x2)*…ηj(xm),j=1,2,…,n;
the wavelet layer introduces a wavelet function, the calculation and approximation capability of the network model is improved by utilizing the wavelet function, and the wavelet is defined as follows:
<mrow> <msub> <mi>&amp;psi;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>|</mo> </mrow> </msqrt> </mfrac> <mi>&amp;psi;</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>b</mi> <mi>j</mi> </msub> </mrow> <msub> <mi>a</mi> <mi>j</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>a</mi> <mi>j</mi> </msub> <mo>&amp;NotEqual;</mo> <mn>0</mn> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> </mrow>
ψj(x) Formed by shifting and expanding a mother wavelet function ψ (x) where aj={a1j,a2j,…amj},bj={b1j,b2j,…bmjThe mother wavelet is taken as Mexico straw hat wavelet as follows:
<mrow> <mi>&amp;psi;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> </mrow> </msqrt> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </msup> <mo>,</mo> </mrow>
the jth wavelet network output of the wavelet layer is:
<mrow> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mi>j</mi> </msub> <msub> <mi>&amp;psi;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;psi;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mfrac> <mn>1</mn> <msqrt> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> </msqrt> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mn>2</mn> </mfrac> </mrow> </msup> <mo>,</mo> </mrow>
wherein,aij、bijis a wavelet parameter;
the output layer is the product of the fuzzy rule layer output and the wavelet layer network output,
Kj=μj(x)*yj=ηj(x1)*ηj(x2)*…ηj(xm)*ωjψj(z),
<mrow> <msub> <mi>&amp;psi;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </msubsup> <mfrac> <mn>1</mn> <msqrt> <mrow> <mo>|</mo> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>|</mo> </mrow> </msqrt> </mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <msubsup> <mi>z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mn>2</mn> </mfrac> </mrow> </msup> <mo>,</mo> </mrow>
the de-ambiguity layer is used to compute the output of the entire neural network, which is expressed as:
<mrow> <mi>u</mi> <mo>=</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>y</mi> <mi>j</mi> </msub> <mo>/</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msub> <mi>&amp;mu;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
b. to membership function parameter cij、dijWavelet parameter omega of wavelet layerj、aij、bijAnd adjusting, and defining a cost function as:
<mrow> <mi>E</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>o</mi> </msubsup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>u</mi> <mi>i</mi> <mi>d</mi> </msubsup> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
whereinAnd uiRespectively an expected output and an actual output of a network, o is an output variable number, a BP algorithm based on a gradient descent method is used for parameter adjustment, and in order to avoid slow convergence, easy collapse of a concussion effect and local optimization and increase model stability, an artificial bee colony algorithm is adopted to optimize initial parameters, and the method comprises the following steps:
step 1: initializing a bee population, wherein the total number of the bees is SN, the number of collected bees and the number of following bees respectively account for SN/2, the maximum search time Limit, the iteration time iter is 0, and the maximum iteration time maxCycle; all bees are in a reconnaissance bee mode, and SN feasible solutions are generated randomly;
step 2: initializing partial parameters c of a network modelij、dij、ωj、aij、bij
And step 3: assigning each parameter to a network model;
and 4, step 4: training a network model by using the training samples;
and 5: calculating a fitness value, dividing a bee colony into a bee collecting part and a bee follower part, initializing a mark vector (i) to be 0, and recording the continuous residence times of the bee collecting part in the same bee source;
step 6: searching a new honey source locally by the bees, calculating a fitness value, if the fitness value is better than the current honey source, updating the position of the honey source where the current honey bees are located, and enabling the triel (i) to be 0, otherwise updating the triel (i) to be (i) + 1;
and 7: calculating the selection probability of the following bees, searching a new honey source by each following bee according to the probability, converting the new honey source into a bee collection for neighborhood search, calculating a fitness value, judging whether the honey source is reserved or not, and updating the deal (i);
and 8: if the trial (i) > Limit, executing the step 9, otherwise, executing the step 10;
and step 9: the ith honey bee abandons the current honey source called a reconnaissance bee, and randomly generates a new honey source in a solution space;
step 10: recording the global optimal solution found by all the bees currently, wherein iter is iter + 1;
step 11: if iter is greater than maxCycle, obtaining a network model parameter optimization initial value, otherwise, returning to the step 4;
in the algorithm, each honey source represents a solution of a search space, and for a problem containing D variables, the ith honey source position is Xi=[xi1,xi2,…,xiD]TThe randomly generated feasible solution is as follows:
<mrow> <msub> <mi>X</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mi>min</mi> </msubsup> <mo>+</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mi>max</mi> </msubsup> <mo>-</mo> <msubsup> <mi>X</mi> <mi>j</mi> <mi>min</mi> </msubsup> <mo>)</mo> </mrow> </mrow>
wherein i belongs to {1,2, …, SN }, and j belongs to {1,2, …, D };
c. assigning the initial value of the parameter obtained by optimization to the network model, and assigning the initial value of the parameter to the network modelWater quality analysis indicators, i.e. input variables: x is the number of1,x2,…,xmAnd inputting the data into an input layer of the network model to obtain a predicted output value.
CN201611034364.7A 2016-11-16 2016-11-16 Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network Expired - Fee Related CN106529818B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611034364.7A CN106529818B (en) 2016-11-16 2016-11-16 Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611034364.7A CN106529818B (en) 2016-11-16 2016-11-16 Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network

Publications (2)

Publication Number Publication Date
CN106529818A CN106529818A (en) 2017-03-22
CN106529818B true CN106529818B (en) 2017-11-28

Family

ID=58356938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611034364.7A Expired - Fee Related CN106529818B (en) 2016-11-16 2016-11-16 Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network

Country Status (1)

Country Link
CN (1) CN106529818B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085732B (en) * 2017-05-12 2020-07-24 淮阴工学院 Cowshed environment ammonia intelligent monitoring system based on wireless sensor network
CN108122048B (en) * 2017-11-23 2021-07-20 浙江专线宝网阔物联科技有限公司 Transportation path scheduling method and system
CN110858805A (en) * 2018-08-23 2020-03-03 中国移动通信集团山东有限公司 Method and device for predicting network traffic of cell
CN109408896B (en) * 2018-09-27 2024-01-05 华南师范大学 Multi-element intelligent real-time monitoring method for anaerobic sewage treatment gas production
CN110399656B (en) * 2019-07-08 2023-08-25 东华大学 Lower-loading waist-saving parameter design method based on fuzzy logic and neural network
CN110716012B (en) * 2019-09-10 2020-09-25 淮阴工学院 An Intelligent Monitoring System for Oil and Gas Concentration Based on Fieldbus Network
CN110852440B (en) * 2019-12-02 2022-07-26 中国人民解放军国防科技大学 Ocean front prediction method based on dynamic fuzzy neural network
CN111815196B (en) * 2020-07-23 2023-11-24 中国环境科学研究院 Shale GAs development area water resource bearing capacity evaluation method based on GA-BP neural network
CN112069061B (en) * 2020-08-19 2021-08-20 北京科技大学 Software security vulnerability detection method and system based on deep learning gradient-guided mutation
CN112070317A (en) * 2020-09-17 2020-12-11 四川长虹电器股份有限公司 Hotel air conditioner energy consumption prediction method
CN113569898B (en) * 2021-05-27 2024-05-14 河海大学 BP neural network-based water quality model parameter inversion analysis method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026008A1 (en) * 1994-03-22 1995-09-28 Intelligent Monitoring Systems Detecting and classifying contaminants in water
CN101793887A (en) * 2010-01-09 2010-08-04 中国水产科学研究院黄海水产研究所 Construction method of fuzzy neural network expert system for water quality assessment in turbot culture
CN105654395A (en) * 2016-01-17 2016-06-08 北京工业大学 Comprehensive water quality evaluating method based on compensation type Hopfield neural network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026008A1 (en) * 1994-03-22 1995-09-28 Intelligent Monitoring Systems Detecting and classifying contaminants in water
CN101793887A (en) * 2010-01-09 2010-08-04 中国水产科学研究院黄海水产研究所 Construction method of fuzzy neural network expert system for water quality assessment in turbot culture
CN105654395A (en) * 2016-01-17 2016-06-08 北京工业大学 Comprehensive water quality evaluating method based on compensation type Hopfield neural network

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
基于小波神经网络的芦苇潜流人工湿地水质预测;韩耀宗等;《环境科学研究》;20091231;第22卷(第12期);正文第1461页第1列第1段,第1462页第2节-第1464页第3节、图4,6 *
基于小波神经网络的饮用水水质预测模型研究;邓宇等;《重庆医科大学学报》;20090430;第34卷(第4期);全文 *
基于改进小波神经网络的短时交通流量预测研究;曹莉等;《四川理工学院学报(自然科学版)》;20151231;第28卷(第6期);第1节人工蜂群算法-第2节基于ABC-WNN流量预测模型,图4 *
基于自适应遗传小波神经网络的水质评价建模;任金霞等;《环境工程》;20150531;第33卷(第5期);全文 *
基于蚁群学习算法的模糊小波神经网络控制;罗旭;《福建电脑》;20080131;第60页第1节,第2节 *

Also Published As

Publication number Publication date
CN106529818A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
CN106529818B (en) Water quality assessment Forecasting Methodology based on Fuzzy Wavelet Network
CN111832814B (en) Air pollutant concentration prediction method based on graph attention mechanism
Liang et al. Applying genetic algorithm and ant colony optimization algorithm into marine investigation path planning model
CN112085163A (en) An air quality prediction method based on attention-enhanced graph convolutional neural network (AGC) and gated recurrent unit (GRU)
CN115376317B (en) A Traffic Flow Prediction Method Based on Dynamic Graph Convolution and Temporal Convolutional Network
CN104616060B (en) Insulator dirty degree Forecasting Methodology based on BP neural network and fuzzy logic
CN106022954B (en) Multiple BP neural network load prediction method based on grey correlation degree
CN113190688B (en) Complex network link prediction method and system based on logical reasoning and graph convolution
Liu et al. A fault diagnosis intelligent algorithm based on improved BP neural network
CN103226741A (en) Urban water supply network tube explosion prediction method
CN110851566A (en) Improved differentiable network structure searching method
CN110309609B (en) A method for evaluating indoor air quality in buildings based on rough sets and WNN
CN113359849A (en) Multi-unmanned aerial vehicle collaborative rapid search method for moving target
CN113326919A (en) Traffic travel mode selection prediction method based on computational graph
Shrivastava et al. Deep learning model for temperature prediction: an empirical study
Sun et al. Evaluation of university project based on partial least squares and dynamic back propagation neural network group
CN115689070B (en) Energy prediction method for optimizing BP neural network model based on monarch butterfly algorithm
CN113128666A (en) Mo-S-LSTMs model-based time series multi-step prediction method
Montazeri et al. Stochastic learning algorithms
CN109408896B (en) Multi-element intelligent real-time monitoring method for anaerobic sewage treatment gas production
Na et al. A novel heuristic artificial neural network model for urban computing
CN114997306B (en) Target intention recognition method based on dynamic Bayesian network
Guo et al. Establishment of air quality forecast model based on deep learning
Chen et al. A bidirectional context-aware and multi-scale fusion hybrid network for short-term traffic flow prediction
Furze et al. Implementing stochastic distribution within the utopia plane of primary producers using a hybrid genetic algorithm

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171128

Termination date: 20191116

CF01 Termination of patent right due to non-payment of annual fee