CN106529508A - Local and non-local multi-feature semantics-based hyperspectral image classification method - Google Patents
Local and non-local multi-feature semantics-based hyperspectral image classification method Download PDFInfo
- Publication number
- CN106529508A CN106529508A CN201611119573.1A CN201611119573A CN106529508A CN 106529508 A CN106529508 A CN 106529508A CN 201611119573 A CN201611119573 A CN 201611119573A CN 106529508 A CN106529508 A CN 106529508A
- Authority
- CN
- China
- Prior art keywords
- local
- sample
- samples
- semantic
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 107
- 238000012360 testing method Methods 0.000 claims abstract description 140
- 238000012549 training Methods 0.000 claims abstract description 50
- 238000012706 support-vector machine Methods 0.000 claims abstract description 44
- 230000004927 fusion Effects 0.000 claims abstract description 15
- 239000013598 vector Substances 0.000 claims description 42
- 230000006870 function Effects 0.000 claims description 41
- 230000009467 reduction Effects 0.000 claims description 31
- 238000001228 spectrum Methods 0.000 claims description 18
- 238000000513 principal component analysis Methods 0.000 claims description 14
- 230000000877 morphologic effect Effects 0.000 claims description 12
- 238000005457 optimization Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 8
- 238000002790 cross-validation Methods 0.000 claims description 5
- 238000011478 gradient descent method Methods 0.000 claims description 5
- 238000003709 image segmentation Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 230000006399 behavior Effects 0.000 claims 2
- 239000000470 constituent Substances 0.000 claims 2
- 238000002372 labelling Methods 0.000 claims 2
- 230000008859 change Effects 0.000 claims 1
- 239000012141 concentrate Substances 0.000 claims 1
- 238000013480 data collection Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 12
- 238000001514 detection method Methods 0.000 abstract description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 2
- 238000013507 mapping Methods 0.000 abstract description 2
- 239000011707 mineral Substances 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 119
- 230000003044 adaptive effect Effects 0.000 description 25
- 230000003595 spectral effect Effects 0.000 description 14
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 12
- 235000011613 Pinus brutia Nutrition 0.000 description 12
- 241000018646 Pinus brutia Species 0.000 description 12
- 238000004088 simulation Methods 0.000 description 9
- 238000011176 pooling Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 235000010469 Glycine max Nutrition 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 244000068988 Glycine max Species 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003331 infrared imaging Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 238000012804 iterative process Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000010187 selection method Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 240000003483 Leersia hexandra Species 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 241001466077 Salina Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000012847 principal component analysis method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
- G06F18/2155—Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/254—Fusion techniques of classification results, e.g. of results related to same input data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/194—Terrestrial scenes using hyperspectral data, i.e. more or other wavelengths than RGB
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Image Analysis (AREA)
Abstract
本发明公开了一种基于局部和非局部多特征语义高光谱图像分类方法。主要解决高光谱图像分类中正确率低,鲁棒性差,空间一致性弱的问题。其步骤包括:输入图像,提取图像多种特征;数据集切分为训练集和测试集;概率支持矢量机将所有样本的多种特征映射成相应的语义表示;构造局部以及非局部近邻集合;构建降噪马尔可夫场模型,进行语义融合和降噪处理;对语义表示迭代优化;利用语义表示求得所有样本的类别,完成高光谱图像准确分类。本发明采用了多特征融合,并对存在于图像中的空间信息充分挖掘和利用,在小样本情况下,得到了非常高的分类精度,并拥有良好的鲁棒性和空间一致性,用于军事探测、地图绘制、植被调查、矿物检测等方面。
The invention discloses a semantic hyperspectral image classification method based on local and non-local multi-features. It mainly solves the problems of low accuracy rate, poor robustness and weak spatial consistency in hyperspectral image classification. The steps include: inputting an image, extracting various features of the image; dividing the data set into a training set and a test set; probabilistic support vector machine mapping various features of all samples into corresponding semantic representations; constructing local and non-local neighbor sets; Construct a denoising Markov field model, perform semantic fusion and denoising processing; iteratively optimize the semantic representation; use the semantic representation to obtain the categories of all samples, and complete the accurate classification of hyperspectral images. The present invention adopts multi-feature fusion, and fully excavates and utilizes the spatial information existing in the image. In the case of small samples, it obtains very high classification accuracy, and has good robustness and spatial consistency. It is used for Military detection, map drawing, vegetation survey, mineral detection, etc.
Description
技术领域technical field
本发明属于图像处理技术领域,涉及机器学习和高光谱图像处理,具体是一种基于局部和非局部多特征语义高光谱图像分类方法,用于对高光谱图像中的不同地物进行分类识别。The invention belongs to the technical field of image processing, relates to machine learning and hyperspectral image processing, and specifically relates to a classification method for hyperspectral image based on local and non-local multi-feature semantics, which is used to classify and recognize different ground objects in the hyperspectral image.
背景技术Background technique
高光谱遥感技术在过去的几十年中逐渐成为了地球观测领域的研究热点。高光谱遥感技术利用成像光谱仪以纳米级的光谱分辨率,以几十或几百个波段同时对地表物成像,能够获得地物的连续光谱信息,实现地物空间信息、辐射信息、光谱信息的同步获取,具有“图谱合一”的特性。由于不同的地物有着不同的反射波信息,高光谱图像中光谱的高分辨率就为分辨不同地物或目标提供了极其重要的判别信息。高光谱图像的地物分类在地质调查、农作物灾害监测、大气污染和军事目标打击等领域均有良好应用前景。Hyperspectral remote sensing technology has gradually become a research hotspot in the field of earth observation in the past few decades. Hyperspectral remote sensing technology uses imaging spectrometers to image surface objects simultaneously with tens or hundreds of bands with nanoscale spectral resolution, and can obtain continuous spectral information of surface objects, and realize spatial information, radiation information, and spectral information of surface objects. Acquired synchronously, with the feature of "integration of graphs and graphs". Since different ground objects have different reflected wave information, the high resolution of the spectrum in hyperspectral images provides extremely important discriminative information for distinguishing different ground objects or targets. The ground object classification of hyperspectral images has good application prospects in geological surveys, crop disaster monitoring, air pollution, and military target strikes.
高光谱遥感图像分类就是将高光谱遥感图像中的每个像元划归到各个类别中的过程。由于高光谱遥感技术获取的图像包含了丰富的空间、辐射和光谱三重信息,为分类任务提供了大量的判别信息,但仍存在巨大的挑战和困难。首先,数据量大,至少几十个波段,导致计算复杂度很高,也给数据的存储、传递和显示带来了挑战;其次,维数过高,存在冗余数据及其部分噪声,会降低分类精度;最后,波段多,且波段间相关性高,导致所需训练样本数目增多,如果训练样本不足,则会出现机器学习中常见的欠拟合等问题,导致随后的分类精度严重下降。Hyperspectral remote sensing image classification is the process of classifying each pixel in hyperspectral remote sensing images into various categories. Since the images acquired by hyperspectral remote sensing technology contain rich spatial, radiometric and spectral triple information, they provide a large amount of discriminative information for classification tasks, but there are still huge challenges and difficulties. First of all, the large amount of data, at least dozens of bands, leads to high computational complexity, and also brings challenges to data storage, transmission and display; second, the dimension is too high, redundant data and some noise exist, which will cause Reduce the classification accuracy; finally, there are many bands, and the correlation between the bands is high, resulting in an increase in the number of training samples required. If the training samples are insufficient, common problems such as underfitting in machine learning will occur, resulting in a serious decline in subsequent classification accuracy. .
传统高光谱分类方法中,基于光谱信息的支持矢量机等分类方法可以一定程度的解决上述困难,但是其分类精度较低,分类结果图的空间一致性较差,无法满足应用需求。Among the traditional hyperspectral classification methods, classification methods such as support vector machines based on spectral information can solve the above difficulties to a certain extent, but their classification accuracy is low, and the spatial consistency of the classification result map is poor, which cannot meet the application requirements.
近年来,在特征层面,研究者提出了大量基于多特征信息的分类方法,在分类精度上有了一定的提升,这些方法在结合多特征信息时,主要有两种方式:第一个是特征级融合,直接将多个特征向量进行串联后作为分类器的输入;第二个是决策级融合,将多个特征向量分别输入分类器后,对其分类结果进行融合。多特征信息在这两种融合方式的过程中都存在一定的信息损失,导致多特征信息没有全部被有效地利用。In recent years, at the feature level, researchers have proposed a large number of classification methods based on multi-feature information, and the classification accuracy has been improved to a certain extent. When these methods combine multi-feature information, there are mainly two ways: the first is feature The first level of fusion directly connects multiple feature vectors in series as the input of the classifier; the second is decision-level fusion, after inputting multiple feature vectors into the classifier, the classification results are fused. There is a certain amount of information loss in the process of the two fusion methods of multi-feature information, resulting in that the multi-feature information is not fully utilized effectively.
在模型层面,由于高光谱图像中空间信息的重要性,大量加入空间约束的分类方法被提出,如联合稀疏表示模型,基于融合核的支持矢量机,马尔可夫场模型等,这些方法利用了高光谱图像中的局部空间信息,使得分类精度得到了很大的提升。但是,一方面,这些方法在局部空间信息的处理上较为粗糙,大都使用传统的方形窗口作为像素点的局部领域,影响了分类结果图的空间一致性,阻碍了分类精度的进一步提升。另一方面,在高光谱图像中冗余着大量的非局部空间信息,这些方法都未对此类信息进行有效地利用,使得分类的精度以及鲁棒性的上限较低。At the model level, due to the importance of spatial information in hyperspectral images, a large number of classification methods that add spatial constraints have been proposed, such as joint sparse representation model, support vector machine based on fusion kernel, Markov field model, etc. These methods use The local spatial information in the hyperspectral image greatly improves the classification accuracy. However, on the one hand, these methods are relatively rough in the processing of local spatial information, and most of them use traditional square windows as the local area of pixels, which affects the spatial consistency of the classification result map and hinders the further improvement of classification accuracy. On the other hand, a large amount of non-local spatial information is redundant in hyperspectral images, and these methods have not effectively utilized such information, making the upper limit of classification accuracy and robustness lower.
因此如何从高维的冗余数据中提取出多种有用的特征,合理的将多种特征进行结合,并且有效地利用丰富的空间信息(局部以及非局部)以及少量且珍贵的类别信息,提升高光谱图像在小样本情况下的分类结果的精度、鲁棒性以及分类结果图的空间一致性是一个有待解决的技术难题。Therefore, how to extract a variety of useful features from high-dimensional redundant data, reasonably combine multiple features, and effectively use rich spatial information (local and non-local) and a small amount of precious category information to improve The accuracy and robustness of the classification results of hyperspectral images in the case of small samples and the spatial consistency of the classification results are a technical problem to be solved.
发明内容Contents of the invention
本发明针对现有技术中存在的分类结果精度较低、鲁棒性较差、分类结果图空间一致性较弱的问题,提出了一种合理将多种特征信息进行结合并且能够有效地利用局部和非局部空间信息以及相关类别信息的基于局部和非局部多特征语义高光谱图像分类方法。Aiming at the problems of low accuracy of classification results, poor robustness and weak spatial consistency of classification result graphs existing in the prior art, the present invention proposes a method that reasonably combines multiple feature information and can effectively utilize local Local and non-local multi-feature semantic hyperspectral image classification method based on local and non-local spatial information and related category information.
本发明是一种基于局部和非局部多特征语义高光谱图像分类方法,其特征在于,包括有如下步骤:The present invention is a kind of hyperspectral image classification method based on local and non-local multi-feature semantics, it is characterized in that, comprises the following steps:
(1)输入图像,提取图像的多种特征:输入高光谱图像M是高光谱图像中所有像素点的总个数,hq为一个列向量,代表像素点q在每个波段的反射值所构成的向量;对高光谱图像分别提取多种特征,包括有:原始光谱特征、Gabor纹理特征、差分形态学特征;该高光谱图像包含c类像素点,其中有N个有标记像素点,m个无标记像素点,图像的每个像素点为一个样本,每个样本由V个特征向量构成,分别代表该样本在不同特征描述子下的表述,V是特征类别的个数;(1) Input the image and extract various features of the image: input hyperspectral image M is the total number of all pixels in the hyperspectral image, h q is a column vector, representing the vector formed by the reflection value of pixel point q in each band; various features are extracted from the hyperspectral image, including: Original spectral features, Gabor texture features, and differential morphological features; the hyperspectral image contains c-type pixels, of which there are N marked pixels and m unmarked pixels. Each pixel of the image is a sample, and each A sample is composed of V feature vectors, which respectively represent the expression of the sample under different feature descriptors, and V is the number of feature categories;
(2)高光谱图像数据集分为训练集和测试集:用N个有标记像素点作为训练样本构成训练集其对应的类别标记集为用m个无标记像素点作为测试样本构成测试集其中,xi表示训练集的第i个样本,yj表示测试集的第j个样本,li是第i个训练样本所属的类别标号,Dv表示第v类特征的维数,R表示实数域;(2) The hyperspectral image data set is divided into a training set and a test set: use N marked pixels as training samples to form a training set Its corresponding category label set is Use m unmarked pixels as test samples to form a test set Among them, x i represents the i-th sample of the training set, y j represents the j-th sample of the test set, l i is the category label to which the i-th training sample belongs, D v represents the dimension of the v-th class feature, and R represents field of real numbers;
(3)利用概率支持矢量机(SVM)将所有样本的多种特征映射成相应的语义表示:分别利用训练集中所有样本的V个特征向量以及其对应的类别标记集构建V个概率支撑矢量机分类器,该分类器的核函数为径向高斯核,核参数以及惩罚参数由多倍交叉验证得到;将测试集中所有样本的V个特征向量分别输入到构建的V个对应分类器中,得到在不同特征描述子表述下,每个测试样本yj,j=1,2,…,m属于每个类别的概率,作为每个测试样本的语义表示对于训练集中的每个样本xi,i=1,2,…,N,它属于本身类别li的概率为1,而属于其他类别的概率为0,得到多种特征对应的多种语义表示其中的第li行为1,其它行为0;从而得到该高光谱图像中所有样本的多种语义表示 (3) Use the probabilistic support vector machine (SVM) to map the various features of all samples into corresponding semantic representations: respectively use the training set The V feature vectors of all samples in and their corresponding class label sets Construct V probabilistic support vector machine classifiers. The kernel function of the classifier is a radial Gaussian kernel. The kernel parameters and penalty parameters are obtained by multiple cross-validation; the test set The V eigenvectors of all samples in are respectively input into the constructed V corresponding classifiers, and each test sample y j ,j=1,2,...,m belongs to each category under different feature descriptor representations. probability, as a semantic representation for each test sample For each sample x i in the training set, i=1,2,...,N, the probability of it belonging to its own category l i is 1, while the probability of belonging to other categories is 0, and various semantic representations corresponding to various features are obtained in The first line of l i is 1, and the other lines are 0; thus, various semantic representations of all samples in the hyperspectral image can be obtained
(4)构造测试集中所有样本的局部以及非局部近邻集合;对于测试集中的每个样本yj,j=1,2,…,m,构造其局部自适应近邻集合Bj和非局部相似结构近邻集合Cj;(4) Construct the local and non-local neighbor sets of all samples in the test set; for each sample y j ,j=1,2,...,m in the test set, construct its local adaptive neighbor set B j and non-local similarity structure Neighbor set C j ;
(5)构建降噪马尔可夫场模型,进行测试样本的多种语义表示融合以及语义表示的降噪处理;对每个测试样本yj,j=1,2,…,m分别进行如下操作,将yj所对应的语义表示局部自适应近邻集合Bj中所有样本的语义表示和非局部相似结构近邻集合Cj中所有样本的语义表示均输入到局部能量函数中,最小化该能量函数,得到测试样本yj的一阶降噪语义表示与此同时保持训练集中样本的语义表示不变,得到该高光谱图像所有样本的一阶降噪语义表示 (5) Construct a denoising Markov field model, perform fusion of multiple semantic representations of test samples and denoise processing of semantic representations; perform the following operations on each test sample y j , j=1,2,...,m respectively , representing the semantics corresponding to y j Semantic representation of all samples in locally adaptive neighbor set B j and the semantic representation of all samples in the neighbor set Cj of non-local similar structure Both are input into the local energy function, and the energy function is minimized to obtain the first-order noise reduction semantic representation of the test sample y j At the same time, keep the semantic representation of the samples in the training set unchanged, and obtain the first-order denoising semantic representation of all samples in the hyperspectral image
(6)对高光谱图像所有样本的一阶降噪语义表示进一步迭代优化;设定最大迭代次数Tmax,t为当前迭代代数,对每个测试样本进行如下操作:将测试样本yj,以及集合Bj和集合Cj中所有样本的第t阶降噪语义表示作为降噪马尔可夫场局部能量函数的输入,最小化该能量函数,得到测试样本yj的第(t+1)阶语义表示与此同时继续保持训练集中样本的语义表示不变,进而得到该高光谱图像所有样本的第(t+1)阶降噪语义表示重复迭代过程,直到t=Tmax-1停止,得到该高光谱图像所有样本的第Tmax阶降噪语义表示,也就是最终的语义表示 (6) First-order noise reduction semantic representation for all samples of hyperspectral images Further iterative optimization; set the maximum number of iterations T max , t is the current iteration algebra, and perform the following operations on each test sample: the test sample y j , and the t-th order noise reduction of all samples in the set B j and set C j Semantic representation As the input of the local energy function of the denoising Markov field, the energy function is minimized to obtain the (t+1)th order semantic representation of the test sample y j At the same time, keep the semantic representation of the samples in the training set unchanged, and then obtain the (t+1)th order denoising semantic representation of all samples in the hyperspectral image Repeat the iterative process until t=T max -1 stops, and get the T max order noise reduction semantic representation of all samples of the hyperspectral image, that is, the final semantic representation
(7)利用最终的语义表示求得测试集中所有样本的类别;对于测试集中的每个样本yj,j=1,2,…,m,其最终的语义表示为即测试样本yj属于每个类别的概率所组成的列向量,选择该向量中最大值元素所在位置的标号作为yj的类别从而得到测试集类别预测集合完成该高光谱图像的分类任务。(7) Utilize the final semantic representation Obtain the categories of all samples in the test set; for each sample y j ,j=1,2,...,m in the test set, the final semantic representation is That is, the column vector composed of the probability that the test sample y j belongs to each category, select the label at the position of the maximum element in the vector as the category of y j So as to get the test set category prediction set Complete the classification task of this hyperspectral image.
本发明基于高光谱图像不同特征空间中的多个特征,通过弱分类器映射到相同的语义空间,而后利用马尔可夫场模型进行语义融合、降噪,得到含有多种信息以及少量噪声的语义表示,在此基础上对高光谱图像中的不同地物进行分类识别。Based on multiple features in different feature spaces of hyperspectral images, the present invention maps to the same semantic space through a weak classifier, and then uses the Markov field model to perform semantic fusion and noise reduction to obtain semantic information containing a variety of information and a small amount of noise Indicates that on this basis, the classification and recognition of different ground objects in the hyperspectral image are carried out.
本发明与现有的技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
1、本发明由于充分挖掘了像元之间的相互关系,找到了每个像元的局部自适应近邻,以及非局部相似结构近邻,与此同时,少量有标记样本的类别信息也会随之而传播到其局部以及非局部近邻中,使得高光谱图像在少量有标记样本的情况下仍然可以取得很高的分类精度。1. Since the present invention fully excavates the interrelationships between pixels, it finds the local adaptive neighbors and non-local similar structure neighbors of each pixel. At the same time, the category information of a small number of labeled samples will also be And spread to its local and non-local neighbors, so that the hyperspectral image can still achieve high classification accuracy with a small number of labeled samples.
2、本发明由于对马尔可夫场模型进行了多特征方向和非局部方向的改进,并且用语义向量间的测地距离正则项代替了传统的离散的类别异同正则项,使得马尔可夫场模型更加的适合于处理高光谱图像分类问题,解决了传统马尔可夫模型导致的过平滑等问题,提高了分类结果图的空间一致性。2. The present invention improves the Markov field model with multi-feature directions and non-local directions, and replaces the traditional discrete category similarity and difference regular term with the geodesic distance regular term between semantic vectors, so that the Markov field The model is more suitable for processing hyperspectral image classification problems, solves the problems of over-smoothing caused by traditional Markov models, and improves the spatial consistency of classification results.
3、本发明中提出的降噪马尔可夫场模型,可以通过简单的梯度下降法进行求解,计算复杂度低于传统马尔可夫场模型所用的图切类算法,并且在求优迭代过程中可以很好的避免陷入局部最优解,提高了模型的鲁棒性,从而提升分类结果的鲁棒性。3. The noise reduction Markov field model proposed in the present invention can be solved by a simple gradient descent method, and the computational complexity is lower than that of the traditional Markov field model. It can well avoid falling into the local optimal solution, improve the robustness of the model, and thus improve the robustness of the classification results.
对比实验表明,本发明显著提高了高光谱遥感图像的分类准确率和鲁棒性,并使得分类结果图具有很好的空间一致性。Comparative experiments show that the invention significantly improves the classification accuracy and robustness of hyperspectral remote sensing images, and makes the classification result map have good spatial consistency.
附图说明Description of drawings
图1是本发明的流程示意图;Fig. 1 is a schematic flow sheet of the present invention;
图2是本发明仿真采用的Indian Pine数据集,其中,图2a为Indian Pine数据集通过主成分分析(PCA)获取的一维灰度图像,图2b为Indian Pine数据集真实地物类别标号图,每个颜色对应一种不同的地物类型;Fig. 2 is the Indian Pine data set that the simulation of the present invention adopts, and wherein, Fig. 2 a is the one-dimensional grayscale image that the Indian Pine data set obtains by principal component analysis (PCA), and Fig. 2 b is the real feature category label map of the Indian Pine data set , each color corresponds to a different feature type;
图3是本发明与现有方法在Indian Pine数据集上的分类结果图的对比,其中,图3a-3f分别对应着基于三种现有分类方法:融合核的支持矢量机(SVM+CK),支持矢量机结合马尔可夫场(SVM+MRF),联合稀疏表示(SOMP);以及两种本发明方法的简化版,和本发明提出的方法得到的Indian Pine数据集的分类结果图。Fig. 3 is the contrast of the classification result figure on the Indian Pine data set of the present invention and existing method, and wherein, Fig. 3a-3f corresponds to based on three kinds of existing classification methods respectively: the support vector machine (SVM+CK) of fusion kernel , support vector machine combined with Markov field (SVM+MRF), joint sparse representation (SOMP); and two simplified versions of the method of the present invention, and the classification result map of the Indian Pine data set obtained by the method proposed by the present invention.
具体实施方式detailed description
下面结合附图对本发明详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
实施例1:Example 1:
对于高光谱图像的地物分类问题,目前现有的方法大都存在着分类精度不够理想,分类结果鲁棒性较差,分类结果图的空间一致性较弱的问题,本发明结合多种特征在语义空间的融合技术以及局部、非局部空间约束方法,主要针对现有方法存在的多种问题提出了一种基于局部和非局部多特征语义高光谱图像分类方法。For the classification of ground objects in hyperspectral images, most of the current existing methods have the problems of unsatisfactory classification accuracy, poor robustness of classification results, and weak spatial consistency of classification result maps. The present invention combines various features in The fusion technology of semantic space and the local and non-local space constraint method mainly propose a semantic hyperspectral image classification method based on local and non-local multi-features to solve various problems existing in the existing methods.
本发明是一种基于局部和非局部多特征语义高光谱图像分类方法,参见图1,包括有如下步骤:The present invention is a kind of semantic hyperspectral image classification method based on local and non-local multi-features, referring to Fig. 1, comprising the following steps:
(1)输入图像,提取图像的多种特征。(1) Input an image and extract various features of the image.
常用的高光谱图像数据包括由美国宇航局NASA喷气推进实验室的空载可见光/红外成像光谱仪AVIRIS获得的Indian Pine数据集和Salinas数据集,以及NASA的ROSIS光谱仪获得的University of Pavia数据集等。Commonly used hyperspectral image data include the Indian Pine dataset and the Salinas dataset obtained by the airborne visible/infrared imaging spectrometer AVIRIS of NASA's Jet Propulsion Laboratory, and the University of Pavia dataset obtained by NASA's ROSIS spectrometer.
输入高光谱图像M是高光谱图像中所有像素点的总个数,hq为一个列向量,代表像素点q每个波段的反射值,也就是该像素点的原始光谱特征;对高光谱图像分别提取多种特征,包括有:原始光谱特征、Gabor纹理特征、差分形态学特征(DMP),这三种特征分别反应了高光谱图像所具有的光谱、纹理、形状信息。该高光谱图像包含c类像素点,其中有N个有标记像素点,m个无标记像素点,图像的每个像素点为一个样本,每个样本由V个特征向量构成,分别代表该样本在不同特征描述子下的表述,V是特征类别的个数。input hyperspectral image M is the total number of all pixels in the hyperspectral image, h q is a column vector, representing the reflection value of each band of the pixel point q, which is the original spectral feature of the pixel point; Features include: original spectral features, Gabor texture features, and differential morphology features (DMP). These three features respectively reflect the spectrum, texture, and shape information of hyperspectral images. The hyperspectral image contains c-type pixels, among which there are N marked pixels and m unmarked pixels. Each pixel of the image is a sample, and each sample is composed of V feature vectors, representing the sample In the expression under different feature descriptors, V is the number of feature categories.
本实施例中所使用的特征类别数量为3,故这里及其之后所述的特征类别的个数V在不加说明的情况下都应等于3。The number of feature categories used in this embodiment is 3, so the number V of feature categories described here and thereafter should be equal to 3 unless otherwise specified.
本实施例中所提及的N个有标记像素点是从高光谱图像的每一类像素点中等比例选出的像素点,m个剩余所有像素点作为无标记像素点。The N marked pixels mentioned in this embodiment are pixels selected in a moderate proportion from each type of pixels in the hyperspectral image, and all the remaining m pixels are regarded as unmarked pixels.
(2)高光谱图像数据集分为训练集和测试集,用N个有标记像素点作为训练样本构成训练集其对应的类别标记集为用m个无标记像素点作为测试样本构成测试集其中,xi表示有标记训练集的第i个有标记训练样本,yj表示测试集的第j个无标记测试样本。高光谱图像中的每个样本都用V个列向量表示,每个列向量代表一个特征,li是第i个有标记训练样本所属的类别标号,Dv表示样本第v类特征所对应的维数,R表示实数域。对应于步骤(1)中N为有标记像素点个数,m为无标记像素点个数,在此,N是有标记训练样本总个数,m是测试样本总个数。(2) The hyperspectral image data set is divided into a training set and a test set, and N marked pixels are used as training samples to form a training set Its corresponding category label set is Use m unmarked pixels as test samples to form a test set Among them, x i represents the i-th labeled training sample of the labeled training set, and y j represents the j-th unlabeled test sample of the test set. Each sample in the hyperspectral image is represented by V column vectors, each column vector represents a feature, l i is the category label to which the i-th labeled training sample belongs, and D v indicates the corresponding feature of the vth class of the sample dimension, and R represents the field of real numbers. Corresponding to step (1), N is the number of marked pixels, and m is the number of unmarked pixels. Here, N is the total number of marked training samples, and m is the total number of test samples.
(3)利用概率支持矢量机(SVM)将所有样本的多种特征映射到相应的语义空间,具体为映射成相应的语义表示。分别利用训练集中所有样本的V个特征向量以及其对应的类别标记集构建V个分类器即概率支撑矢量机(SVM),该概率支撑矢量机(SVM)的核函数为径向高斯核,核参数以及惩罚参数由多倍交叉验证得到。将测试集中所有样本的V个特征向量分别输入到构建的V个对应的概率支撑矢量机(SVM)分类器中,得到在不同特征描述子表述下,每个测试样本yj,j=1,2,…,m属于每个类别的概率,作为每个测试样本的语义表示对于训练集中的每个样本xi,i=1,2,…,N,属于本身类别li的概率为1,而属于其他类别的概率为0,其多种特征对应的多种语义表示为其中的第li行为1,其他行为0,训练集中样本的语义表示都是一个0-1编码的向量,得到该高光谱图像中所有样本的多种语义表示注,由于训练集中所有样本的类别标号已知,其对应的语义表示为完全正确的语义表示。(3) Use the probabilistic support vector machine (SVM) to map the various features of all samples to the corresponding semantic space, specifically to map to the corresponding semantic representation. Using the training set separately The V feature vectors of all samples in and their corresponding class label sets Construct V classifiers, that is, probabilistic support vector machine (SVM). The kernel function of the probabilistic support vector machine (SVM) is a radial Gaussian kernel, and the kernel parameters and penalty parameters are obtained by multiple cross-validation. the test set The V eigenvectors of all samples in are respectively input into the constructed V corresponding probabilistic support vector machine (SVM) classifiers, and each test sample y j ,j=1,2, ..., the probability of m belonging to each class, as a semantic representation for each test sample For each sample x i in the training set, i=1,2,...,N, the probability of belonging to its own category l i is 1, while the probability of belonging to other categories is 0, and the various semantic expressions corresponding to its various features are expressed as in The first line of l i is 1, and the other lines are 0. The semantic representation of the samples in the training set is a 0-1 encoded vector, and various semantic representations of all samples in the hyperspectral image are obtained Note that since the category labels of all samples in the training set are known, their corresponding semantic representations are completely correct semantic representations.
本实施例中使用概率支持矢量机(SVM)完成样本特征到样本语义表示的映射,是因为对于高光谱图像地物分类问题来说,概率支持矢量机(SVM)拥有良好的鲁棒性和较强的分类能力,并且作为基准分类器在高光谱处理领域较为通用。本发明也可以使用其他可得到类别概率的分类器完成该步骤,如多项逻辑回归,随机森林及它们的变种分类器等,来替代概率支持矢量机(SVM)。In this embodiment, the probabilistic support vector machine (SVM) is used to complete the mapping of sample features to sample semantic representation, because for the hyperspectral image object classification problem, the probabilistic support vector machine (SVM) has good robustness and comparative Strong classification ability, and it is more general as a benchmark classifier in the field of hyperspectral processing. The present invention can also use other classifiers that can obtain category probabilities to complete this step, such as multinomial logistic regression, random forest and their variant classifiers, etc., to replace the probabilistic support vector machine (SVM).
(4)为了提取测试集中所有样本的局部空间信息和非局部空间信息,来引入局部和非局部的空间约束,构造测试集中所有样本的局部以及非局部近邻集合。对于测试集中的每个样本yj,j=1,2,…,m,构造其局部自适应近邻集合Bj和非局部相似结构近邻集合Cj,得到测试集中每个测试样本的局部自适应近邻集合和非局部相似结构近邻集合。(4) In order to extract the local spatial information and non-local spatial information of all samples in the test set, local and non-local spatial constraints are introduced, and the local and non-local neighbor sets of all samples in the test set are constructed. For each sample y j in the test set, j=1,2,...,m, construct its local adaptive neighbor set B j and non-local similar structure neighbor set C j , and obtain the local adaptive Neighbor Sets and Nonlocal Similarity Structure Neighbor Sets.
(5)构建降噪马尔可夫场模型,进行测试样本的多种语义表示的融合以及语义降噪处理,其中降噪处理是通过引入局部、非局部的空间约束来实现的。结合步骤(3)中得到的所有样本的多种语义表示以及步骤(4)中得到测试集中所有样本的局部自适应近邻集合和非局部相似结构近邻集合,将测试集中所有样本的多种语义表示以及其局部、非局部近邻的多种语义表示,全部输入到降噪马尔可夫场模型中,最大化马尔可夫场的联合概率,也就是最小化马尔可夫场的全局能量,为了最小化全局能量,使用迭代条件模式法(ICM)进行求解,将该全局最小化问题转换为多个局部最小化问题,也就是最小化每个样本所在势团的能量,该势团由测试样本本身和对应的所有近邻样本构成,对每个测试样本yj,j=1,2,…,m分别进行如下操作,将测试样本yj的多种语义表示局部自适应近邻集合Bj中所有样本的多种语义表示和非局部相似结构近邻集合Cj中所有样本的多种语义表示输入到降噪马尔可夫场的局部能量函数中,最小化该函数,从而得到测试样本yj第一次降噪后的语义表示从而最小化所有测试样本所在势团的能量,得到所有测试样本的一阶降噪语义表示。为了将训练集中样本的语义表示,也就是完全正确的语义表示,继续通过降噪马尔可夫场对其局部和非局部近邻进行积极的影响,故保持训练集中样本的语义表示不变,结合所有测试样本的一阶降噪语义表示,得到该高光谱图像所有样本的一阶降噪语义表示 (5) Construct a denoising Markov field model to perform fusion of various semantic representations of test samples and semantic denoising processing, in which denoising processing is realized by introducing local and non-local spatial constraints. Combining multiple semantic representations of all samples obtained in step (3) And in step (4), the local adaptive neighbor set and the non-local similar structure neighbor set of all samples in the test set are obtained, and the multiple semantic representations of all samples in the test set and the multiple semantic representations of their local and non-local neighbors are all input In the denoising Markov field model, the joint probability of the Markov field is maximized, that is, the global energy of the Markov field is minimized. In order to minimize the global energy, the iterative conditional model method (ICM) is used to solve the problem, and the This global minimization problem is transformed into multiple local minimization problems, that is, to minimize the energy of the potential group where each sample is located. The potential group is composed of the test sample itself and all corresponding neighbor samples. For each test sample y j , j=1,2,...,m perform the following operations respectively, and express the various semantics of the test sample y j Multiple Semantic Representations for All Samples in Local Adaptive Neighbor Set Bj and multiple semantic representations of all samples in the neighbor set C j of non-locally similar structures Input it into the local energy function of the denoised Markov field, minimize the function, so as to obtain the semantic representation of the test sample y j after the first denoising In this way, the energy of the potential group where all test samples are located is minimized, and the first-order denoising semantic representation of all test samples is obtained. In order to make the semantic representation of the samples in the training set, that is, the completely correct semantic representation, continue to positively affect its local and non-local neighbors through the denoising Markov field, so keep the semantic representation of the samples in the training set unchanged, combine all The first-order denoising semantic representation of the test sample is obtained to obtain the first-order denoising semantic representation of all samples of the hyperspectral image
(6)由于步骤(5)中所使用的迭代条件模式法(ICM)进行一轮局部最小化能量计算后并不能保证全局能量的最小化,所以对高光谱图像所有样本的一阶降噪语义表示也就是步骤(5)中得到的语义表示结果进一步迭代优化。参见图1,设定最大迭代次数Tmax,t为当前迭代代数,将测试样本yj的第t阶降噪语义表示局部自适应近邻集合Bj中所有样本的第t阶降噪语义表示和非局部相似结构近邻集合Cj中所有样本的第t阶降噪语义表示作为降噪马尔可夫场局部能量函数的输入,同样最小化该能量函数,得到测试样本yj的第(t+1)阶语义表示从而得到该高光谱图像所有测试样本的第(t+1)阶降噪语义表示。对于训练集中所有样本来说,处理方式和步骤(5)中所述相同,得到该高光谱图像中所有样本的第(t+1)阶降噪语义表示重复迭代过程,就是此步骤,直到t=Tmax-1,停止,得到该高光谱图像所有样本的第Tmax阶降噪语义表示,也就是最终的语义表示注,在本步骤中提到的降噪马尔可夫场局部能量函数与步骤(5)中提到的降噪马尔可夫场局部能量函数有所不同,是由于步骤(5)中的局部能量函数需要完成多语义融合的功能,而本步骤中的局部能量函数只需要完成迭代优化即可,具体不同点参见实施例4中一阶局部能量函数和第(t+1)阶局部能量函数。(6) Since the iterative conditional model method (ICM) used in step (5) does not guarantee the minimization of the global energy after a round of local minimum energy calculations, the first-order denoising semantics for all samples of the hyperspectral image express That is, the semantic representation result obtained in step (5) is further iteratively optimized. Referring to Figure 1, set the maximum number of iterations T max , t is the current iteration algebra, and express the t-th order noise reduction semantics of the test sample y j The t-th order denoising semantic representation of all samples in the local adaptive neighbor set Bj and the t-th order denoising semantic representation of all samples in the neighbor set C j of non-local similar structure As the input of the local energy function of the denoising Markov field, the energy function is also minimized to obtain the (t+1)th order semantic representation of the test sample y j Thus, the (t+1)th order denoising semantic representation of all test samples of the hyperspectral image is obtained. For all samples in the training set, the processing method is the same as that described in step (5), and the (t+1)th order denoising semantic representation of all samples in the hyperspectral image is obtained Repeat the iterative process, which is this step, until t=T max -1, stop, and get the T max order noise reduction semantic representation of all samples of the hyperspectral image, which is the final semantic representation Note that the denoising Markov field local energy function mentioned in this step is different from the denoising Markov field local energy function mentioned in step (5), because the local energy in step (5) The function needs to complete the function of multi-semantic fusion, while the local energy function in this step only needs to complete iterative optimization. For specific differences, refer to the first-order local energy function and the (t+1)th-order local energy function in Embodiment 4.
本发明中需要设定参数Tmax,也就是步骤(6)中提及的迭代次数,在一般情况下,若Tmax较小则无法得到收敛的结果,若Tmax较大则导致计算的复杂度较高,产生较多无谓的计算。此参数的设定方法叙述如下,通过计算的结果是否稳定来判断,随机选取少量预测样本(百分之5到百分之10即可),根据这部分预测样本的第(t+1)阶语义表示得到的预测类别集合和第t阶语义表示得到的预测类别集合之间的差距小于一定的阈值,则无需继续迭代,Tmax就等于(t+1)。一般的,在训练样本数量较少的情况下,所需的Tmax较大,反之毅然。In the present invention, the parameter T max needs to be set, which is the number of iterations mentioned in step (6). In general, if T max is small, the result of convergence cannot be obtained, and if T max is large, the calculation will be complicated. The higher the degree, the more unnecessary calculations are generated. The setting method of this parameter is described as follows. It is judged by whether the calculation result is stable, and a small number of forecast samples (5% to 10%) are randomly selected. According to the (t+1)th order of this part of forecast samples If the difference between the predicted category set obtained from the semantic representation and the predicted category set obtained from the t-order semantic representation is less than a certain threshold, there is no need to continue iterations, and T max is equal to (t+1). Generally, when the number of training samples is small, the required T max is larger, and vice versa.
(7)利用步骤(6)中得到最终的语义表示求得测试集中所有样本的类别。对于测试集中的每个样本yj,j=1,2,…,m,其最终的语义表示为(一个c×1的列向量),即测试样本yj属于每个类别的概率所组成的列向量,选择中最大值元素所在位置的标号作为该测试样本的类别从而得到测试集中所有样本的类别,构成测试集类别预测集合完成该高光谱图像的分类任务。(7) Use the final semantic representation obtained in step (6) Find the categories of all samples in the test set. For each sample y j in the test set, j=1,2,...,m, its final semantic representation is (a c×1 column vector), that is, the column vector composed of the probability that the test sample y j belongs to each category, choose The label of the position of the maximum value element in is used as the category of the test sample Thus, the categories of all samples in the test set are obtained, and the category prediction set of the test set is formed. Complete the classification task of this hyperspectral image.
例如对于Indian Pine数据集而言,图2b给出了该数据集的真实地物类标图,无论采用何种分类方法,都可以和图2b进行对比,验证分类效果。For example, for the Indian Pine dataset, Figure 2b shows the real ground objects of the dataset. No matter what classification method is used, it can be compared with Figure 2b to verify the classification effect.
本发明由于充分挖掘了像元之间的相互关系,找到每个像元的局部自适应近邻集以及非局部相似结构近邻集,并将由这两种近邻集所构建的局部和非局部空间约束加入到所设计的降噪马尔可夫场模型中,与此同时,少量有标记样本的类别信息也会随着降噪马尔可夫场的优化过程而传播到其局部以及非局部近邻中。本发明使得高光谱图像在少量有标记样本的情况下仍然可以取得很高的分类精度,且分类结果图拥有很好的空间一致性。Since the present invention fully excavates the interrelationships between the pixels, it finds the local adaptive neighbor set and the non-local similar structure neighbor set of each pixel, and adds the local and non-local spatial constraints constructed by these two neighbor sets into In the designed denoising Markov field model, at the same time, the category information of a small number of labeled samples will also be propagated to its local and non-local neighbors along with the optimization process of the denoising Markov field. The invention enables the hyperspectral image to still achieve high classification accuracy in the case of a small number of marked samples, and the classification result map has good spatial consistency.
实施例2:Example 2:
基于局部和非局部多特征语义高光谱图像分类方法同实施例1,其中步骤(1)中所述的多种特征,包括但不仅限于:原始光谱特征、Gabor纹理特征、差分形态学特征(DMP),其中Gabor纹理特征和差分形态学特征(DMP)分别表述如下:Based on local and non-local multi-feature semantic hyperspectral image classification method with embodiment 1, wherein the multiple features described in step (1), including but not limited to: original spectral features, Gabor texture features, differential morphology features (DMP ), where Gabor texture features and differential morphology features (DMP) are expressed as follows:
Gabor纹理特征:对该高光谱图像进行主成分分析(PCA)处理,取处理后的前3维主成分作为3幅基准图像,分别进行16个方向,5个尺度的Gabor变换,每个基准图像各得到80维的纹理特征,堆叠在一起得到总维数为240维的Gabor纹理特征。Gabor texture features: for hyperspectral images Perform principal component analysis (PCA) processing, take the processed first 3-dimensional principal components as 3 reference images, and perform Gabor transformation in 16 directions and 5 scales respectively, and obtain 80-dimensional texture features for each reference image, and stack Gabor texture features with a total dimension of 240 dimensions are obtained together.
差分形态学特征(DMP):对该高光谱图像进行主成分分析(PCA)处理,取处理后的前3维主成分作为3幅基准图像,分别进行5个尺度的开操作并相互做差和5个尺度的闭操作并相互做差,每个基准图像各得到8维的差分特征,堆叠在一起得到总维数为24维的差分形态学特征。Differential Morphological Features (DMP): For hyperspectral images Perform principal component analysis (PCA) processing, take the processed first 3-dimensional principal components as 3 reference images, and perform 5-scale open operations and mutual differences and 5-scale closed operations and mutual differences, each The benchmark images each get 8-dimensional differential features, and stacked together to obtain differential morphological features with a total dimension of 24 dimensions.
本发明在多种特征的选择上,除了使用原始的光谱信息,还着重考虑了纹理和形状方面的信息,由于不同的特征描述子对于图像具有不同的表述,其中Gabor纹理特征可以很好的提取高光谱图像中的局部纹理信息,也就是局部像元之间的相关性信息,而差分形态学特征(DMP)可以很好的反应高光谱图像中的形状块的边缘以及大小信息。本发明结合光谱、纹理和形状特征可以提升高光谱图像不同类别像元之间的判别性,最终提高基于局部和非局部多特征语义高光谱图像分类方法的分类精度和鲁棒性。In the selection of various features, in addition to using the original spectral information, the present invention also focuses on texture and shape information. Since different feature descriptors have different representations for images, Gabor texture features can be well extracted The local texture information in the hyperspectral image is the correlation information between local pixels, and the differential morphology feature (DMP) can well reflect the edge and size information of the shape block in the hyperspectral image. The invention can improve the discriminability between different types of hyperspectral image pixels by combining spectrum, texture and shape features, and finally improve the classification accuracy and robustness of the hyperspectral image classification method based on local and non-local multi-feature semantics.
除了本实施例中提到的三种特征以外,其他特征也可以使用在本发明中,例如高光谱图像分析中常用的灰度共生矩阵、三维小波变换等特征,于此同时,本发明可以使用的特征数量也不仅限于三种,更多种类的特征虽然会提高方法的判别力,但是也会无端的增加计算复杂度,和大量冗余的信息,本发明使用的三种特征:原始光谱特征、Gabor纹理特征、差分形态学特征(DMP),已经基本涵盖了高光谱图像的大部分信息。In addition to the three features mentioned in this embodiment, other features can also be used in the present invention, such as gray-level co-occurrence matrix, three-dimensional wavelet transform and other features commonly used in hyperspectral image analysis. At the same time, the present invention can use The number of features is not limited to three types. Although more types of features will improve the discriminative power of the method, it will also increase the computational complexity unreasonably, and a large amount of redundant information. The three features used in the present invention: original spectral features , Gabor texture features, and differential morphological features (DMP), which have basically covered most of the information of hyperspectral images.
实施例3:Example 3:
基于局部和非局部多特征语义高光谱图像分类方法同实施例1-2,其中步骤(4)中所述的局部与非局部近邻集合构造方法如下:Based on local and non-local multi-feature semantic hyperspectral image classification method with embodiment 1-2, wherein the local and non-local neighbor set construction method described in step (4) is as follows:
4a)对该高光谱图像进行主成分分析(PCA),提取第一主成分作为一幅基准图像,也就是一幅可以反映该高光谱图像基本地物轮廓信息的灰度图像,设置超像素个数LP,进行基于熵率的超像素图像分割,得到LP个超像素块 4a) For the hyperspectral image Perform principal component analysis (PCA), extract the first principal component as a reference image, that is, a grayscale image that can reflect the basic contour information of the hyperspectral image, set the number of superpixels LP, and perform entropy-based The superpixel image segmentation of , get LP superpixel blocks
本实施例中使用基于熵率的超像素分割方法对高光谱图像的第一主成分灰度图进行超像素分割,分割出的超像素块良好的保持图像中的边缘信息和结构信息,且分割出的超像素块大小差异较小,形状较为规则,较为适用于高光谱图像,也被研究者们大量的使用于高光谱图像的分析处理领域。本发明中,也可以使用其他图像分割方法来替代于熵率的超像素分割方法,如均值漂移(Mean Shift)以及其他基于图论的超像素分割方法。In this embodiment, the entropy-based superpixel segmentation method is used to perform superpixel segmentation on the first principal component grayscale image of the hyperspectral image, and the segmented superpixel blocks can well maintain the edge information and structural information in the image, and the segmentation The size difference of the superpixel block is small, and the shape is relatively regular, which is more suitable for hyperspectral images, and is also widely used by researchers in the field of analysis and processing of hyperspectral images. In the present invention, other image segmentation methods can also be used to replace the entropy superpixel segmentation method, such as mean shift (Mean Shift) and other superpixel segmentation methods based on graph theory.
4b)设置局部窗口参数Wlocal,对于测试集中的样本yj,位于以样本yj为中心的方形窗口Wlocal×Wlocal中,又和样本yj属于同一个超像素块Pu的所有样本构成样本yj的局部自适应近邻集合Bj,从而得到测试集中所有样本的局部自适应近邻集合。这样处理后的局部近邻集合,相比于传统的方形窗口近邻集合,为每个测试样本的局部近邻加入了一定的自适应性,使得每个测试样本所对应的局部近邻都是根据自身周围的情况所确定的,不会因为窗口参数设置的固定性,导致部分测试样本的局部近邻集合包含了大量错误的空间信息。而相比于完全自适应的局部近邻集合构建方法,又可以根据每张高光谱图像的不同分辨率,不同地物类型,设定合适的局部窗口参数,引入一定的先验知识来提升局部空间信息的质量,且完全自适应的局部近邻集合构建方法大都复杂度较高,本发明的局部近邻集合构建方法复杂度与传统方法,也就是方形窗口近邻集合几乎一致,几乎没有增加计算复杂度,但是引入了一定的自适应性。4b) Set the local window parameter W local , for the sample y j in the test set, it is located in the square window W local × W local centered on the sample y j , and all samples belonging to the same superpixel block P u as the sample y j Constitute the locally adaptive neighbor set B j of the sample y j , so as to obtain the locally adaptive neighbor set of all samples in the test set. Compared with the traditional square window neighbor set, the local neighbor set processed in this way adds a certain degree of adaptability to the local neighbors of each test sample, so that the local neighbors corresponding to each test sample are based on their own surroundings. As determined by the situation, the local neighbor sets of some test samples will not contain a large amount of wrong spatial information due to the fixed window parameter settings. Compared with the fully adaptive local neighbor set construction method, it is possible to set appropriate local window parameters according to the different resolutions of each hyperspectral image and different object types, and introduce certain prior knowledge to improve the local space. information quality, and most of the fully adaptive local neighbor set construction methods have high complexity. The complexity of the local neighbor set construction method of the present invention is almost the same as that of the traditional method, that is, the square window neighbor set, and almost does not increase the computational complexity. But a certain amount of adaptability is introduced.
本发明中需要设定局部窗口参数Wlocal,参数越大包含的局部近邻越多,局部近邻信息就越丰富,也就越容易引入越多的错误近邻。参数越小则包含的局部近邻越少,也就无法提取到足够的局部近邻信息。设定该参数需要在两者之间折中选择,此参数一般的取值有3、5、...、15等,根据每张高光谱图像的分辨率、地物类型等先验信息,对参数进行不同程度的调整。In the present invention, the local window parameter W local needs to be set. The larger the parameter, the more local neighbors are included, the richer the local neighbor information is, and it is easier to introduce more wrong neighbors. The smaller the parameter, the fewer local neighbors are included, and it is impossible to extract enough local neighbor information. Setting this parameter requires a compromise between the two. The general values of this parameter are 3, 5, ..., 15, etc. According to the prior information such as the resolution of each hyperspectral image and the type of ground features, Adjust the parameters to varying degrees.
4c)设置非局部结构窗口参数Wnonlocal,以及非局部近邻个数K,分别对原始高光谱图像中的每个样本hq,q=1,2,…,M在其邻域Wnonlocal×Wnonlocal中进行均值池化,得到所有样本的结构信息 4c) Set the non-local structure window parameter W nonlocal and the number of non-local neighbors K, respectively for each sample h q in the original hyperspectral image, q=1,2,...,M in its neighborhood W nonlocal ×W Mean pooling in nonlocal to get the structural information of all samples
本发明中需要设定非局部结构窗口参数Wnonlocal以及非局部近邻个数K,其中非局部结构窗口参数Wnonlocal的选择方法和本实施例4b)中提到的局部窗口参数Wlocal较为相似,但一般的,提取每个样本所属子块的信息时需要将尽可能多的结构信息包含在内,非局部结构窗口参数Wnonlocal的取值大于局部窗口参数Wlocal,如15,17,...,25等。同样的,根据每张高光谱图像的分辨率、地物类型等先验信息,对参数进行不同程度的调整。非局部近邻个数K的取值一般有20,30,...,100等,此参数需要根据高光谱图像中每类样本的数量进行调整,若每类样本数量都较多,则非局部近邻个数K的取值较大,若有部分类样本数量较少,则非局部近邻个数K的取值较小。In the present invention, it is necessary to set the non-local structure window parameter W nonlocal and the number of non-local neighbors K, wherein the selection method of the non-local structure window parameter W nonlocal is relatively similar to the local window parameter W local mentioned in 4b) of this embodiment, But in general, when extracting the information of the sub-block to which each sample belongs, it is necessary to include as much structural information as possible. The value of the non-local structural window parameter W nonlocal is greater than the local window parameter W local , such as 15, 17, .. ., 25 etc. Similarly, the parameters are adjusted to different degrees according to the prior information such as the resolution of each hyperspectral image and the type of ground objects. The value of the number of non-local neighbors K is generally 20, 30, ..., 100, etc. This parameter needs to be adjusted according to the number of samples of each type in the hyperspectral image. If the number of samples of each type is large, the non-local The value of the number of neighbors K is relatively large, and if the number of samples of some classes is small, the value of the number of non-local neighbors K is small.
本发明使用均值池化的方法来提取每个样本所属子块的结构信息,均值池化后的结果就可以大体表现出每个样本所属子块的基本信息,相比于其他子块可以体现一定的区分度。也可以使用其他聚合方法来替代均值池化提取每个样本所属子块的信息,如最大值池化,加权均值池化或其他更复杂的池化方法。The present invention uses the method of mean value pooling to extract the structural information of the sub-block to which each sample belongs, and the result after mean value pooling can generally show the basic information of the sub-block to which each sample belongs, which can reflect certain degree of distinction. Instead of mean pooling, other aggregation methods can be used to extract information about the sub-block to which each sample belongs, such as max pooling, weighted mean pooling or other more complex pooling methods.
4d)对于测试集中的每个样本yj,j=1,2,…,m,用其结构信息和剩余所有样本的结构信息做比较,计算样本结构信息之间的远近程度:4d) For each sample y j ,j=1,2,...,m in the test set, use its structural information and the structural information of all remaining samples For comparison, calculate the distance between the sample structure information:
其中是测地距离,代表对向量x中的每一行进行开根操作,SGDjq的值就代表了测试样本yj和样本q之间结构信息的远近程度,相比于常用的欧式距离或者余弦夹角等度量方式,由于已经有研究证明,高光谱图像所包含的反射波信息可以被看作是一种流形,而测地距离作为一种流形距离,可以更好的表述高光谱图像波段反射值向量之间的距离。寻找和测试样本yj最相似的K个样本,也就是SGD值最小的前K个样本,作为测试样本yj的非局部相似结构近邻集合Cj,与此同时,由于每个非局部近邻样本和测试样本yj之间的相似程度不同,所以对于测试样本yj的重要程度就有所区别,每个根据SGD值的大小,分别给与K个非局部近邻不同的权重,相似程度越高,也就是SGD值越大,则其权重就越大,权重计算公式如下:in is the geodesic distance, It represents the root operation of each row in the vector x, and the value of SGD jq represents the distance between the test sample y j and the sample q. Compared with the commonly used measurement methods such as Euclidean distance or cosine angle, It has been proved by research that the reflected wave information contained in the hyperspectral image can be regarded as a manifold, and the geodesic distance as a manifold distance can better express the relationship between the reflection value vectors of the hyperspectral image bands. distance. Find the K samples most similar to the test sample y j , that is, the first K samples with the smallest SGD value, as the non-local similar structure neighbor set C j of the test sample y j . At the same time, because each non-local neighbor sample The degree of similarity between the test sample y j and the test sample y j is different, so the importance of the test sample y j is different. Each of the K non-local neighbors is given different weights according to the size of the SGD value. The higher the similarity , that is, the larger the SGD value, the greater its weight, and the weight calculation formula is as follows:
式中,ωjh代表测试样本yj的非局部相似结构近邻h所对应的权重大小,γ是高斯核参数。In the formula, ω jh represents the weight corresponding to the non-local similar structure neighbor h of the test sample y j , and γ is the Gaussian kernel parameter.
本发明着重设计了测试集中所有样本的局部自适应近邻集合和非局部相似结构近邻集合,其中局部自适应近邻集合将传统方窗和超像素块相结合,充分的提取了样本所在位置附近的局部空间信息,降低错误空间信息引入。而非局部相似结构近邻集合的设计考虑到了高光谱图像中存在的大量冗余的非局部空间信息,本发明将这些信息进行了充分提取。这两种近邻集合的设计,使得最终的降噪马尔可夫场充分利用了局部和非局部空间信息,进而提升高光谱图像的分类精度和分类结果图的空间一致性。The present invention focuses on designing the local adaptive neighbor set and the non-local similar structure neighbor set of all samples in the test set, wherein the local adaptive neighbor set combines the traditional square window and the super pixel block, and fully extracts the local area near the sample location. Spatial information, reducing the introduction of wrong spatial information. The design of the neighbor set with non-local similar structure takes into account a large amount of redundant non-local spatial information in hyperspectral images, and the present invention fully extracts these information. The design of these two sets of neighbors makes the final denoising Markov field make full use of local and non-local spatial information, thereby improving the classification accuracy of hyperspectral images and the spatial consistency of classification result maps.
实施例4:Example 4:
基于局部和非局部多特征语义高光谱图像分类方法同实施例1-3,其中步骤(5)和(6)中最小化马尔可夫场的全局能量,使用迭代条件模式法(ICM)求解,将全局能量最小化转化为最小化每个局部势团能量,对于测试样本yj,其相应的一阶局部能量函数,也就是步骤(5)中所使用的局部能量函数为:Based on local and non-local multi-feature semantic hyperspectral image classification method with embodiment 1-3, wherein in step (5) and (6), minimize the global energy of Markov field, use iterative conditional model method (ICM) to solve, The global energy minimization is transformed into minimizing the energy of each local potential group. For the test sample y j , its corresponding first-order local energy function, which is the local energy function used in step (5), is:
相应的第(t+1)阶局部能量函数,也就是步骤(6)中所使用的局部能量函数为:The corresponding (t+1)th order local energy function, that is, the local energy function used in step (6) is:
注,以上两个局部能量函数中距离度量方法为测地距离,与实施例3中所述的测地距离相同。相比于传统距离度量方法,如欧式距离、余弦夹角等,测地距离被证明更加适合于度量两个语义向量,也就是概率向量之间的距离。Note, the distance measurement method in the above two local energy functions is the geodesic distance, which is the same as the geodesic distance described in Embodiment 3. Compared with traditional distance measurement methods, such as Euclidean distance, cosine angle, etc., geodesic distance has been proved to be more suitable for measuring the distance between two semantic vectors, that is, probability vectors.
最小化上述的两个局部能量函数为一个凸优化问题,本发明使用简单快速的梯度下降法最小化以上能量函数,以测试样本yj的一阶局部能量函数为例,其梯度为:Minimizing the above two local energy functions is a convex optimization problem. The present invention uses a simple and fast gradient descent method to minimize the above energy functions. Taking the first-order local energy function of the test sample y j as an example, its gradient is:
其中代表的第k个元素,且:in represent The kth element of , and:
利用以上公式,完成最小化马尔可夫场的全局能量。Using the above formula, the global energy of the Markov field is minimized.
本发明由于对马尔可夫场模型进行了多特征方向和非局部方向的改进,并且用语义向量间的测地距离正则项代替了传统的离散的类别异同正则项,使得马尔可夫场模型更加的适合于处理高光谱图像分类问题,解决了传统马尔可夫模型导致的过平滑等问题,改善了高光谱图像分类结果图的空间一致性,提高了分类精度。之后,通过迭代条件模式法(ICM)将全局能量最小化问题转化为多个局部最小化问题,使用简单的梯度下降法进行求解,计算复杂度低于传统马尔可夫场模型所用的图切类算法,并且在求优迭代过程中很好的避免了陷入局部最优解,提高了模型的鲁棒性,从而提升分类结果的鲁棒性。The invention improves the Markov field model with multi-feature directions and non-local directions, and replaces the traditional discrete category similarity and difference regular term with the geodesic distance regular term between semantic vectors, making the Markov field model more efficient. It is suitable for dealing with hyperspectral image classification problems, solves the over-smoothing problems caused by traditional Markov models, improves the spatial consistency of hyperspectral image classification result maps, and improves classification accuracy. After that, the global energy minimization problem is transformed into multiple local minimization problems through the iterative conditional model method (ICM), and the simple gradient descent method is used to solve the problem, and the computational complexity is lower than that of the traditional Markov field model. Algorithm, and in the optimization iteration process, it avoids falling into the local optimal solution, improves the robustness of the model, and thus improves the robustness of the classification results.
下面给出一个完整的实施方案,对本发明进一步说明。A complete embodiment is given below to further illustrate the present invention.
实施例5:Example 5:
基于局部和非局部多特征语义高光谱图像分类方法同实施例1-4,Based on local and non-local multi-feature semantic hyperspectral image classification method with embodiment 1-4,
参照图1,本发明的具体实施步骤包括:With reference to Fig. 1, concrete implementation steps of the present invention include:
步骤1,输入高光谱图像M是高光谱图像中所有像素点的总个数,hq为一个列向量,代表像素点q每个波段的反射值。用不同的特征描述子对高光谱图像进行多个特征的提取。在本发明的仿真实验中,分别提取了Gabor纹理特征,形态学差异特征(DMP)以及原始光谱特征。Step 1, input hyperspectral image M is the total number of all pixels in the hyperspectral image, h q is a column vector, representing the reflection value of each band of pixel q. Use different feature descriptors to extract multiple features from hyperspectral images. In the simulation experiment of the present invention, the Gabor texture feature, the morphological difference feature (DMP) and the original spectral feature are respectively extracted.
1a)Gabor纹理特征针对原始高光谱图像利用主成分分析方法(PCA)进行降维后的前三个主成份图像进行Gabor滤波器的多个方向多个尺度的变换,注本实施例中使用16个方向和5个尺度,将每个滤波的结果进行堆叠,得到该高光谱图像的Gabor纹理特征,相应得到每个像素点的纹理特征向量。1a) Gabor texture feature is used for the first three principal component images after dimensionality reduction of the original hyperspectral image using the principal component analysis method (PCA) to perform Gabor filter transformations in multiple directions and multiple scales. Note that 16 is used in this embodiment. direction and 5 scales, stack the results of each filter to get the Gabor texture feature of the hyperspectral image, and get the texture feature vector of each pixel correspondingly.
1b)形态学差异特征(DMP)也针对前三个主成份图像进行不同尺度的开闭操作,注,此实施例中使用5个尺度的开操作和5个尺度的闭操作,并求相邻两个尺度的开或闭操作之间的差,将所有得到的差值进行堆叠,得到该高光谱图像的形态学差异特征,相应得到每个像素点的形态学差异特征(DMP)向量。1b) The morphological difference feature (DMP) also performs opening and closing operations of different scales for the first three principal component images. Note, in this embodiment, 5 scales of opening operations and 5 scales of closing operations are used, and the adjacent The difference between the opening or closing operations of the two scales, and all the obtained differences are stacked to obtain the morphological difference feature of the hyperspectral image, and the corresponding morphological difference feature (DMP) vector of each pixel is obtained.
1c)原始光谱特征就是用每个像素点的各个波段的反射值直接作为该像素点的光谱特征。1c) The original spectral feature is to use the reflection value of each band of each pixel directly as the spectral feature of the pixel.
步骤2,从高光谱图像的每一类像素点中选出等比例的像素点,作为有标记像素点,有标记像素点的总个数为N,该高光谱图像的剩余m个像素点作为无标记像素点,用每个像素点的V个特征向量来表示该像素点,样本的特征维数分别为其中Dv代表第v个特征的维数。Step 2, select an equal proportion of pixels from each type of pixels in the hyperspectral image as marked pixels, the total number of marked pixels is N, and the remaining m pixels of the hyperspectral image are used as For unmarked pixels, V feature vectors of each pixel are used to represent the pixel, and the feature dimensions of the samples are respectively where Dv represents the dimensionality of the vth feature.
步骤3,选取有标记训练集X、测试集Y,得到所有样本的语义表示集S。Step 3: Select a labeled training set X and a test set Y to obtain the semantic representation set S of all samples.
3a)用N个有标记样本构成有标记训练集其对应的类别标记集为R表示实数域。分别利用有标记训练集中的单个特征向量集合Xv以及类别标记集L,训练出V个概率支持矢量机(SVM)模型。支持矢量机的核类型为径向高斯核,核参数r以及惩罚参数c均由多倍交叉验证得到。3a) Use N labeled samples to form a labeled training set Its corresponding category label set is R represents the field of real numbers. using the labeled training set A single feature vector set X v and a category label set L in the training V probabilistic support vector machine (SVM) models. The kernel type of the support vector machine is a radial Gaussian kernel, and the kernel parameter r and the penalty parameter c are obtained by multiple cross-validation.
3b)用m个无标记样本构成测试集分别将测试集的不同特征向量集分别输入到步骤3a)中所训练出的对应的V个概率支持矢量机模型中,得到测试样本集中所有样本在不同特征描述子的表述下,属于每个类别的概率,即为该测试样本的语义表示,如测试样本yj的语义表示为对于训练集中的样本来说,其语义表示即一个0-1编码向量,其类标所在位置为1,其他位置为0,表示其属于本身类别的概率为1,属于其他类别的概率为0。故得到该高光谱图像所有样本的语义表示集为 3b) Use m unlabeled samples to form a test set The different eigenvector sets of the test set are respectively Input them into the corresponding V probabilistic support vector machine models trained in step 3a), and obtain the probability that all samples in the test sample set belong to each category under the expression of different feature descriptors, which is the probability of the test sample Semantic representation, such as the semantic representation of the test sample y j as For the samples in the training set, its semantic representation is a 0-1 coded vector, the position of the class label is 1, and the other positions are 0, indicating that the probability of belonging to its own category is 1, and the probability of belonging to other categories is 0. Therefore, the semantic representation set of all samples of the hyperspectral image is obtained as
步骤4,构造无标记测试集Y中每个样本的局部自适应近邻集合B以及非局部相似结构近邻集合C。Step 4. Construct a local adaptive neighbor set B and a non-local similar structure neighbor set C for each sample in the unlabeled test set Y.
4a)对原始高光谱图像利用主成分分析(PCA)的方法进行降维,选择第一主成分图像(一个灰度图)作为基准图像,设定超像素个数LP,利用基于熵率的超像素分割方法对该图像进行超像素分割,得到LP个超像素块 4a) Use Principal Component Analysis (PCA) method to reduce dimensionality of the original hyperspectral image, select the first principal component image (a grayscale image) as the reference image, set the number of superpixels LP, and use the entropy-based superpixel The pixel segmentation method performs superpixel segmentation on the image to obtain LP superpixel blocks
4b)设置局部自适应窗口参数Wlocal,根据步骤4a)中得到的超像素块,构建每个测试样本的局部自适应近邻集。以测试样本yj为例,若有样本n即属于以测试样本yj为中心的Wlocal×Wlocal大小的方窗内,又和测试样本yj属于同一个超像素块Pu,则称此样本n为测试样本yj的一个局部自适应近邻,n∈Bj,以此类推,得到每个测试样本的局部自适应近邻集合 4b) Set the local adaptive window parameter W local , and construct a local adaptive neighbor set for each test sample according to the superpixel block obtained in step 4a). Taking the test sample y j as an example, if there is a sample n that belongs to the square window of W local × W local size centered on the test sample y j , and belongs to the same superpixel block P u as the test sample y j , then it is called This sample n is a locally adaptive neighbor of the test sample y j , n∈B j , and so on, to obtain the locally adaptive neighbor set of each test sample
4c)设置非局部结构窗口参数Wnonlocal,以及非局部近邻的个数K。首先对原始高光谱图像M表示高光谱图像中所有样本的个数。在Wnonlocal×Wnonlocal大小的自适应窗口,即参数为Wnonlocal的局部自适应近邻集内进行均值池化,自适应窗口的构造方式同4b)中所述。得到每个样本的局部结构信息 4c) Set the non-local structural window parameter W nonlocal and the number K of non-local neighbors. First, the original hyperspectral image M represents the number of all samples in the hyperspectral image. Mean pooling is performed in the adaptive window of W nonlocal × W nonlocal size, that is, the local adaptive neighbor set whose parameter is W nonlocal , and the construction method of the adaptive window is the same as that described in 4b). Get the local structure information of each sample
4d)根据步骤4c)中得到的分别计算每个测试样本的局部结构信息和剩余所有点之间的相似度。对于测试集中的每个样本yj,j=1,2,…,m,用其结构信息和剩余所有样本的结构信息做比较,计算该样本局部结构信息和剩余所有样本局部结构信息之间的相似度,相似度计算公式如下:4d) According to the obtained in step 4c) The local structure information of each test sample and the similarity between all remaining points are calculated separately. For each sample y j in the test set, j=1,2,…,m, use its structural information and the structural information of all remaining samples For comparison, calculate the local structure information of the sample and the local structure information of all remaining samples The similarity between them, the similarity calculation formula is as follows:
其中是测地距离,代表对列向量x中的每一行进行开根操作。计算每两个样本之间的相似度就可以得到一个相似度矩阵SD,而该矩阵为对称矩阵即SD(j,q)=SD(q,j),代表了测试样本yj和样本q之间的结构相似度。in is the geodesic distance, Represents the root operation for each row in the column vector x. Calculate the similarity between every two samples to get a similarity matrix SD, and this matrix is a symmetrical matrix SD(j,q)=SD(q,j), which represents the relationship between the test sample y j and the sample q the structural similarity between them.
4e)根据步骤4d)中得到的相似度矩阵SD,对于每个测试样本,选择其前K个最相似的样本作为其非局部近邻。以测试样本yj为例,选择相似度矩阵SD中的第j列,其每个元素代表着测试样本yj和每个样本的相似度,选择其中除本身外(本身和本身的相似度最大),数值最大的前K个样本,作为测试样本yj的非局部近邻,则得到了测试样本yj的非局部近邻集合Cj,以此类推,得到每个测试样本的非局部近邻集合 4e) According to the similarity matrix SD obtained in step 4d), for each test sample, select its top K most similar samples as its non-local neighbors. Taking the test sample y j as an example, select the jth column in the similarity matrix SD, each element of which represents the similarity between the test sample y j and each sample, and select one of them except itself (the similarity between itself and itself is the largest ), the top K samples with the largest value, as the non-local neighbors of the test sample y j , the non-local neighbor set C j of the test sample y j is obtained, and so on, the non-local neighbor set of each test sample is obtained
4f)与此同时,根据相似度值的大小,分别给与K个非局部近邻不同的权重,从而使更相似的近邻拥有更高的权重,相对而言,降低相似度较低近邻的权重,从而提高非局部空间约束的合理性和自适应性,权重计算公式如下(其中γ是高斯核参数):4f) At the same time, according to the size of the similarity value, give different weights to the K non-local neighbors, so that the more similar neighbors have higher weights, relatively speaking, reduce the weight of the lower similarity neighbors, In order to improve the rationality and adaptability of non-local space constraints, the weight calculation formula is as follows (where γ is a Gaussian kernel parameter):
步骤5,根据步骤3和步骤4中计算出的每个样本的语义表示,以及其相应的局部、非局部近邻集合,构建降噪马尔可夫场模型,其中局部近邻集合作为局部空间约束,非局部近邻集合作为非局部空间约束加入到模型中。利用迭代条件模式法(ICM)最小化每个局部能量,即每个样本所在势团的能量,达到最小化全局能量的目的,计算出每个测试样本的降噪语义表示。Step 5, according to the semantic representation of each sample calculated in Step 3 and Step 4, and its corresponding local and non-local neighbor sets, construct a denoising Markov field model, where the local neighbor set is used as a local space constraint, non-local The set of local neighbors is added to the model as a non-local spatial constraint. The iterative conditional model method (ICM) is used to minimize each local energy, that is, the energy of the potential group where each sample is located, to achieve the purpose of minimizing the global energy, and calculate the denoising semantic representation of each test sample.
5a)以测试样本yj为例,将测试样本yj的V个语义表示以及其局部、非局部近邻集合中所有样本的语义表示输入到降噪马尔可夫场局部能量函数中。测试样本yj所在势团的能量为:5a) Taking the test sample y j as an example, the V semantic representations of the test sample y j and the semantic representation of all samples in its local and non-local neighbor sets Input to the denoised Markov field local energy function. The energy of the potential group where the test sample y j is located is:
其中,公式(3)右侧第一项为自约束项,第二项为局部空间约束项,第三项为非局部空间约束项,注,在此公式中所有约束项都是多种语义情况下的约束。利用梯度下降法最小化该函数,得到测试样本yj的一阶降噪语义表示以此类推,遍历所有测试样本,可以得到所有测试样本的一阶降噪语义表示,而训练样本的语义表示保持不变,故可以得到所有样本的一阶降噪语义表示集 Among them, the first item on the right side of formula (3) is a self-constraint item, the second item is a local space constraint item, and the third item is a non-local space constraint item. Note that all constraint items in this formula are multiple semantic cases under the constraints. Minimize this function using the gradient descent method to obtain a first-order noise-reduced semantic representation of the test sample yj By analogy, by traversing all the test samples, the first-order noise reduction semantic representation of all test samples can be obtained, while the semantic representation of the training samples remains unchanged, so the first-order noise reduction semantic representation set of all samples can be obtained
5b)由于迭代条件模式法(ICM)是一个逐渐求优的过程,一次的迭代无法完成全局能量最小化,达不到最终的收敛结果,将步骤5a)中得到的一阶降噪语义表示集输入到降噪马尔可夫场模型中继续进行迭代求优。设置最大迭代次数Tmax,以测试样本yj为例,其一阶降噪语义表示以及其局部、非局部近邻集合中样本的一阶降噪语义表示输入到降噪马尔可夫场局部能量函数中,最小化该能量函数就可以得到测试样本yj的二阶降噪语义表示以此类推,遍历所有测试样本,注,在求任意阶降噪语义表示时,所有训练样本的语义表示都保持不变,仍然为一个0-1编码列向量,进而得到所有样本的二阶降噪语义表示由于多种语义融合已经在本例的步骤5a)中完成,此时能量函数不再需要进行多种语义的融合,所以局部能函数简化为:5b) Since the iterative conditional model method (ICM) is a gradual optimization process, the global energy minimization cannot be completed in one iteration, and the final convergence result cannot be reached. The first-order noise reduction semantic representation set obtained in step 5a) Input into the denoising Markov field model to continue iterative optimization. Set the maximum number of iterations T max , taking the test sample y j as an example, its first-order denoising semantic representation And the first-order noise reduction semantic representation of samples in its local and non-local neighbor sets Input it into the local energy function of the denoising Markov field, and minimize the energy function to obtain the second-order denoising semantic representation of the test sample y j By analogy, traverse all test samples. Note that when seeking the semantic representation of any order noise reduction, the semantic representation of all training samples remains unchanged, and it is still a 0-1 encoding column vector, and then the second order reduction of all samples is obtained. noisy semantic representation Since the fusion of multiple semantics has been completed in step 5a) of this example, the energy function no longer needs to fuse multiple semantics, so the local energy function is simplified as:
公式(4)右侧三项的意义同公式(3),但已经不需要进行多种语义融合,故每一项都是单个语义情况下的约束。从公式中可以看出,根据测试样本yj以及其局部、非局部近邻样本的第t阶降噪语义表示,最小化该函数可以得到测试样本yj的第(t+1)阶降噪语义表示。而上述的根据一阶降噪语义表示可以得到二阶降噪语义表示这是t=1时的特例。循环迭代该过程,直到t=Tmax-1,可以得到测试样本yj的第Tmax阶降噪语义表示 The meanings of the three items on the right side of formula (4) are the same as those of formula (3), but there is no need for multiple semantic fusions, so each item is a constraint under a single semantic situation. It can be seen from the formula that, according to the t-th order noise reduction semantic representation of the test sample y j and its local and non-local neighbor samples, the (t+1)th order noise reduction semantics of the test sample y j can be obtained by minimizing this function express. The above-mentioned first-order denoising semantic representation The second-order noise reduction semantic representation can be obtained This is a special case at t=1. This process is iterated cyclically until t=T max -1, and the T max order denoising semantic representation of the test sample y j can be obtained
对每个测试样本重复此过程,即可以得到每个测试样本的第Tmax阶降噪语义表示,进而得到全部样本的第Tmax阶降噪语义表示 Repeat this process for each test sample, you can get the T max order noise reduction semantic representation of each test sample, and then get the T max order noise reduction semantic representation of all samples
步骤6,本发明中样本的语义表示就是该样本属于每个类别的概率所构成的列向量,故根据步骤5得到的第Tmax阶降噪语义表示对于测试样本yj选择其语义表示向量中最大值所在的位置,就是测试样本yj的类别标号以此类推,得到所有测试样本的类别标号 Step 6, the semantic representation of the sample in the present invention is the column vector formed by the probability that the sample belongs to each category, so the T max order noise reduction semantic representation obtained according to step 5 For the test sample y j choose its semantic representation vector The position of the maximum value is the category label of the test sample y j By analogy, the category labels of all test samples are obtained
本发明中提出了一种基于局部和非局部多特征语义高光谱图像分类方法,在方法中构建了一种新型马尔可夫场,称为降噪马尔可夫场。该模型通过迭代条件模式法(ICM)最小化马尔可夫场的全局能量,可以将多特征语义在局部、非局部的空间约束下进行合理的融合,对于所有测试样本都得到一个较为全面的、噪声较低的语义表示,进而得到所有测试样本的预测类标。该方法充分的利用了两方面的信息,多特征信息可以对高光谱图像进行较为全面的表述,局部、非局部空间约束可以对高光谱图像像元相互之间的关系进行充分的挖掘。最终,相比于传统的分类方法,本发明提出的基于局部和非局部多特征语义高光谱图像分类方法提升了分类结果的精度、鲁棒性和空间一致性。In the present invention, a semantic hyperspectral image classification method based on local and non-local multi-features is proposed, and a new Markov field is constructed in the method, which is called denoising Markov field. The model minimizes the global energy of the Markov field through the iterative conditional model method (ICM), which can reasonably fuse the multi-feature semantics under local and non-local space constraints, and obtain a more comprehensive and comprehensive model for all test samples. Semantic representation with lower noise, and then get the predicted class labels of all test samples. This method makes full use of two aspects of information. Multi-feature information can describe hyperspectral images more comprehensively, and local and non-local spatial constraints can fully mine the relationship between hyperspectral image pixels. Finally, compared with traditional classification methods, the local and non-local multi-feature semantic hyperspectral image classification method proposed by the present invention improves the accuracy, robustness and spatial consistency of classification results.
本发明的效果可以通过以下仿真实验进一步说明:Effect of the present invention can be further illustrated by following simulation experiments:
实施例6:Embodiment 6:
基于局部和非局部多特征语义高光谱图像分类方法同实施例1-5。The semantic hyperspectral image classification method based on local and non-local multi-features is the same as that in Embodiments 1-5.
1.仿真条件:1. Simulation conditions:
仿真实验采用美国宇航局NASA喷气推进实验室的空载可见光/红外成像光谱仪AVIRIS于1992年6月在印第安纳西北部获取的Indian Pine图像,如图2a所示,图像大小为145×145,共220个波段,去除噪声以及大气和水域吸收的波段还有200个波段,参见图2b,人工标记后,共16类地物信息。The simulation experiment uses the Indian Pine image acquired by the airborne visible/infrared imaging spectrometer AVIRIS of NASA Jet Propulsion Laboratory in June 1992 in northwestern Indiana, as shown in Figure 2a. The image size is 145×145, with a total of 220 There are 200 bands for noise removal and atmospheric and water absorption bands, see Figure 2b. After manual marking, there are a total of 16 types of ground object information.
仿真实验在CPU为Intel Core(TM)i5-4200H、主频2.80GHz,内存为12G的WINDOWS7系统上用MATLAB 2014a软件进行。The simulation experiment was carried out with MATLAB 2014a software on a WINDOWS7 system with Intel Core(TM) i5-4200H CPU, main frequency 2.80GHz, and 12G memory.
表1给出了Indian Pine图像中16类数据。Table 1 gives the 16 categories of data in the Indian Pine image.
表1 Indian Pine图像中的16类数据Table 1 The 16 categories of data in the Indian Pine image
2.仿真内容及分析:2. Simulation content and analysis:
使用本发明与现有三种方法对高光谱图像Indian Pine进行分类,现有三种方法分别是:基于融合核的支持矢量机(SVM+CK),支持矢量机结合马尔可夫场(SVM+MRF),联合稀疏表示(SOMP)。本发明中提出的基于局部和非局部多特征语义高光谱图像分类方法,利用多特征语义表示及空间约束对高光谱图像进行分类,缩写为NE-MFAS,为了验证本发明方法的有效性,仿真实验中加入了两种在本发明框架中的简化版方法MFAS和MFS,其中使用MFAS方法是在实施例6的步骤(4)中只构造了局部近邻集合,不利用非局部近邻集合的信息,来验证非局部近邻集合信息对分类结果的影响,分类结果参见图3e。使用MFS方法在实施例6的步骤(4)中不但不利用非局部近邻集合信息,在构造局部近邻集合时也不利用超像素的信息,只选择方形窗口作为其局部近邻集合,来验证超像素约束对分类结果的影响,分类结果参见图3d。其中支持矢量机(SVM)方法的惩罚因子核参数通过5倍交叉验证确定,SOMP方法的稀疏参数设置为30,空域尺度参数设置为7×7。本发明所用到的超像素个数L设置为75,局部窗口Wlocal大小为7×7,非局部结构窗口Wnonlocal的大小为21×21,非局部近邻个数K为30,高斯核参数γ为0.05,最大迭代次数Tmax设置为3。训练样本的选取方式如下,从16类数据中随机选取5%的像素点作为训练样本,其余的95%作为测试样本。Use the present invention and existing three kinds of methods to classify hyperspectral image Indian Pine, existing three kinds of methods are respectively: support vector machine (SVM+CK) based on fusion kernel, support vector machine combined Markov field (SVM+MRF) , Joint Sparse Representation (SOMP). The hyperspectral image classification method based on local and non-local multi-feature semantics proposed in the present invention uses multi-feature semantic representation and spatial constraints to classify hyperspectral images, abbreviated as NE-MFAS. In order to verify the effectiveness of the method of the present invention, the simulation Added two kinds of simplified version methods MFAS and MFS in the frame of the present invention in the experiment, wherein use MFAS method is that in the step (4) of embodiment 6, only construct local neighbor set, do not utilize the information of non-local neighbor set, To verify the impact of non-local neighbor set information on the classification results, the classification results are shown in Figure 3e. Using the MFS method in step (4) of Embodiment 6 not only does not use the non-local neighbor set information, but also does not use the superpixel information when constructing the local neighbor set, and only selects the square window as its local neighbor set to verify the superpixel The influence of constraints on the classification results, the classification results are shown in Figure 3d. Among them, the penalty factor of the support vector machine (SVM) method is Kernel parameters As determined by 5-fold cross-validation, the sparse parameter of the SOMP method was set to 30, and the spatial scale parameter was set to 7×7. The number of superpixels L used in the present invention is set to 75, the size of the local window W local is 7×7, the size of the non-local structure window W nonlocal is 21×21, the number of non-local neighbors K is 30, and the Gaussian kernel parameter γ is 0.05, and the maximum number of iterations T max is set to 3. The selection method of the training samples is as follows, 5% of the pixels are randomly selected from the 16 types of data as the training samples, and the remaining 95% are used as the test samples.
如图3中所示各方法的分类结果图,均在训练样本完全一致的情况下得到,其中图3a-3c分别是三种现有方法SVM+CK,SVM+MRF,SOMP的分类结果图,可以看出这三种分类方法在大部分区域表现尚可。其中SOMP的分类结果图,参见图3c,离散噪声点较多,空间一致性较差。而SVM+MRF的分类结果图,参见图3b,相比于图3c几乎没有离散噪声点,但存在着大量的过平滑现象,且分类结果图边缘腐蚀较为严重。SVM+CK的分类结果图,参见图3a,相比于图3b和3c,结果是最优的,但还是存在着部分离散噪声点以及大量的边缘腐蚀。图3d-3f分别对应着MFS,MFAS,NE-MFAS的分类结果图。与图3a-3c进行对比,可以看出本发明提出的方法在局部区域连贯性,边缘保持,以及小样本区域的表现都比现有方法更好。其中MFS的分类结果图,参见图3d,相比于传统的三种方法,MFS已经几乎不存在离散噪声点且大部分区域的空间一致性都较好,但有一定的边缘腐蚀现象。MFAS是比MFS多加入了超像素的约束信息,参见图3e,相比于图3d,MFAS的分类结果图在边缘保持方面有了很大的改善,几乎不存在边缘腐蚀现象,但在部分小样本类别区域,如图像右侧黄色矩形区域,几乎无法正确分类。而对MFAS加入了非局部空间约束后,本发明NE-MFAS的分类结果图,参见图3f,相比于图3d和3e,在保持很好的空间一致性的同时,对小样本类别区域,如图像右侧黄色矩形区域,几乎全部正确分类。As shown in Figure 3, the classification results of each method are obtained when the training samples are completely consistent, and Figures 3a-3c are the classification results of the three existing methods SVM+CK, SVM+MRF, and SOMP, respectively. It can be seen that these three classification methods perform well in most areas. Among them, the classification result map of SOMP, see Fig. 3c, there are many discrete noise points, and the spatial consistency is poor. For the classification result map of SVM+MRF, see Figure 3b. Compared with Figure 3c, there are almost no discrete noise points, but there are a lot of over-smoothing phenomena, and the edge corrosion of the classification result map is more serious. The classification result diagram of SVM+CK, see Figure 3a, compared with Figures 3b and 3c, the result is optimal, but there are still some discrete noise points and a large number of edge erosion. Figures 3d-3f correspond to the classification results of MFS, MFAS, and NE-MFAS, respectively. Comparing with Figures 3a-3c, it can be seen that the method proposed by the present invention performs better than the existing methods in terms of local area coherence, edge preservation, and small sample areas. Among them, the classification result map of MFS is shown in Figure 3d. Compared with the traditional three methods, MFS has almost no discrete noise points and the spatial consistency of most areas is good, but there is a certain edge corrosion phenomenon. Compared with MFS, MFAS adds more superpixel constraint information. See Figure 3e. Compared with Figure 3d, MFAS classification result map has a great improvement in edge preservation, and there is almost no edge corrosion phenomenon, but in some small Sample category regions, such as the yellow rectangle region on the right side of the image, are almost impossible to classify correctly. After adding non-local space constraints to MFAS, the classification result diagram of NE-MFAS of the present invention, see Figure 3f, compared with Figures 3d and 3e, while maintaining good spatial consistency, for small sample category areas, For example, the yellow rectangular area on the right side of the image is almost all correctly classified.
通过图3d到3f的变化,可以发现本发明中提出的的超像素约束的自适应局部空间约束可以很好的保持图像的边缘信息,增强空间一致性,而本发明提出的非局部空间约束可以进一步的提高分类精度的上限,尤其在提升样本相对较少的类别分类精度上,有着很好的表现。Through the changes in Figure 3d to 3f, it can be found that the adaptive local space constraint of the superpixel constraint proposed in the present invention can well maintain the edge information of the image and enhance the spatial consistency, while the non-local space constraint proposed in the present invention can Further improving the upper limit of classification accuracy, especially in improving the classification accuracy of categories with relatively few samples, has a very good performance.
实施例7:Embodiment 7:
基于局部和非局部多特征语义高光谱图像分类方法同实施例1-6,仿真的条件和内容同实施例6。实施例6中所述分类结果图之间的区别只能通过肉眼观察判断,在此通过分类精度对比分析,从数据上体现本发明方法相比于其他方法的优势。所有实验均进行10次取平均值,注每次实验训练样本都是随机选取得到,也就是说一次实验和另一次实验的训练样本不是完全相同的。The semantic hyperspectral image classification method based on local and non-local multi-features is the same as in Embodiment 1-6, and the conditions and contents of the simulation are the same as in Embodiment 6. The difference between the classification result graphs described in Example 6 can only be judged by naked eyes. Here, the advantages of the method of the present invention compared with other methods are reflected from the data through comparative analysis of classification accuracy. All experiments were carried out 10 times to take the average value. Note that the training samples of each experiment are randomly selected, that is to say, the training samples of one experiment and another experiment are not exactly the same.
表2给出现有三种方法、两种本发明简化版方法和本发明方法的实验精度对比:Table 2 provides the experimental precision contrast of existing three kinds of methods, two kinds of simplified version methods of the present invention and the inventive method:
表2 Indian Pine图像上三种方法与本发明实验精度结果Table 2 Three methods on the Indian Pine image and the experimental accuracy results of the present invention
从表2可以看出,本发明的方法在10次重复实验所得结果的均值远高于现有的三种方法,而标准差要低于现有的三种方法,可以说明本发明方法不论在分类精度还是鲁棒性上表现都是最优,一方面是由于本发明的方法充分结合了多特征所包含的大量判别信息,另一方面在挖掘空间信息方面要远远优于其他三种基于空间信息的方法。从MFS到MFAS,分类精度提升了0.5%,说明超像素约束对空间信息的提取起到了积极的作用,相比于传统的方形窗口,本发明所设计的自适应局部近邻集合可以剔除部分产生负作用的近邻点,提取到更加丰富的局部空间信息,包括边缘和结构信息。从MFAS到NE-MFAS,分类精度提升了1%,说明了非局部近邻中蕴含了大量有价值的信息,而提取这些信息可以进一步的提高分类精度的上限。本发明的分类精度在5%的少量样本情况下,分类精度达到了98.20%,且标准差只有0.58%,优于现有的大部分方法。As can be seen from Table 2, the mean value of the obtained results of the method of the present invention in 10 repeated experiments is much higher than the existing three methods, and the standard deviation is lower than the existing three methods, it can be illustrated that the method of the present invention no matter in Both classification accuracy and robustness are the best. On the one hand, the method of the present invention fully combines a large amount of discriminant information contained in multiple features. On the other hand, it is far superior to the other three methods in mining spatial information. methods for spatial information. From MFS to MFAS, the classification accuracy has increased by 0.5%, indicating that superpixel constraints have played a positive role in the extraction of spatial information. Compared with the traditional square window, the adaptive local neighbor set designed by the present invention can eliminate some negative The neighboring points of the function can extract richer local spatial information, including edge and structure information. From MFAS to NE-MFAS, the classification accuracy increased by 1%, which shows that non-local neighbors contain a lot of valuable information, and extracting this information can further improve the upper limit of classification accuracy. The classification accuracy of the invention reaches 98.20% in the case of a small number of samples of 5%, and the standard deviation is only 0.58%, which is better than most existing methods.
综上所述,本发明公开的一种基于局部和非局部多特征语义高光谱图像分类方法。主要解决现有的高光谱图像分类方法正确率低,鲁棒性差,空间一致性弱的问题。其步骤包括:对原始的高光谱图像分别利用多种特征提取方法提取不同的特征;将高光谱图像的每一个像素点用多个特征向量表示,选出有标记训练集和测试集;将有标签训练集输入到概率支持矢量机中,把测试集中每一个像素点的多个特征映射到语义空间,得到每一个测试样本的多个语义表示;利用降噪马尔可夫场模型同时引入空间信息和多语义信息,最小化该马尔可夫场的能量,得到每个测试样本的降噪语义表示,进而得到整个测试集的类别信息。本发明利用支持矢量机得到的语义表示和马尔可夫场模型的完美契合,充分的结合了多特征信息以及局部、非局部空域上下文信息,最终能够对高光谱图像进行更加准确地分类。与两个本发明方法简化版的对比,验证了本发明方法的有效性。与现有的三种方法对比,说明了本发明方法在小样本情况下,具有高精确度,高鲁棒性,以及优秀的空间一致性。可用于军事探测、地图绘制、植被调查、矿物检测等方面。In summary, the present invention discloses a semantic hyperspectral image classification method based on local and non-local multi-features. It mainly solves the problems of low correct rate, poor robustness and weak spatial consistency of existing hyperspectral image classification methods. The steps include: extracting different features from the original hyperspectral image using a variety of feature extraction methods; representing each pixel of the hyperspectral image with multiple feature vectors, selecting a labeled training set and a test set; The label training set is input into the probabilistic support vector machine, and the multiple features of each pixel in the test set are mapped to the semantic space, and multiple semantic representations of each test sample are obtained; the noise reduction Markov field model is used to introduce spatial information at the same time And multi-semantic information, minimize the energy of the Markov field, get the noise-reduced semantic representation of each test sample, and then get the category information of the entire test set. The present invention utilizes the perfect fit of the semantic representation obtained by the support vector machine and the Markov field model, fully combines multi-feature information and local and non-local spatial context information, and finally can classify hyperspectral images more accurately. Compared with two simplified versions of the method of the present invention, the effectiveness of the method of the present invention is verified. Compared with the existing three methods, it shows that the method of the present invention has high accuracy, high robustness, and excellent spatial consistency in the case of small samples. It can be used in military detection, map drawing, vegetation survey, mineral detection, etc.
本实施方式中没有详细叙述的部分属本行业的公知的常用手段,这里不一一叙述。以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。The parts that are not described in detail in this embodiment are commonly known and commonly used means in this industry, and will not be described here one by one. The above examples are only illustrations of the present invention, and do not constitute a limitation to the protection scope of the present invention. All designs that are the same as or similar to the present invention fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611119573.1A CN106529508B (en) | 2016-12-07 | 2016-12-07 | Local and non-local multi-feature semantic hyperspectral image classification methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611119573.1A CN106529508B (en) | 2016-12-07 | 2016-12-07 | Local and non-local multi-feature semantic hyperspectral image classification methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106529508A true CN106529508A (en) | 2017-03-22 |
CN106529508B CN106529508B (en) | 2019-06-21 |
Family
ID=58342718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611119573.1A Active CN106529508B (en) | 2016-12-07 | 2016-12-07 | Local and non-local multi-feature semantic hyperspectral image classification methods |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106529508B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107124612A (en) * | 2017-04-26 | 2017-09-01 | 东北大学 | The method for compressing high spectrum image perceived based on distributed compression |
CN107194936A (en) * | 2017-05-24 | 2017-09-22 | 哈尔滨工业大学 | The high spectrum image object detection method represented based on super-pixel joint sparse |
CN107301368A (en) * | 2017-06-28 | 2017-10-27 | 昂纳自动化技术(深圳)有限公司 | A kind of recognition methods of DataMatrix Quick Response Codes |
CN107451614A (en) * | 2017-08-01 | 2017-12-08 | 西安电子科技大学 | The hyperspectral classification method merged based on space coordinates with empty spectrum signature |
CN107679538A (en) * | 2017-09-05 | 2018-02-09 | 深圳大学 | The forming method and formation system of high spectrum image local feature description |
CN107909576A (en) * | 2017-11-22 | 2018-04-13 | 南开大学 | Indoor RGB D method for segmenting objects in images based on support semantic relation |
CN108171270A (en) * | 2018-01-05 | 2018-06-15 | 大连海事大学 | A kind of hyperspectral image classification method based on Hash study |
CN108416746A (en) * | 2018-02-07 | 2018-08-17 | 西北大学 | Pattern enhancement method of painted cultural relics based on hyperspectral image dimensionality reduction and fusion |
CN108960073A (en) * | 2018-06-05 | 2018-12-07 | 大连理工大学 | Cross-module state image steganalysis method towards Biomedical literature |
WO2019047025A1 (en) * | 2017-09-05 | 2019-03-14 | 深圳大学 | Method for forming local feature descriptor of hyperspectral image and forming system |
CN110263709A (en) * | 2019-06-19 | 2019-09-20 | 百度在线网络技术(北京)有限公司 | Driving Decision-making method for digging and device |
CN110378294A (en) * | 2019-07-22 | 2019-10-25 | 大连海事大学 | A kind of EO-1 hyperion object detection method and system based on local energy constraint and Fusion Features |
CN111104984A (en) * | 2019-12-23 | 2020-05-05 | 东软集团股份有限公司 | CT image classification method, device and equipment for electronic computer tomography |
CN111259936A (en) * | 2020-01-09 | 2020-06-09 | 北京科技大学 | A method and system for image semantic segmentation based on single pixel annotation |
CN111414936A (en) * | 2020-02-24 | 2020-07-14 | 北京迈格威科技有限公司 | Determination method of classification network, image detection method, device, equipment and medium |
CN111885390A (en) * | 2020-07-30 | 2020-11-03 | 河南大学 | Hyperspectral Image Compression Method Based on Fractal Multiwavelet |
CN111968057A (en) * | 2020-08-24 | 2020-11-20 | 浙江大华技术股份有限公司 | Image noise reduction method and device, storage medium and electronic device |
CN113095408A (en) * | 2021-04-14 | 2021-07-09 | 中国工商银行股份有限公司 | Risk determination method and device and server |
CN114581789A (en) * | 2022-02-21 | 2022-06-03 | 山东锋士信息技术有限公司 | Hyperspectral image classification method and system |
CN115019077A (en) * | 2022-08-09 | 2022-09-06 | 江苏思伽循环科技有限公司 | Method for identifying and controlling shaking table separator in waste battery recycling process |
CN115104131A (en) * | 2020-06-16 | 2022-09-23 | 华为技术有限公司 | Hybrid learning agent for small sample classification |
WO2022227914A1 (en) * | 2021-04-25 | 2022-11-03 | 浙江师范大学 | Hyperspectral image band selection method and system based on latent feature fusion |
CN118432767A (en) * | 2024-07-03 | 2024-08-02 | 湖南雷诺科技发展有限公司 | 5G big data low-delay optimized transmission method and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101770584A (en) * | 2009-12-30 | 2010-07-07 | 重庆大学 | Extraction method for identification characteristic of high spectrum remote sensing data |
CN102542288A (en) * | 2011-11-28 | 2012-07-04 | 北京航空航天大学 | Construction and merging classification method for high spectrum data multi-characteristic space |
-
2016
- 2016-12-07 CN CN201611119573.1A patent/CN106529508B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101770584A (en) * | 2009-12-30 | 2010-07-07 | 重庆大学 | Extraction method for identification characteristic of high spectrum remote sensing data |
CN102542288A (en) * | 2011-11-28 | 2012-07-04 | 北京航空航天大学 | Construction and merging classification method for high spectrum data multi-characteristic space |
Non-Patent Citations (2)
Title |
---|
施蓓琦等: "应用稀疏非负矩阵分解聚类实现高光谱影响波段的优化选择", 《测绘学报》 * |
王立国等: "基于人工蜂群算法高光谱图像波段选择", 《哈尔滨工业大学学报》 * |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107124612A (en) * | 2017-04-26 | 2017-09-01 | 东北大学 | The method for compressing high spectrum image perceived based on distributed compression |
CN107194936A (en) * | 2017-05-24 | 2017-09-22 | 哈尔滨工业大学 | The high spectrum image object detection method represented based on super-pixel joint sparse |
CN107194936B (en) * | 2017-05-24 | 2021-02-02 | 哈尔滨工业大学 | Hyperspectral image target detection method based on superpixel combined sparse representation |
CN107301368B (en) * | 2017-06-28 | 2023-12-22 | 昂视智能(深圳)有限公司 | Recognition method of DataMatrix two-dimensional code |
CN107301368A (en) * | 2017-06-28 | 2017-10-27 | 昂纳自动化技术(深圳)有限公司 | A kind of recognition methods of DataMatrix Quick Response Codes |
CN107451614A (en) * | 2017-08-01 | 2017-12-08 | 西安电子科技大学 | The hyperspectral classification method merged based on space coordinates with empty spectrum signature |
CN107451614B (en) * | 2017-08-01 | 2019-12-24 | 西安电子科技大学 | Hyperspectral Classification Method Based on Fusion of Spatial Coordinates and Spatial Spectral Features |
CN107679538A (en) * | 2017-09-05 | 2018-02-09 | 深圳大学 | The forming method and formation system of high spectrum image local feature description |
WO2019047025A1 (en) * | 2017-09-05 | 2019-03-14 | 深圳大学 | Method for forming local feature descriptor of hyperspectral image and forming system |
CN107679538B (en) * | 2017-09-05 | 2020-12-04 | 深圳大学 | Forming method and forming system of local feature descriptor of hyperspectral image |
CN107909576A (en) * | 2017-11-22 | 2018-04-13 | 南开大学 | Indoor RGB D method for segmenting objects in images based on support semantic relation |
CN107909576B (en) * | 2017-11-22 | 2021-06-25 | 南开大学 | Indoor RGB-D Image Object Segmentation Based on Support Semantic Relation |
CN108171270A (en) * | 2018-01-05 | 2018-06-15 | 大连海事大学 | A kind of hyperspectral image classification method based on Hash study |
CN108171270B (en) * | 2018-01-05 | 2021-08-27 | 大连海事大学 | Hyperspectral image classification method based on Hash learning |
CN108416746A (en) * | 2018-02-07 | 2018-08-17 | 西北大学 | Pattern enhancement method of painted cultural relics based on hyperspectral image dimensionality reduction and fusion |
CN108416746B (en) * | 2018-02-07 | 2023-04-18 | 西北大学 | Colored drawing cultural relic pattern enhancement method based on dimension reduction and fusion of hyperspectral images |
CN108960073A (en) * | 2018-06-05 | 2018-12-07 | 大连理工大学 | Cross-module state image steganalysis method towards Biomedical literature |
CN108960073B (en) * | 2018-06-05 | 2020-07-24 | 大连理工大学 | Cross-modal image mode identification method for biomedical literature |
CN110263709A (en) * | 2019-06-19 | 2019-09-20 | 百度在线网络技术(北京)有限公司 | Driving Decision-making method for digging and device |
CN110378294B (en) * | 2019-07-22 | 2022-08-19 | 大连海事大学 | Hyperspectral target detection method and system based on local energy constraint and feature fusion |
CN110378294A (en) * | 2019-07-22 | 2019-10-25 | 大连海事大学 | A kind of EO-1 hyperion object detection method and system based on local energy constraint and Fusion Features |
CN111104984A (en) * | 2019-12-23 | 2020-05-05 | 东软集团股份有限公司 | CT image classification method, device and equipment for electronic computer tomography |
CN111259936B (en) * | 2020-01-09 | 2021-06-01 | 北京科技大学 | Image semantic segmentation method and system based on single pixel annotation |
CN111259936A (en) * | 2020-01-09 | 2020-06-09 | 北京科技大学 | A method and system for image semantic segmentation based on single pixel annotation |
CN111414936A (en) * | 2020-02-24 | 2020-07-14 | 北京迈格威科技有限公司 | Determination method of classification network, image detection method, device, equipment and medium |
CN111414936B (en) * | 2020-02-24 | 2023-08-18 | 北京迈格威科技有限公司 | Determination method, image detection method, device, equipment and medium of classification network |
CN115104131A (en) * | 2020-06-16 | 2022-09-23 | 华为技术有限公司 | Hybrid learning agent for small sample classification |
CN111885390B (en) * | 2020-07-30 | 2021-04-13 | 河南大学 | Hyperspectral Image Compression Method Based on Fractal Multiwavelet |
CN111885390A (en) * | 2020-07-30 | 2020-11-03 | 河南大学 | Hyperspectral Image Compression Method Based on Fractal Multiwavelet |
CN111968057A (en) * | 2020-08-24 | 2020-11-20 | 浙江大华技术股份有限公司 | Image noise reduction method and device, storage medium and electronic device |
CN113095408A (en) * | 2021-04-14 | 2021-07-09 | 中国工商银行股份有限公司 | Risk determination method and device and server |
WO2022227914A1 (en) * | 2021-04-25 | 2022-11-03 | 浙江师范大学 | Hyperspectral image band selection method and system based on latent feature fusion |
CN114581789A (en) * | 2022-02-21 | 2022-06-03 | 山东锋士信息技术有限公司 | Hyperspectral image classification method and system |
CN114581789B (en) * | 2022-02-21 | 2025-03-14 | 山东锋士信息技术有限公司 | A hyperspectral image classification method and system |
CN115019077A (en) * | 2022-08-09 | 2022-09-06 | 江苏思伽循环科技有限公司 | Method for identifying and controlling shaking table separator in waste battery recycling process |
CN118432767A (en) * | 2024-07-03 | 2024-08-02 | 湖南雷诺科技发展有限公司 | 5G big data low-delay optimized transmission method and system |
CN118432767B (en) * | 2024-07-03 | 2024-08-30 | 湖南雷诺科技发展有限公司 | 5G big data low-delay optimized transmission method and system |
Also Published As
Publication number | Publication date |
---|---|
CN106529508B (en) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106529508A (en) | Local and non-local multi-feature semantics-based hyperspectral image classification method | |
CN111259828B (en) | Recognition method based on multi-features of high-resolution remote sensing images | |
Alidoost et al. | A CNN-based approach for automatic building detection and recognition of roof types using a single aerial image | |
Tran et al. | Missing modalities imputation via cascaded residual autoencoder | |
Tyleček et al. | Spatial pattern templates for recognition of objects with regular structure | |
CN106203523B (en) | The hyperspectral image classification method of the semi-supervised algorithm fusion of decision tree is promoted based on gradient | |
CN102496034B (en) | High-spatial resolution remote-sensing image bag-of-word classification method based on linear words | |
CN109766858A (en) | Three-dimensional convolution neural network hyperspectral image classification method combined with bilateral filtering | |
CN104952050B (en) | High spectrum image adaptive de mixing method based on region segmentation | |
Kang et al. | A probabilistic graphical model for the classification of mobile LiDAR point clouds | |
CN107590515B (en) | Hyperspectral image classification method of self-encoder based on entropy rate superpixel segmentation | |
CN107145836B (en) | Hyperspectral image classification method based on stacked boundary identification self-encoder | |
CN103208011B (en) | Based on average drifting and the hyperspectral image space-spectral domain classification method organizing sparse coding | |
CN112926452B (en) | Hyperspectral classification method and system based on GCN and GRU enhanced U-Net characteristics | |
CN108537102A (en) | High Resolution SAR image classification method based on sparse features and condition random field | |
CN113486967B (en) | SAR image classification algorithm combining graph convolution network and Markov random field | |
CN104298999B (en) | EO-1 hyperion feature learning method based on recurrence autocoding | |
CN112381144B (en) | Heterogeneous deep network method for non-European and Euclidean domain space spectrum feature learning | |
CN107451565A (en) | A kind of semi-supervised small sample deep learning image model classifying identification method | |
CN105760900A (en) | Hyperspectral image classification method based on affinity propagation clustering and sparse multiple kernel learning | |
CN108229551A (en) | A kind of Classification of hyperspectral remote sensing image method based on compact dictionary rarefaction representation | |
CN109002771B (en) | Remote sensing image classification method based on recurrent neural network | |
Benediktsson et al. | Remote sensing data fusion: Markov models and mathematical morphology for multisensor, multiresolution, and multiscale image classification | |
CN109034213B (en) | Method and system for hyperspectral image classification based on correlation entropy principle | |
CN117456274A (en) | Hyperspectral image classification method, hyperspectral image classification device, computer equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |