CN106520964A - Double-recognition quantitative detection method for microRNA - Google Patents
Double-recognition quantitative detection method for microRNA Download PDFInfo
- Publication number
- CN106520964A CN106520964A CN201611033594.1A CN201611033594A CN106520964A CN 106520964 A CN106520964 A CN 106520964A CN 201611033594 A CN201611033594 A CN 201611033594A CN 106520964 A CN106520964 A CN 106520964A
- Authority
- CN
- China
- Prior art keywords
- sequence
- mirna
- oligonucleotide
- lret
- microrna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002679 microRNA Substances 0.000 title claims abstract description 55
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 108700011259 MicroRNAs Proteins 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000004458 analytical method Methods 0.000 claims abstract description 4
- 108091034117 Oligonucleotide Proteins 0.000 claims description 52
- 108091070501 miRNA Proteins 0.000 claims description 39
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 239000000872 buffer Substances 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- 238000012986 modification Methods 0.000 claims description 10
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 8
- 241000972773 Aulopiformes Species 0.000 claims description 8
- 239000007995 HEPES buffer Substances 0.000 claims description 8
- 101710086015 RNA ligase Proteins 0.000 claims description 8
- 235000019515 salmon Nutrition 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 7
- 238000002372 labelling Methods 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 claims description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- 229940098773 bovine serum albumin Drugs 0.000 claims description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims 4
- 238000005034 decoration Methods 0.000 claims 2
- DCPMPXBYPZGNDC-UHFFFAOYSA-N hydron;methanediimine;chloride Chemical compound Cl.N=C=N DCPMPXBYPZGNDC-UHFFFAOYSA-N 0.000 claims 2
- HOGDNTQCSIKEEV-UHFFFAOYSA-N n'-hydroxybutanediamide Chemical compound NC(=O)CCC(=O)NO HOGDNTQCSIKEEV-UHFFFAOYSA-N 0.000 claims 2
- 238000005119 centrifugation Methods 0.000 claims 1
- 238000000108 ultra-filtration Methods 0.000 claims 1
- 238000009396 hybridization Methods 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 9
- 230000005284 excitation Effects 0.000 abstract description 7
- 238000011896 sensitive detection Methods 0.000 abstract description 7
- 238000011160 research Methods 0.000 abstract description 6
- 238000012546 transfer Methods 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 5
- 238000003759 clinical diagnosis Methods 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 229940079593 drug Drugs 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 238000012216 screening Methods 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 description 11
- 230000000295 complement effect Effects 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 6
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 6
- MWEQTWJABOLLOS-AZGWGOJFSA-L disodium;[[[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-oxidophosphoryl] hydrogen phosphate;trihydrate Chemical compound O.O.O.[Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O MWEQTWJABOLLOS-AZGWGOJFSA-L 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004445 quantitative analysis Methods 0.000 description 4
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 3
- 229960003001 adenosine triphosphate disodium Drugs 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000010195 expression analysis Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种基于上转换荧光能量共振转移(UC‑LRET)技术并结合不同的杂交(hybridization)、连接(ligation)双识别过程,从而实现对microRNA单步、均相、高灵敏检测。主要应用于microRNA表达谱分析、microRNA临床诊断、microRNA研究检测及microRNA相关药物研究及筛选。本发明具有以下优点:(1)操作步骤少,属于“一步法”检测。(2)稳定性好,可以长时间保存,检测性能不下降。(3)由于在近红外区(980nm)激发,避免了背景荧光的产生。因此,具有很好的应用前景。
The invention discloses an upconversion fluorescence energy resonance transfer (UC‑LRET) technology combined with different hybridization and ligation double recognition processes, so as to realize single-step, homogeneous and highly sensitive detection of microRNA. It is mainly used in microRNA expression profile analysis, microRNA clinical diagnosis, microRNA research and detection, and microRNA-related drug research and screening. The present invention has the following advantages: (1) There are few operation steps, and it belongs to "one-step" detection. (2) It has good stability, can be stored for a long time, and the detection performance does not decline. (3) Due to the excitation in the near-infrared region (980nm), the generation of background fluorescence is avoided. Therefore, it has a good application prospect.
Description
技术领域technical field
本发明属于生物技术及临床医学诊断领域,涉及一种双识别检测microRNA的定量检测方法。基于上转换荧光能量共振转移(UC-LRET)技术并结合不同的杂交(hybridization)、连接(ligation)双识别检测,从而实现对microRNA单步、均相、高灵敏检测。主要应用于microRNA表达谱分析、microRNA临床诊断、microRNA研究检测及microRNA相关药物研究及筛选。The invention belongs to the field of biotechnology and clinical medical diagnosis, and relates to a quantitative detection method for double-identification detection of microRNA. Based on upconversion fluorescence energy resonance transfer (UC-LRET) technology combined with different hybridization (hybridization) and ligation (ligation) double recognition detection, it can realize single-step, homogeneous and highly sensitive detection of microRNA. It is mainly used in microRNA expression profile analysis, microRNA clinical diagnosis, microRNA research and detection, and microRNA-related drug research and screening.
背景技术Background technique
microRNA(下文简称“miRNA”)是一类长度约为20-24个核苷酸(nt)的非编码RNA,它能调控超过一半的人类基因。[参见(a)D.P.Bartel,Cell,2009,136,215-233.(b)S.L.Ameres,M.D.Horwich,J.H.Hung,J.Xu,M.Ghildiyal,Z.Weng and P.D.Zamore,Science,2010,328,1534-1539.(c)Y.Chen,D.Y.Gao and L.Huang,Adv.Drug DeliveryRev.2015,81,128.(d)R.Devulapally,N.M.Sekar,T.V.Sekar,K.Foygel,T.F.Massoud,J.R.K.Willmann and R.Paulmurugan,ACS Nano,2015,9,2290.]相同的miRNA在不同的组织、器官和不同的细胞之间具有相似的调控功能,具有保守性。但不同组织器官、不同细胞以及细胞发育的不同阶段,其miRNA的表达谱并不相同,这一细胞及“时空”特异性使其可以作为某些组织器官、不同细胞以及细胞发育不同阶段的特异性分子标志。近年来,miRNA更是被认为是诊断及治疗某些疾病的新一代标志物及标靶。[参见(a)R.Ma,T.Jiang andX.Kang,J.Exp.Clin.Cancer Res.2012,31,38.(b)Y.Cao,R.A.DePinho,M.Ernst andK.Vousden,Nat.Rev.Cancer,2011,11,749.]miRNA已经成为近年来的研究热点,然而,由于miRNA具有的非常低浓度、易于降解、短链长度(18-24nt)以及很强的序列相似性这些特征使得灵敏、特异性检测miRNA变得非常困难。目前,微阵列芯片“杂交”(hybridization)及基于定量实时聚合酶链反应(PCR)技术是两种定量检测miRNA的最常见技术。[参见A.Git,H.Dvinge,M.Salmon-Divon,M.Osborne,C.Kutter,J.Hadfield,P.Bertone and C.Caldas,RNA,2010,16,991.]。然而,由序列多样性造成的miRNA熔点温度差异性使得hybridization为基础的技术很难应用于大规模的表达分析,而PCR为基础的技术又需要miRNA标记及互补DNA转化步骤等多个程序,使得检测miRNA耗时、耗力。[参见(a)Z.Gao,H.Deng,W.Shen andY.Ren,Anal.Chem.2013,85,1624-1630.(b)Y.Ren,H.Deng,W.Shen and Z.Gao,Anal.Chem.2013,85,4784-4789.]因此,发展快速、简单和灵敏的生物检测miRNA技术在生物研究和临床诊断上具有重要意义。microRNA (hereinafter referred to as "miRNA") is a kind of non-coding RNA with a length of about 20-24 nucleotides (nt), which can regulate more than half of human genes. [See (a) D.P. Bartel, Cell, 2009, 136, 215-233. (b) S.L. Ameres, M.D. Horwich, J.H. Hung, J. Xu, M. Ghildiyal, Z. Weng and P.D. Zamore, Science, 2010, 328 , 1534-1539.(c) Y.Chen, D.Y.Gao and L.Huang, Adv.Drug Delivery Rev.2015, 81, 128.(d) R.Devulapally, N.M.Sekar, T.V.Sekar, K.Foygel, T.F.Massoud, J.R.K.Willmann and R.Paulmurugan, ACS Nano, 2015, 9, 2290.] The same miRNA has similar regulatory functions in different tissues, organs and different cells, and is conserved. However, different tissues and organs, different cells, and different stages of cell development have different miRNA expression profiles. This cell and "spatial-temporal" specificity makes it possible to be used as a specific expression profile for certain tissues, organs, different cells, and different stages of cell development. Sex molecule sign. In recent years, miRNA is considered to be a new generation of markers and targets for the diagnosis and treatment of certain diseases. [See (a) R. Ma, T. Jiang and X. Kang, J. Exp. Clin. Cancer Res. 2012, 31, 38. (b) Y. Cao, R. A. DePinho, M. Ernst and K. Vousden, Nat. Rev.Cancer, 2011, 11, 749.] miRNA has become a research hotspot in recent years, however, due to the characteristics of very low concentration, easy degradation, short chain length (18-24nt) and strong sequence similarity of miRNA This makes sensitive and specific detection of miRNA very difficult. At present, microarray chip "hybridization" and quantitative real-time polymerase chain reaction (PCR) technology are the two most common techniques for quantitative detection of miRNA. [See A. Git, H. Dvinge, M. Salmon-Divon, M. Osborne, C. Kutter, J. Hadfield, P. Bertone and C. Caldas, RNA, 2010, 16, 991.]. However, the difference in melting point temperature of miRNAs caused by sequence diversity makes hybridization-based techniques difficult to apply to large-scale expression analysis, and PCR-based techniques require multiple procedures such as miRNA labeling and complementary DNA conversion steps, making Detection of miRNA is time-consuming and labor-intensive. [See (a) Z. Gao, H. Deng, W. Shen and Y. Ren, Anal. Chem. 2013, 85, 1624-1630. (b) Y. Ren, H. Deng, W. Shen and Z. Gao , Anal.Chem.2013, 85, 4784-4789.] Therefore, the development of rapid, simple and sensitive biological detection miRNA technology is of great significance in biological research and clinical diagnosis.
发明内容Contents of the invention
为了克服上述现有技术的不足,本发明提供了一种基于上转换荧光能量共振转移(UC-LRET)技术的高灵敏检测miRNA的方法,它能够提供在生物环境下“无背景”均相检测,而且通过不同的杂交“hybridization”及融合“ligation steps”双识别步骤使得检测的专属性大大提高。In order to overcome the deficiencies of the above-mentioned prior art, the present invention provides a method for highly sensitive detection of miRNA based on up-conversion fluorescence resonance energy transfer (UC-LRET) technology, which can provide "background-free" homogeneous detection in a biological environment , and through different hybridization "hybridization" and fusion "ligation steps" double recognition steps, the specificity of detection is greatly improved.
本发明是由信号产生单元和识别单元组成,上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记的寡核苷酸作为荧光的供体,而染料Cy3偶联的寡核苷酸作为荧光的接受体,供体-接受体共同组成了一对上转换荧光能量共振转移寡核苷酸对,作为信号产生单元;识别单元包括两段对目标miRNA具有特异性识别的序列。在近红外光激发下(980nm),产生上转换荧光共振能量转移信号,能够实现对miRNA的高灵敏度、高选择性检测。The present invention is composed of a signal generation unit and a recognition unit, and the oligonucleotide labeled with upconversion nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) is used as a fluorescence donor, and the oligonucleotide coupled with dye Cy3 As a fluorescent acceptor, the donor-acceptor together constitute a pair of up-converting fluorescent energy resonance transfer oligonucleotides as a signal generation unit; the recognition unit includes two sequences that specifically recognize the target miRNA. Under the excitation of near-infrared light (980nm), an upconversion fluorescence resonance energy transfer signal is generated, which can realize high sensitivity and high selectivity detection of miRNA.
采用的技术方案:The technical solution adopted:
一种用于定量检测miRNA的上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记的寡核苷酸(LRET-B),其中所述的寡核苷酸序列从5’端开始为与识别单元互补配对的特异性序列、控制寡核苷酸长度的序列及3’端修饰C7氨基序列组成。An upconversion nanoparticle (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B) for quantitative detection of miRNA, wherein the oligonucleotide sequence starts from the 5' end It consists of a specific sequence complementary to the recognition unit, a sequence controlling the length of the oligonucleotide, and a modified C7 amino sequence at the 3' end.
一种用于定量检测miRNA的染料分子Cy3标记的寡核苷酸(LRET-A),其中所述的寡核苷酸序列从5’端开始标记有Cy3控制寡核苷酸长度的序列、与识别单元互补配对的特异性序列及3’端C6修饰。A dye molecule Cy3-labeled oligonucleotide (LRET-A) for quantitative detection of miRNA, wherein the oligonucleotide sequence is marked with a Cy3 control oligonucleotide length sequence from the 5' end, and The specific sequence of the complementary pairing of the recognition unit and the C6 modification at the 3' end.
一种用于定量检测miRNA的识别单元寡核苷酸(RD-REG-D),其中所述的寡核苷酸序列从PO4修饰的5’端开始与目标miRNA互补配对的特异性序列、与寡核苷酸(LRET-B)互补配对的特异性序列及3’端组成。A recognition unit oligonucleotide (RD-REG-D) for the quantitative detection of miRNA, wherein the oligonucleotide sequence starts from the 5' end of PO4 modification and the specific sequence that is complementary to the target miRNA, The specific sequence and 3' end composition that are complementary to the oligonucleotide (LRET-B).
一种用于定量检测miRNA的识别单元寡核苷酸(RA-REG-A),其中所述的寡核苷酸序列从5’端开始与寡核苷酸(LRET-A)互补配对的特异性序列、与目标miRNA互补配对的特异性序列及修饰有-OH基团的3’端组成。A recognition unit oligonucleotide (RA-REG-A) for quantitative detection of miRNA, wherein the oligonucleotide sequence starts from the 5' end and is complementary to the oligonucleotide (LRET-A). It consists of a sex sequence, a specific sequence that is complementary to the target miRNA, and a 3' end modified with an -OH group.
一种基于上转换荧光能量共振转移(UC-LRET)技术的高灵敏检测miRNA的方法,按以下步骤进行:A method for highly sensitive detection of miRNA based on upconversion fluorescence energy resonance transfer (UC-LRET) technology, carried out according to the following steps:
(1)、上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记寡核苷酸(LRET-B):1~3ml浓度为0.2~2mg/ml羧基化的上转换纳米颗粒UCNPs溶液中添加1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)2~6mg及1~4mg的N-羟基琥珀酰亚胺(NHS),在室温下振荡60分钟,然后将50~150μL的0.5~2μM的寡核苷酸(LRET-B)溶液加入上述溶液中,在室温下反应12~24小时。反应完毕后,超滤离心,产物保存在含有0.1%牛血清蛋白BSA缓冲液中(pH7.4)。(1) Up-converting nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B): 1-3 ml of carboxylated up-converting nanoparticles UCNPs solution with a concentration of 0.2-2 mg/ml Add 2-6 mg of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 1-4 mg of N-hydroxysuccinimide (NHS) to the Shake for 60 minutes, then add 50-150 μL of 0.5-2 μM oligonucleotide (LRET-B) solution into the above solution, and react at room temperature for 12-24 hours. After the reaction was completed, the product was ultrafiltered and centrifuged, and the product was stored in BSA buffer (pH 7.4) containing 0.1% bovine serum albumin.
(2)、基于双识别microRNA的定量检测:5~15nM上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记的寡核苷酸(LRET-B)、5~15nM染料分子Cy3标记的寡核苷酸(LRET-A)、5~15nM两种双识别单元寡核苷酸(RA-REG-A)、(RD-REG-D)、0.02~0.12CEU RNA连接酶以及一定浓度的目标miRNA混合在100μL miRNA缓冲液中,miRNA缓冲液组成为(25mM HEPES缓冲液,0.4mMATP,50mM NaCl,2mM MgCl2,100μg/ml single stranded salmon sperm DNA,pH7.4+0.1%BSA)。混合样品在20~40℃孵育60~120min,最后进行上转换荧光定量分析。激发光用980nm的激光光源激发,功率在0~3W间进行调节。(2) Quantitative detection based on dual-recognition microRNA: 5-15nM up-conversion nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B), 5-15nM dye molecule Cy3 labeling oligonucleotide (LRET-A), 5~15nM two double recognition unit oligonucleotides (RA-REG-A), (RD-REG-D), 0.02~0.12CEU RNA ligase and a certain concentration of The target miRNA was mixed in 100 μL of miRNA buffer, and the composition of miRNA buffer was (25mM HEPES buffer, 0.4mMATP, 50mM NaCl, 2mM MgCl 2 , 100μg/ml single stranded salmon sperm DNA, pH7.4+0.1%BSA). The mixed samples were incubated at 20-40°C for 60-120 min, and finally carried out quantitative analysis of up-conversion fluorescence. The excitation light is excited by a 980nm laser light source, and the power is adjusted between 0 and 3W.
与现有的“微阵列杂交法”及“定量PCR扩增法”相比,本发明所提供的基于上转换荧光能量共振转移(UC-LRET)技术的高灵敏检测miRNA的方法具有以下优点:Compared with the existing "microarray hybridization method" and "quantitative PCR amplification method", the method for highly sensitive detection of miRNA based on up-conversion fluorescence energy resonance transfer (UC-LRET) technology provided by the present invention has the following advantages:
(1)操作步骤少,属于“一步法”检测。而“微阵列杂交法”及“定量PCR扩增法”需要杂交反应、扩增及其染色及染色,分析步骤多,在此过程中容易出错。(1) There are few operation steps, which belong to the "one-step" detection. However, the "microarray hybridization method" and "quantitative PCR amplification method" require hybridization reaction, amplification, staining and staining, and there are many analysis steps, which are prone to errors in the process.
(2)稳定性好,可以长时间保存,检测性能不下降。(2) It has good stability, can be stored for a long time, and the detection performance does not decline.
(3)由于在近红外区(980nm)激发,避免了背景荧光的产生。(3) Due to the excitation in the near-infrared region (980nm), the generation of background fluorescence is avoided.
在完成发明的过程中,选择miRNA-21,miRNA-125a,miRNA-125b作为检测目标物,对所述的基于上转换荧光能量共振转移(UC-LRET)检测miRNAs的方法的各项性能指标进行了反复测试。结果表明,对于miRNAs检测的线性范围为200pM~1.4nM,七次测量重复性为3.9%,在对肿瘤细胞Hela提取液中miRNA-21的检测中,回收率为93-105%。In the process of completing the invention, miRNA-21, miRNA-125a, and miRNA-125b were selected as detection targets, and various performance indicators of the method for detecting miRNAs based on up-conversion fluorescence energy resonance transfer (UC-LRET) were carried out. repeated tests. The results show that the linear range of miRNAs detection is 200pM-1.4nM, the repeatability of seven measurements is 3.9%, and the recovery rate is 93-105% in the detection of miRNA-21 in tumor cell Hela extract.
附图说明Description of drawings
图1为检测基于上转换荧光能量共振转移(UC-LRET)技术的高灵敏检测miRNAs示意图。Figure 1 is a schematic diagram of the highly sensitive detection of miRNAs based on upconversion fluorescence resonance energy transfer (UC-LRET) technology.
图2为上转换纳米颗粒(NaYF4:Er3+,Yb3+)透射电镜图A和高分辨透射电镜图B;Figure 2 is a transmission electron microscope image A and a high-resolution transmission electron microscope image B of upconversion nanoparticles (NaYF 4 : Er 3+ , Yb 3+ );
图3(A)为测量miRNA-21的荧光光谱图及(B)线性关系曲线图。Figure 3 (A) is the fluorescence spectrum and (B) the linear relationship curve for measuring miRNA-21.
具体实施方式detailed description
以下通过实施例形式,对本发明的上述内容再作进一步的详细说明,但不应将此理解为本发明上述主题的范围仅限于以下的实例,凡基于本发明上述内容所实现的技术均属于本发明的范围。Below by embodiment form, above-mentioned content of the present invention is described in further detail again, but this should not be interpreted as the scope of the above-mentioned theme of the present invention being limited to following examples, all technologies realized based on the above-mentioned content of the present invention all belong to this invention the scope of the invention.
下面结合附图,通过具体实施例对本发明进一步详述。The present invention will be further described in detail through specific embodiments below in conjunction with the accompanying drawings.
实施例1:上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记寡核苷酸(LRET-B)Example 1: Upconverting nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B)
实验材料:牛血清白蛋白,批号为140318,上海阿拉丁试剂有限公司;1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC),批号090M14531V,上海阿拉丁试剂有限公司;琥珀酰亚胺(NHS),批号MKBG7914V,上海阿拉丁试剂有限公司;乙醇,批号为:14021710247,购自南京化学试剂有限公司。寡核苷酸序列(例如5’-TTGTGTTCCGATAGGCT-AAAAAAAA 3’ C7-NH2)从5’端开始为与识别单元互补配对的特异性序列、控制寡核苷酸长度的序列及3’端修饰C7氨基序列组成,其中TTGTGTTCCGATAGGCT为与识别单元互补配对的特异性序列,随检测的miRNA不同而改变。寡核苷酸序列为:Experimental materials: bovine serum albumin, batch number 140318, Shanghai Aladdin Reagent Co., Ltd.; 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), batch number 090M14531V, Shanghai Aladdin Reagent Co., Ltd. Latin Reagent Co., Ltd.; succinimide (NHS), lot number MKBG7914V, Shanghai Aladdin Reagent Co., Ltd.; ethanol, lot number: 14021710247, purchased from Nanjing Chemical Reagent Co., Ltd. The oligonucleotide sequence (such as 5'-TTGTGTTCCGATAGGCT-AAAAAAAA 3' C7-NH2) starts from the 5' end to be a specific sequence complementary to the recognition unit, a sequence to control the length of the oligonucleotide, and a modified C7 amino group at the 3' end The sequence composition, in which TTGTGTTCCGATAGGCT is a specific sequence complementary to the recognition unit, varies with the detected miRNA. The oligonucleotide sequence is:
UC-LRET-B:5’ -TTGTGTTCCGATAGGCT-AAAAAAAA 3’ C7-NH2;UC-LRET-B: 5'-TTGTGTTCCGATAGGCT-AAAAAAAA 3'C7- NH2 ;
UC-LRET-A:Cy3-5’ AAAAAAAA-CGATCAGTCAGGCAA-3’ C6;UC-LRET-A: Cy3-5'AAAAAAAA-CGATCAGTCAGGCAA-3'C6;
the adaptor oligos(for miRNA-21):the adapter oligos (for miRNA-21):
3’ TCCCCAACACAAGGCTATCCGA-ATCGAATAGTCT-5’ -PO4 3'TCCCCAACACAAGGCTATCCGA-ATCGAATAGTCT-5'-PO 4
3’ OH-GACTACAACT-GCTAGTCAGTCCGTTTCGCC5’3'OH-GACTACAACT-GCTAGTCAGTCCGTTTCGCC5'
(for miRNA-125a):(for miRNA-125a):
3’ TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5’ -PO4 3'TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5'-PO 4
3’ OH-AAATTGGACACT-GCTAGTCAGTCCGTTTCGCC5’3'OH-AAATTGGACACT-GCTAGTCAGTCCGTTTCGCC5'
(for miRNA-125b):(for miRNA-125b):
3’ TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5’ -PO4 3'TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5'-PO 4
3’ OH-ATTGAACACT-GCTAGTCAGTCCGTTTCGCC5’3'OH-ATTGAACACT-GCTAGTCAGTCCGTTTCGCC5'
miRNA-125a:5’-UCCCUGAGACCCUUUAACCUGUGA-3’miRNA-125a: 5'-UCCCUGAGACCCUUUAACCUGUGA-3'
miRNA-125b:5’-UCCCUGAGACCCUAACUUGUGA-3’miRNA-125b: 5'-UCCCUGAGACCCUAACUUGUGA-3'
miRNA-21:5’-UAGCUUAUCAGACUGAUGUUGA-3miRNA-21: 5'-UAGCUUAUCAGACUGAUGUUGA-3
实验仪器及设备:KQ-500DE超声波清洗器、DHG-9143BS电热鼓风干燥箱、AY120电子分析天平、TGL-16C离心机。Experimental instruments and equipment: KQ-500DE ultrasonic cleaner, DHG-9143BS electric blast drying oven, AY120 electronic analytical balance, TGL-16C centrifuge.
实验过程:1ml浓度为1mg/ml羧基化的上转换纳米颗粒UCNPs溶液中添加2mg的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDC)及1mg的N-羟基琥珀酰亚胺(NHS),在室温下振荡60分钟,然后将100μL的1μM的寡核苷酸(LRET-B)溶液加入上述溶液中,在室温下反应18小时。寡核苷酸序列(例如5’-TTGTGTTCCGATAGGCT-AAAAAAAA 3’C7-NH2)从5’端开始为与识别单元互补配对的特异性序列、控制寡核苷酸长度的序列及3’端修饰C7氨基序列组成,其中TTGTGTTCCGATAGGCT为与识别单元互补配对的特异性序列。反应完毕后,超滤离心,产物保存在含有0.1%牛血清蛋白BSA缓冲液中(pH7.4)。把标记后的上转换纳米颗粒(NaYF4:Er3+,Yb3+)进行透射电镜及高分辨透射电镜检测。如图2所示。Experimental procedure: Add 2mg of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 1mg N-hydroxysuccinimide (NHS) was shaken at room temperature for 60 minutes, then 100 μL of 1 μM oligonucleotide (LRET-B) solution was added to the above solution, and reacted at room temperature for 18 hours. The oligonucleotide sequence (such as 5'-TTGTGTTCCGATAGGCT-AAAAAAAA 3'C7-NH 2 ) starts from the 5' end to be a specific sequence complementary to the recognition unit, a sequence to control the length of the oligonucleotide, and a modified C7 at the 3' end Amino sequence composition, wherein TTGTGTTCCGATAGGCT is a specific sequence complementary to the recognition unit. After the reaction was completed, the product was ultrafiltered and centrifuged, and the product was stored in BSA buffer (pH 7.4) containing 0.1% bovine serum albumin. The labeled up-conversion nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) were detected by transmission electron microscopy and high-resolution transmission electron microscopy. as shown in picture 2.
实施例2:基于双识别microRNAs的定量检测miRNA-21Example 2: Quantitative detection of miRNA-21 based on dual recognition microRNAs
实验材料:乙醇,批号为:14021710247,购自南京化学试剂有限公司。HEPES缓冲液,批号为:E607018,购自上海生工生物试剂有限公司;5′三磷酸腺苷二钠盐三水(ATP),批号为:A600020,购自上海生工生物试剂有限公司;single stranded salmon sperm DNA,批号为:C640031,购自上海生工生物试剂有限公司;RNA连接酶,批号为:B101801,购自上海生工生物试剂有限公司。Experimental material: ethanol, batch number: 14021710247, purchased from Nanjing Chemical Reagent Co., Ltd. HEPES buffer, batch number: E607018, purchased from Shanghai Sangon Bioreagent Co., Ltd.; 5′ adenosine triphosphate disodium salt trihydrate (ATP), batch number: A600020, purchased from Shanghai Sangon Bioreagent Co., Ltd.; single stranded salmon sperm DNA, lot number: C640031, purchased from Shanghai Sangon Bioreagent Co., Ltd.; RNA ligase, lot number: B101801, purchased from Shanghai Sangon Bioreagent Co., Ltd.
寡核苷酸序列为:The oligonucleotide sequence is:
UC-LRET-B:5’-TTGTGTTCCGATAGGCT-AAAAAAAA 3’ C7-NH2;UC-LRET-B: 5'-TTGTGTTCCGATAGGCT-AAAAAAAA 3'C7- NH2 ;
UC-LRET-A:Cy3-5’ AAAAAAAA-CGATCAGTCAGGCAA-3’ C6;UC-LRET-A: Cy3-5'AAAAAAAA-CGATCAGTCAGGCAA-3'C6;
the adaptor oligos(for miRNA-21):the adapter oligos (for miRNA-21):
(RD-REG-A):3’ TCCCCAACACAAGGCTATCCGA-ATCGAATAGTCT-5’ -PO4 (RD-REG-A): 3'TCCCCAACACAAGGCTATCCGA-ATCGAATAGTCT-5'- PO4
(RD-REG-D):3’ OH-GACTACAACT-GCTAGTCAGTCCGTTTCGCC5’(RD-REG-D): 3’OH-GACTACAACT-GCTAGTCAGTCCGTTTCGCC5’
miRNA-21:5’-UAGCUUAUCAGACUGAUGUUGA-3miRNA-21: 5'-UAGCUUAUCAGACUGAUGUUGA-3
实验仪器及设备:KQ-500DE超声波清洗器、DHG-9143BS电热鼓风干燥箱、AY120电子分析天平、TGL-16C离心机。Experimental instruments and equipment: KQ-500DE ultrasonic cleaner, DHG-9143BS electric blast drying oven, AY120 electronic analytical balance, TGL-16C centrifuge.
实验过程:5nM上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记的寡核苷酸(LRET-B)、5nM染料分子Cy3标记的寡核苷酸(LRET-A)、5nM两种双识别单元寡核苷酸(RA-REG-A)、(RD-REG-D)、0.10CEU RNA连接酶以及一定浓度的目标miRNA-21混合在100μL miRNA缓冲液中,miRNA缓冲液组成为(25mM HEPES缓冲液,0.4mM ATP,50mM NaCl,2mM MgCl2,100μg/ml singlestranded salmon sperm DNA,pH7.4+0.1%BSA)。混合样品在25℃孵育90min,最后进行上转换荧光定量分析。激发光用980nm的激光光源激发,功率在0~3W间进行调节。(测得的上转换荧光光谱图及校准曲线图如图3所示)Experimental procedure: 5nM up-conversion nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B), 5nM dye molecule Cy3-labeled oligonucleotide (LRET-A), 5nM two A double recognition unit oligonucleotide (RA-REG-A), (RD-REG-D), 0.10CEU RNA ligase and a certain concentration of target miRNA-21 were mixed in 100 μL miRNA buffer, and the composition of miRNA buffer was (25 mM HEPES buffer, 0.4 mM ATP, 50 mM NaCl, 2 mM MgCl 2 , 100 μg/ml singlestranded salmon sperm DNA, pH7.4+0.1% BSA). The mixed samples were incubated at 25°C for 90 min, and finally the up-conversion fluorescence quantitative analysis was performed. The excitation light is excited by a 980nm laser light source, and the power is adjusted between 0 and 3W. (The measured up-conversion fluorescence spectrum and the calibration curve are shown in Figure 3)
实施例3:基于双识别microRNAs的定量检测miRNA-125aExample 3: Quantitative detection of miRNA-125a based on dual recognition microRNAs
实验材料:乙醇,批号为:14021710247,购自南京化学试剂有限公司。HEPES缓冲液,批号为:E607018,购自上海生工生物试剂有限公司;5′-三磷酸腺苷二钠盐三水(ATP),批号为:A600020,购自上海生工生物试剂有限公司;single stranded salmon sperm DNA,批号为:C640031,购自上海生工生物试剂有限公司;RNA连接酶,批号为:B101801,购自上海生工生物试剂有限公司;Experimental material: ethanol, batch number: 14021710247, purchased from Nanjing Chemical Reagent Co., Ltd. HEPES buffer, batch number: E607018, purchased from Shanghai Sangon Bioreagent Co., Ltd.; 5′-adenosine triphosphate disodium salt trihydrate (ATP), batch number: A600020, purchased from Shanghai Sangon Bioreagent Co., Ltd.; single stranded salmon Sperm DNA, batch number: C640031, purchased from Shanghai Sangon Biological Reagent Co., Ltd.; RNA ligase, batch number: B101801, purchased from Shanghai Sangon Biological Reagent Co., Ltd.;
寡核苷酸序列为:The oligonucleotide sequence is:
UC-LRET-B:5’-TTGTGTTCCGATAGGCT-AAAAAAAA 3’ C7-NH2;UC-LRET-B: 5'-TTGTGTTCCGATAGGCT-AAAAAAAA 3'C7- NH2 ;
UC-LRET-A:Cy3-5’ AAAAAAAA-CGATCAGTCAGGCAA-3’ C6;UC-LRET-A: Cy3-5'AAAAAAAA-CGATCAGTCAGGCAA-3'C6;
the adaptor oligos(for miRNA-125a):the adapter oligos (for miRNA-125a):
(RD-REG-A):3’ TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5’ -PO4 (RD-REG-A): 3'TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5'- PO4
(RD-REG-D):3’ OH-AAATTGGACACT-GCTAGTCAGTCCGTTTCGCC 5’(RD-REG-D): 3’OH-AAATTGGACACT-GCTAGTCAGTCCGTTTCGCC 5’
miRNA-125a:5’-UCCCUGAGACCCUUUAACCUGUGA-3miRNA-125a: 5'-UCCCUGAGACCCUUUAACCUGUGA-3
实验仪器及设备:KQ-500DE超声波清洗器、DHG-9143BS电热鼓风干燥箱、AY120电子分析天平、TGL-16C离心机。Experimental instruments and equipment: KQ-500DE ultrasonic cleaner, DHG-9143BS electric blast drying oven, AY120 electronic analytical balance, TGL-16C centrifuge.
实验过程:5nM上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记的寡核苷酸(LRET-B)、5nM染料分子Cy3标记的寡核苷酸(LRET-A)、5nM两种双识别单元寡核苷酸(RA-REG-A)、(RD-REG-D)、0.10CEU RNA连接酶以及一定浓度的目标miRNA-125a混合在100μL miRNA缓冲液中,miRNA缓冲液组成为(25mM HEPES缓冲液,0.4mM ATP,50mM NaCl,2mM MgCl2,100μg/mlsingle stranded salmon sperm DNA,pH7.4+0.1%BSA)。混合样品在25℃孵育90min,最后进行上转换荧光定量分析。激发光用980nm的激光光源激发,功率在0~3W间进行调节。Experimental process: 5nM up-converting nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B), 5nM dye molecule Cy3-labeled oligonucleotide (LRET-A), 5nM two A double recognition unit oligonucleotide (RA-REG-A), (RD-REG-D), 0.10CEU RNA ligase and a certain concentration of target miRNA-125a were mixed in 100 μL miRNA buffer, and the miRNA buffer consisted of (25 mM HEPES buffer, 0.4 mM ATP, 50 mM NaCl, 2 mM MgCl 2 , 100 μg/ml single stranded salmon sperm DNA, pH7.4+0.1% BSA). The mixed samples were incubated at 25°C for 90 min, and finally the up-conversion fluorescence quantitative analysis was performed. The excitation light is excited by a 980nm laser light source, and the power is adjusted between 0 and 3W.
实施例4:基于双识别microRNAs的定量检测miRNA-125bExample 4: Quantitative detection of miRNA-125b based on dual recognition microRNAs
实验材料:乙醇,批号为:14021710247,购自南京化学试剂有限公司。HEPES缓冲液,批号为:E607018,购自上海生工生物试剂有限公司;5′-三磷酸腺苷二钠盐三水(ATP),批号为:A600020,购自上海生工生物试剂有限公司;single stranded salmon sperm DNA,批号为:C640031,购自上海生工生物试剂有限公司;RNA连接酶,批号为:B101801,购自上海生工生物试剂有限公司;Experimental material: ethanol, batch number: 14021710247, purchased from Nanjing Chemical Reagent Co., Ltd. HEPES buffer, batch number: E607018, purchased from Shanghai Sangon Bioreagent Co., Ltd.; 5′-adenosine triphosphate disodium salt trihydrate (ATP), batch number: A600020, purchased from Shanghai Sangon Bioreagent Co., Ltd.; single stranded salmon Sperm DNA, batch number: C640031, purchased from Shanghai Sangon Biological Reagent Co., Ltd.; RNA ligase, batch number: B101801, purchased from Shanghai Sangon Biological Reagent Co., Ltd.;
寡核苷酸序列为:The oligonucleotide sequence is:
UC-LRET-B:5’-TTGTGTTCCGATAGGCT-AAAAAAAA 3’ C7-NH2;UC-LRET-B: 5'-TTGTGTTCCGATAGGCT-AAAAAAAA 3'C7- NH2 ;
UC-LRET-A:Cy3-5’ AAAAAAAA-CGATCAGTCAGGCAA-3’ C6;UC-LRET-A: Cy3-5'AAAAAAAA-CGATCAGTCAGGCAA-3'C6;
the adaptor oligos(for miRNA-125b):the adapter oligos (for miRNA-125b):
(RD-REG-A):3’ TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5’ -PO4 (RD-REG-A): 3'TCCCCAACACAAGGCTATCCGA-AGGGACTCTGGG-5'- PO4
(RD-REG-D):3’ OH-ATTGAACACT-GCTAGTCAGTCCGTTTCGCC5’(RD-REG-D): 3’OH-ATTGAACACT-GCTAGTCAGTCCGTTTCGCC5’
miRNA-125b:5’-UCCCUGAGACCCUAACUUGUGA-3’miRNA-125b: 5'-UCCCUGAGACCCUAACUUGUGA-3'
实验仪器及设备:KQ-500DE超声波清洗器、DHG-9143BS电热鼓风干燥箱、AY120电子分析天平、TGL-16C离心机。Experimental instruments and equipment: KQ-500DE ultrasonic cleaner, DHG-9143BS electric blast drying oven, AY120 electronic analytical balance, TGL-16C centrifuge.
实验过程:8nM上转换纳米颗粒(NaYF4:Er3+,Yb3+)标记的寡核苷酸(LRET-B)、8nM染料分子Cy3标记的寡核苷酸(LRET-A)、8nM两种双识别单元寡核苷酸(RA-REG-A)、(RD-REG-D)、0.10CEU RNA连接酶以及一定浓度的目标miRNA-125b混合在100μL miRNA缓冲液中,miRNA缓冲液组成为(25mM HEPES缓冲液,0.4mM ATP,50mM NaCl,2mM MgCl2,100μg/mlsingle stranded salmon sperm DNA,pH7.4+0.1%BSA)。混合样品在30℃孵育90min,最后进行上转换荧光定量分析。激发光用980nm的激光光源激发,功率在0~3W间进行调节。Experimental process: 8nM up-converting nanoparticles (NaYF 4 : Er 3+ , Yb 3+ ) labeled oligonucleotide (LRET-B), 8nM dye molecule Cy3-labeled oligonucleotide (LRET-A), 8nM two A double recognition unit oligonucleotide (RA-REG-A), (RD-REG-D), 0.10CEU RNA ligase and a certain concentration of target miRNA-125b were mixed in 100 μL miRNA buffer, and the miRNA buffer consisted of (25mM HEPES buffer, 0.4mM ATP, 50mM NaCl, 2mM MgCl2, 100μg/ml single stranded salmon sperm DNA, pH7.4+0.1%BSA). The mixed samples were incubated at 30°C for 90 min, and finally the up-conversion fluorescence quantitative analysis was performed. The excitation light is excited by a 980nm laser light source, and the power is adjusted between 0 and 3W.
得到的定量关系图如图3所示。结果表明,对于miRNAs检测的线性范围为0.2pM~1.4nM,7次测量重复性为3.9%。The resulting quantitative relationship graph is shown in Figure 3. The results showed that the linear range of miRNAs detection was 0.2pM~1.4nM, and the repeatability of 7 measurements was 3.9%.
以上实施例仅用于说明本发明的优选实施方式,但本发明并不限于上述实施方式,在所述领域普通技术人员所具备的知识范围内,木发明的精神和原则之内所作的任何修改、等同替代和改进等,其均应在本发明请求保护的技术方案范围之内。The above examples are only used to illustrate preferred implementations of the present invention, but the present invention is not limited to the above-mentioned implementations, within the scope of knowledge possessed by those of ordinary skill in the art, any modifications made within the spirit and principles of the invention , equivalent replacements and improvements, etc., all of which should be within the scope of the technical solution claimed in the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611033594.1A CN106520964A (en) | 2016-11-18 | 2016-11-18 | Double-recognition quantitative detection method for microRNA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611033594.1A CN106520964A (en) | 2016-11-18 | 2016-11-18 | Double-recognition quantitative detection method for microRNA |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106520964A true CN106520964A (en) | 2017-03-22 |
Family
ID=58357670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611033594.1A Pending CN106520964A (en) | 2016-11-18 | 2016-11-18 | Double-recognition quantitative detection method for microRNA |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106520964A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108037100A (en) * | 2017-11-16 | 2018-05-15 | 江南大学 | A kind of method that two kinds of miRNA are detected while the effect based on FRET |
CN110452961A (en) * | 2018-12-03 | 2019-11-15 | 天津大学 | A kind of preparation method and application of hydrogel for detecting miRNA |
CN112997965A (en) * | 2021-03-08 | 2021-06-22 | 国家卫生健康委科学技术研究所 | CRISPR/Cas9 technology-based miRNA-125a knockout mouse model and construction method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289616A (en) * | 2008-05-30 | 2008-10-22 | 东北电力大学 | Process for preparing water-soluble up-conversion NaYF4:Er<3+>,Yb<3+> nano-crystalline using glycyl alcohol as solvent |
WO2015181101A1 (en) * | 2014-05-27 | 2015-12-03 | Universite Paris-Sud | Multiplexed homogeneous oligonucleotide detection |
CN105567807A (en) * | 2015-12-16 | 2016-05-11 | 苏州大学 | Novel method for detecting microRNA (microribonucleic acid) molecules in living cells |
-
2016
- 2016-11-18 CN CN201611033594.1A patent/CN106520964A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101289616A (en) * | 2008-05-30 | 2008-10-22 | 东北电力大学 | Process for preparing water-soluble up-conversion NaYF4:Er<3+>,Yb<3+> nano-crystalline using glycyl alcohol as solvent |
WO2015181101A1 (en) * | 2014-05-27 | 2015-12-03 | Universite Paris-Sud | Multiplexed homogeneous oligonucleotide detection |
CN105567807A (en) * | 2015-12-16 | 2016-05-11 | 苏州大学 | Novel method for detecting microRNA (microribonucleic acid) molecules in living cells |
Non-Patent Citations (4)
Title |
---|
FENG ZHOU 等: "A Paper-Based Sandwich Format Hybridization Assay for Unlabeled Nucleic Acid Detection Using Upconversion Nanoparticles as Energy Donors in Luminescence Resonance Energy Transfer", 《NANOMATERIALS》 * |
FENG ZHOU 等: "Luminescence Resonance Energy Transfer-Based Nucleic Acid Hybridization Assay on Cellulose Paper with Upconverting Phosphor as Donors", 《ANAL. CHEM.》 * |
FENG ZHOU 等: "Spectrally Matched Duplexed Nucleic Acid Bioassay Using Two-Colors from a Single Form of Upconversion Nanoparticle", 《ANALYTICAL CHEMISTRY》 * |
ZONGWEN JIN 等: "A Rapid, Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA", 《ANGEW. CHEM. INT. ED.》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108037100A (en) * | 2017-11-16 | 2018-05-15 | 江南大学 | A kind of method that two kinds of miRNA are detected while the effect based on FRET |
CN108037100B (en) * | 2017-11-16 | 2019-09-03 | 江南大学 | A method for simultaneous detection of two miRNAs based on FRET effect |
CN110452961A (en) * | 2018-12-03 | 2019-11-15 | 天津大学 | A kind of preparation method and application of hydrogel for detecting miRNA |
CN112997965A (en) * | 2021-03-08 | 2021-06-22 | 国家卫生健康委科学技术研究所 | CRISPR/Cas9 technology-based miRNA-125a knockout mouse model and construction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Min et al. | Live cell microRNA imaging using exonuclease III-aided recycling amplification based on aggregation-induced emission luminogens | |
Li et al. | MicroRNAs as novel biological targets for detection and regulation | |
Xie et al. | Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes–a review | |
Jiang et al. | Chameleon silver nanoclusters for ratiometric sensing of miRNA | |
Li et al. | Aptamer-tagged green-and yellow-emitting fluorescent silver nanoclusters for specific tumor cell imaging | |
CN107012228A (en) | A kind of method for detecting tumor markers | |
Li et al. | An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification | |
Zhu et al. | Highly sensitive and specific mass spectrometric platform for miRNA detection based on the multiple-metal-nanoparticle tagging strategy | |
CN109055498A (en) | MiRNA and/or biological micromolecule detection probe, detection method and kit based on the dendritic rolling ring responsive transcription of hypertree | |
Huang et al. | Multiplexed detection of microRNA biomarkers from tumor cells and tissues with a homogeneous nano-photon switch | |
CN106191069A (en) | A kind of aptamer sequence identifying and combine human TfR and application thereof | |
CN106957908A (en) | MiRNA and/or target molecules with aptamer detection method and detection probe | |
Zhang et al. | An aptamer biosensor for leukemia marker mRNA detection based on polymerase-assisted signal amplification and aggregation of illuminator | |
Yang et al. | A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles | |
CN106520964A (en) | Double-recognition quantitative detection method for microRNA | |
CN106932564B (en) | It is used to detect kit and its application of nucleic acids in samples target based on FRET | |
Shibata et al. | RNA-templated molecule release induced protein expression in bacterial cells | |
Song et al. | A cell-anchored and self-calibrated DNA nanoplatform for in situ imaging and quantification of endogenous microRNA in live cells: introducing two controls to normalize the sensing signals | |
Zhang et al. | Accurate identification of exosomes based on proximity-induced autonomous assembly of DNAzyme wires | |
US10323270B2 (en) | Kit for detecting nucleic acid and method for detecting nucleic acid | |
Du et al. | Fluorescent platforms for RNA chemical biology research | |
Ho et al. | Self-assembling protein platform for direct quantification of circulating microRNAs in serum with total internal reflection fluorescence microscopy | |
Dong et al. | Cruciate DNA probes for amplified multiplexed imaging of microRNAs in living cells | |
CN105838790B (en) | A kind of silver nanocluster sensor and its preparation method and the application in detection virus gene | |
Lan et al. | A photoluminescent biosensor based on long-range self-assembled DNA cascades and upconversion nanoparticles for the detection of breast cancer-associated circulating microRNA in serum samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170322 |