CN106518078A - 一种铈镧掺杂氟化钡透明陶瓷及其制备方法 - Google Patents
一种铈镧掺杂氟化钡透明陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN106518078A CN106518078A CN201610894402.XA CN201610894402A CN106518078A CN 106518078 A CN106518078 A CN 106518078A CN 201610894402 A CN201610894402 A CN 201610894402A CN 106518078 A CN106518078 A CN 106518078A
- Authority
- CN
- China
- Prior art keywords
- preparation
- barium fluoride
- cerium
- mixed liquor
- crystalline ceramics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/553—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3229—Cerium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
本发明公开了一种铈镧掺杂氟化钡透明陶瓷及其制备方法,利用Ce3+和La3+与氟化钡基体反应得到置换式固溶体,形成铈镧掺杂氟化钡透明陶瓷,其制备方法包括纳米粉体的合成和热等静压烧结。首先采用水热法合成纳米粉体,其晶粒尺寸为15~40nm,分散性能高;然后采用热等静压烧结制备得到所述透明氟化钡陶瓷,其致密度≥99.5%,在可见、近红外波段的透过率≥80%;在290nm处存在Ce3+的特征吸收峰,并且峰的强度和宽度都随Ce3+掺杂浓度的增加而增加。本发明具有原料合成产量高、能耗低、操作简单等优点,制备的氟化钡透明陶瓷具有优异的光学性能。
Description
技术领域
本发明属于非氧化物透明陶瓷领域,涉及一种铈镧掺杂氟化钡透明陶瓷及其制备方法。
背景技术
稀土掺杂氟化物纳米粉体在显示、发光、激光材料、光信息传递、闪烁体及光电子设备等具有潜在的应用价值,同时也是多晶透明陶瓷的烧结原料及玻璃陶瓷中的微晶材料,因此关于纳米粉体的研究成为近年来的热点。
1982年发现的BaF2具有0.6ns的快发光是至今最快的无机闪烁晶体,引起了人们的极大关注,并且用作美国超级超导对撞机的首选探测材料。对其快发光成分的应用成为人们研究的焦点,因为更快的衰减时间意味着更高的时间分辨率。这对于闪烁体医学上(如PET)应用尤为重要,医学上成像用闪烁体为提高相片分辨率必须提高其光产额和降低衰减时间。BaF2由于其快发光成分在其总发光产额的比重较低(10%左右),慢发光成分又难以去除,使其在实际应用中受到制约。
目前关于BaF2研究的发展趋势是制备稀土掺杂BaF2透明陶瓷。Batygov采用热压法制备了第一块Ce3+:BaF2透明陶瓷。此后,一些科学家对制备的陶瓷性能进行了讨论研究,发现透明陶瓷相对于单晶在光产额及衰减时间上有明显的优势(参见文献Demidenko A A,Garibin E A,Gain S D,et al.Scintillation parameters of BaF2 and Ce3+:BaF2ceramics.Optical Materials,2010.32(10):1291-1293.)Shapochkin采用对BaF2粉晶的强烈塑性变形,制备了Ce3+:BaF2纳米透明陶瓷,其光产额可达单晶的2倍。但上述制备工艺中所采用的原料都是单晶碾碎后得到的粉晶材料,然后再采用热压法制备透明陶瓷,这一过程不仅仅带来了工序上的增加,也提高了其制备难度,对于Ce3+:BaF2透明陶瓷的应用带来困难。
发明内容
本发明的目的是提供一种铈镧掺杂氟化钡透明陶瓷及其制备方法,采用铈、镧对氟化钡进行共掺,并结合水热法和热等静压烧结方法制备透明陶瓷,涉及的制备工艺简单、成本较低、周期短,制得的透明陶瓷具有优异的光学性能。
本发明实现上述目的,本发明采用的技术方案为:
一种铈镧掺杂氟化钡透明陶瓷的制备方法,包括以下步骤:
1)将油酸、氢氧化钠、无水乙醇溶于水中,进行搅拌使油酸和氢氧化钠充分反应,得混合液I;将硝酸钡、硝酸铈、硝酸镧溶于水中,得混合液II;
2)将混合液II加入混合液I中,进行搅拌保证溶液充分反应,然后加入氟化钠,得混合液III;
3)将步骤2)所得混合液III进行水热反应,然后自然冷却至室温,进行离心分离得白色沉淀,然后进行洗涤、干燥、研磨,得白色粉体;
4)将白色粉体预压成型,然后在保护气氛下进行热等静压烧结,将烧结所得产物取出,进行打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
上述方案中,所述氢氧化钠、油酸、无水乙醇的摩尔比为1:(2~5):(2~10);硝酸钡、硝酸铈、硝酸镧的摩尔比为(89~94):1:(5~10)。
上述方案中,油酸与硝酸铈的摩尔比为(60~150):1,所述氟化钠与硝酸钡的摩尔比为1:(0.76~1.7)。
优选的,所述油酸的添加量为0.1~3mol。
上述方案中,步骤1)和步骤2)中的搅拌速率为200~500rpm。
上述方案中,步骤3)中水热反应温度为130~160℃,时间为6~10h。
上述方案中,步骤4)所述预压成型的压力为20~30MPa。
上述方案中,步骤3)中所得白色粉体的晶粒尺寸为15~40nm。
上述方案中,步骤4)中所述保护气氛为氮气或氩气。
上述方案中,所述热等静压烧结工艺为:以15~30℃/min的速率升温至500~900℃保温1~2h,其中真空度在9×10-3Pa以下。
根据上述方案制备的铈镧掺杂氟化钡透明陶瓷,它为Ce3+和La3+与氟化钡基体反应形成的置换式固溶体,其致密度≥99.5%,可见、近红外波段的透光率≥80%。
与现有技术相比,本发明的有益效果为:
1)本发明采用Ce3+和La3+对氟化钡透明陶瓷进行共掺,利用Ce3+和La3+与氟化钡基体反应形成置换式固溶体,通过在氟化钡基体中共掺Ce3+和La3+可以形成新的Ce3+-La3+离子对,有效调控Ce3+离子的光谱特性,并且可以抑制Ce3+在高浓度掺杂下的浓度猝灭效应。
2)本发明首先采用水热法制备Ce3+和La3+双掺氟化钡纳米粉体(铈镧掺杂氟化钡),利用油酸、氢氧化钠、无水乙醇反应形成表面活性剂,在所得沉淀颗粒表面形成可阻止纳米粒子团聚的保护层,使所得纳米粉体的粒径分布窄,分散性高,有利于烧结得到高光学性能的陶瓷产物。
3)本发明采用热等静压烧结方法制备透明陶瓷,传统的热压法烧结陶瓷需要加入适量的烧结助剂以促进烧结的进行,同时需要的烧结温度需要800-1000℃,容易导致BaF2粗晶的生成,降低陶瓷的力学性能。而热等静压法在500-900℃,无烧结助剂的情况下就能实现致密化烧结。
本发明涉及的工艺简单、成本较低、不需要严苛的反应条件,同时可以通过改变水热反应的条件来制备不同粒度、结构和形貌的纳米粉体。
附图说明
图1为实施例1所得铈镧掺杂氟化钡透明陶瓷的XRD图。
图2为实施例1所得铈镧掺杂氟化钡透明陶瓷的透光性示意图。
图3为实施例1所得铈镧掺杂氟化钡透明陶瓷的透过率曲线。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明不仅仅局限于下面的实施例。
实施例1
一种铈镧掺杂氟化钡透明陶瓷,其制备方法包括以下步骤:
1)将氢氧化钠0.1mol、油酸0.2mol、无水乙醇0.2mol溶于150ml蒸馏水中搅拌均匀(500rpm),配制成混合液I;将0.270mol硝酸钡(Ba(NO3)2)、0.003mol硝酸铈(Ce(NO3)3·6H2O)、0.015mol硝酸镧(La(NO3)3·6H2O)溶于100ml蒸馏水中配制成混合液II;
2)将混合液II加入混合液I中,进行搅拌(500rpm)保证溶液充分反应,然后加入0.24molNaF,得到混合液III,然后置于聚四氟乙烯内胆的反应釜中在150℃的条件下水热反应6.5h;将所得白色沉淀在11000r/min的条件下进行离心分离(15min,3次),并用去离子水和无水乙醇洗涤3次,然后放置于烘箱内干燥后用研钵进行研磨,得到白色粉体产物(纳米粉体);
3)将所得白色粉体在30MPa的压力下预压成型,然后装于石英玻璃和高硼硅酸盐石英玻璃制成的容器内,抽真空后密封置于热等静压炉中进行热等静压烧结,具体工艺条件为:以20℃/min的速度升温至750℃后保温1h,真空度为7×10-3Pa,保护气氛为氩气;将烧结所得产物取出,采用粗细砂纸打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
将本实施例所得铈镧掺杂氟化钡透明陶瓷进行X射线衍射分析(见图1)对比BaF2的XRD标准图谱可知不同浓度条件下所得反应产物的XRD谱峰大致位置没有变化,均为纯的氟化钡相;相较于BaF2标准图谱图像中各衍射峰略微向左偏移,表明所得到的陶瓷晶格常数发生了变化,这就由稀土离子掺杂取代Ba2+导致的。图2为本实施例所得铈镧掺杂氟化钡透明陶瓷的透光性示意图,所得产物为无色透明的Ce3+和La3+双掺氟化钡透明陶瓷,其下面的字清晰可见,样品直径为16mm。
图3为所述铈镧掺杂氟化钡透明陶瓷的透过率曲线。从图中可以看出,透光率随光波长的降低而减小,在波长小于350nm后,透光率迅速下降;透过率曲线与单晶的透过率曲线相似。
测得所得铈镧掺杂氟化钡透明陶瓷密度>99.5%,在200到1400波段最大透过率达到88%。
实施例2
一种铈镧掺杂氟化钡透明陶瓷,其制备方法包括以下步骤:
1)将0.3mol氢氧化钠、1mol油酸、1mol无水乙醇溶于120ml蒸馏水中搅拌均匀(300rpm),配制成混合液I;将0.920mol硝酸钡(Ba(NO3)2)、0.010mol硝酸铈(Ce(NO3)3·6H2O)、0.060mol硝酸镧(La(NO3)3·6H2O)溶于90ml蒸馏水中配制成混合液II;
2)将混合液II加入混合液I中,进行搅拌(300rpm)保证溶液充分反应,然后加入1.200molNaF,得到混合液III,然后置于聚四氟乙烯内胆的反应釜中在130℃的条件下水热反应8h;将所得白色沉淀在11000r/min的条件下进行离心分离(15min,3次),并用去离子水和无水乙醇洗涤3次,然后放置于烘箱内干燥后用研钵进行研磨,得到白色粉体产物(纳米粉体);
3)将所得白色粉体在30MPa的压力下预压成型,然后装于石英玻璃和高硼硅酸盐石英玻璃制成的容器内,抽真空后密封置于热等静压炉中进行热等静压烧结,具体工艺条件为:以15℃/min的速度升温至700℃后保温70分钟,真空度为9×10-3Pa,保护气氛为氮气;将烧结所得产物取出,采用粗细砂纸打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
将本实施例所得铈镧掺杂氟化钡透明陶瓷的密度>99.5%,在200到1400波段最大透过率达到85%。
实施例3
一种铈镧掺杂氟化钡透明陶瓷,其制备方法包括以下步骤:
1)将0.5mol氢氧化钠、2.5mol油酸、5mol无水乙醇按照溶于170ml蒸馏水中搅拌均匀(200rpm),配制成混合液I;将1.53mol硝酸钡(Ba(NO3)2)、0.017mol硝酸铈(Ce(NO3)3·6H2O)、0.136mol硝酸镧(La(NO3)3·6H2O)溶于140ml蒸馏水中配制成混合液II;
2)将混合液II加入混合液I中,进行搅拌(200rpm)保证溶液充分反应,然后加入1.4molNaF,得到混合液III,然后置于聚四氟乙烯内胆的反应釜中在158℃的条件下水热反应9h;将所得白色沉淀在11000r/min的条件下进行离心分离(15min,3次),并用去离子水和无水乙醇洗涤3次,然后放置于烘箱内干燥后用研钵进行研磨,得到白色粉体产物(纳米粉体);
3)将所得白色粉体在30MPa的压力下预压成型,然后装于石英玻璃和高硼硅酸盐石英玻璃制成的容器内,抽真空后密封置于热等静压炉中进行热等静压烧结,具体工艺条件为:以18℃/min的速度升温至800℃后保温100分钟,真空度为7×10-3Pa,保护气氛为氩气;将烧结所得产物取出,采用粗细砂纸打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
将本实施例所得铈镧掺杂氟化钡透明陶瓷的密度>99.5%,在200到1400波段最大透过率达到90%。
实施例4
一种铈镧掺杂氟化钡透明陶瓷,其制备方法包括以下步骤:
1)将1mol氢氧化钠、3mol油酸、7mol无水乙醇溶于200ml蒸馏水中搅拌均匀(400rpm),配制成混合液I;将2.7mol硝酸钡(Ba(NO3)2)、0.03mol硝酸铈(Ce(NO3)3·6H2O)、0.24mol硝酸镧(La(NO3)3·6H2O)溶于150ml蒸馏水中配制成混合液II;
2)将混合液II加入混合液I中,进行搅拌保证溶液充分反应,然后加入3.000molNaF,得到混合液III,然后置于聚四氟乙烯内胆的反应釜中在160℃的条件下水热反应7h;将所得白色沉淀在11000r/min的条件下进行离心分离(15min,3次),并用去离子水和无水乙醇洗涤3次,然后放置于烘箱内干燥后用研钵进行研磨,得到白色粉体产物(纳米粉体);
3)将所得白色粉体在30MPa的压力下预压成型,然后装于石英玻璃和高硼硅酸盐石英玻璃制成的容器内,抽真空后密封置于热等静压炉中进行热等静压烧结,具体工艺条件为:以28℃/min的速度升温至900℃后保温120分钟,真空度为8×10-3Pa,保护气氛为氩气;将烧结所得产物取出,采用粗细砂纸打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
将本实施例所得铈镧掺杂氟化钡透明陶瓷的密度>99.5%,在200到1400波段最大透过率达到83%。
实施例5
一种铈镧掺杂氟化钡透明陶瓷,其制备方法包括以下步骤:
1)将0.5mol氢氧化钠、1.7mol油酸、3mol无水乙醇按照溶于250ml蒸馏水中搅拌均匀(250rpm),配制成混合液I;将1.35mol硝酸钡(Ba(NO3)2)、0.015mol硝酸铈(Ce(NO3)3·6H2O)、0.15mol硝酸镧(La(NO3)3·6H2O)溶于200ml蒸馏水中配制成混合液II;
2)将混合液II加入混合液I中,进行搅拌(250rpm)保证溶液充分反应,然后加入1.125molNaF,得到混合液III,然后置于聚四氟乙烯内胆的反应釜中在145℃的条件下水热反应8.5h;将所得白色沉淀在11000r/min的条件下进行离心分离(15min,3次),并用去离子水和无水乙醇洗涤3次,然后放置于烘箱内干燥后用研钵进行研磨,得到白色粉体产物(纳米粉体);
3)将所得白色粉体在30MPa的压力下预压成型,然后装于石英玻璃和高硼硅酸盐石英玻璃制成的容器内,抽真空后密封置于热等静压炉中进行热等静压烧结,具体工艺条件为:以18℃/min的速度升温至600℃后保温100分钟,真空度为9×10-3Pa,保护气氛为氮气;将烧结所得产物取出,采用粗细砂纸打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
将本实施例所得铈镧掺杂氟化钡透明陶瓷的密度>99.5%,在200到1400波段最大透过率达到89%。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。
Claims (9)
1.一种铈镧掺杂氟化钡透明陶瓷的制备方法,包括以下步骤:
1)将油酸、氢氧化钠、无水乙醇溶于水中,进行搅拌使油酸和氢氧化钠充分反应,得混合液I;将硝酸钡、硝酸铈、硝酸镧溶于水中,得混合液II;
2)将混合液II加入混合液I中,进行搅拌保证溶液充分反应,然后加入氟化钠,得混合液III;
3)将步骤2)所得混合液III进行水热反应,然后自然冷却至室温,进行离心分离得白色沉淀,然后进行洗涤、干燥、研磨,得白色粉体;
4)将白色粉体预压成型,然后在保护气氛下进行热等静压烧结,将烧结所得产物取出,进行打磨、抛光,即得到所述铈镧掺杂氟化钡透明陶瓷。
2.根据权利要求1所述的制备方法,其特征在于,所述氢氧化钠、油酸、无水乙醇的摩尔比为1:(2~5):(2~10);硝酸钡、硝酸铈、硝酸镧的摩尔比为(89~94):1:(5~10)。
3.根据权利要求1所述的制备方法,其特征在于,油酸与硝酸铈的摩尔比为(60~150):1;所述氟化钠与硝酸钡的摩尔比为1:(0.76~1.7)。
4.根据权利要求1所述的制备方法,其特征在于,步骤1)和步骤2)中的搅拌速率为200~500rpm。
5.根据权利要求1所述的制备方法,其特征在于,步骤3)中水热反应温度为130~160℃,时间为6~10h。
6.根据权利要求1所述的制备方法,其特征在于,步骤4)所述预压成型的压力为25-30MPa。
7.根据权利要求1所述的制备方法,其特征在于,步骤4)中所述保护气氛为氮气或氩气。
8.根据权利要求1所述的制备方法,其特征在于,所述热等静压烧结工艺为:以15~30℃/min的速率升温至500~900℃保温1~2h,其中真空度在9×10-3Pa以下。
9.权利要求1~8任一项所述制备方法制得的铈镧掺杂氟化钡透明陶瓷,其特征在于,它为Ce3+和La3+与氟化钡基体反应形成的置换式固溶体,其致密度≥99.5%,可见光和近红外波段的透光率≥80%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610894402.XA CN106518078B (zh) | 2016-10-12 | 2016-10-12 | 一种铈镧掺杂氟化钡透明陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610894402.XA CN106518078B (zh) | 2016-10-12 | 2016-10-12 | 一种铈镧掺杂氟化钡透明陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106518078A true CN106518078A (zh) | 2017-03-22 |
CN106518078B CN106518078B (zh) | 2019-05-24 |
Family
ID=58331681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610894402.XA Expired - Fee Related CN106518078B (zh) | 2016-10-12 | 2016-10-12 | 一种铈镧掺杂氟化钡透明陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106518078B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104211100A (zh) * | 2014-01-13 | 2014-12-17 | 吉林师范大学 | 一种非晶态结构BaF2的制备方法 |
-
2016
- 2016-10-12 CN CN201610894402.XA patent/CN106518078B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104211100A (zh) * | 2014-01-13 | 2014-12-17 | 吉林师范大学 | 一种非晶态结构BaF2的制备方法 |
Non-Patent Citations (4)
Title |
---|
A.A.DEMIDENKO ET AL.: ""Scintillation parameters of BaF2 and BaF2:Ce3+ ceramics"", 《OPTICAL MATERIALS》 * |
JUNMING LUO ET AL.: ""Luminescence and scintillation properties of BaF2-Ce transparent ceramic"", 《OPTICAL MATERIALS》 * |
V.NESTERKINA ET AL.: ""The Lu-doping effect on the emission and the coloration of pure and Ce-doped BaF2 crystals"", 《RADIATION MEASUREMENTS》 * |
WEIWEI LI ET AL.: ""Characterizations of a hot-pressed Er and Y codoped CaF2 transparent ceramic"", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
Also Published As
Publication number | Publication date |
---|---|
CN106518078B (zh) | 2019-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Synthesis of monodispersed spherical yttrium aluminum garnet (YAG) powders by a homogeneous precipitation method | |
Hou et al. | Luminescent properties of nano-sized Y2O3: Eu fabricated by co-precipitation method | |
CN101993240B (zh) | 一种Ce3+掺杂硅酸镥(Lu2SiO5)多晶闪烁光学陶瓷的制备方法 | |
Chen et al. | Upconversion emission enhancement in Er3+/Yb3+-codoped BaTiO3 nanocrystals by tridoping with Li+ ions | |
Liu et al. | Research progress of gadolinium aluminum garnet based optical materials | |
Guo et al. | Fabrication, microstructure and upconversion luminescence of Yb3+/Ln3+ (Ln= Ho, Er, Tm) co-doped Y2Ti2O7 ceramics | |
Dihingia et al. | Synthesis of TiO2 nanoparticles and spectroscopic upconversion luminescence of Nd3+-doped TiO2–SiO2 composite glass | |
Sun et al. | Upconversion emission enhancement in silica-coated Gd2O3: Tm3+, Yb3+ nanocrystals by incorporation of Li+ ion | |
Tan et al. | Influence of carbon templates and Yb3+ concentration on red and green luminescence of uniform Y2O3: Yb/Er hollow microspheres | |
CN102994089A (zh) | 超小核壳结构碱土氟化物纳米晶的制备方法 | |
Lia et al. | Upconversion 32Nb 2 O 5–10La 2 O 3–16ZrO 2 glass activated with Er 3+/Yb 3+ and dye sensitized solar cell application | |
CN102674843B (zh) | 铒钠共掺氟化钙透明陶瓷及其制备方法 | |
Du et al. | Novel multiband luminescence of Y2Zr2O7: Eu3+, R3+ (R= Ce, Bi) orange–red phosphors via a sol–gel combustion approach | |
Sun et al. | Effect of Zn2+ and Li+ ions doped on microstructure and upconversion luminescence of Y2O3: Er3+-Yb3+ thin films | |
Li et al. | Optical properties of gadolinia-doped cubic yttria stabilized zirconia single crystals | |
Raju et al. | Enhanced green upconversion luminescence properties of Er3+/Yb3+ co-doped strontium gadolinium silicate oxyapatite phosphor | |
Wang et al. | Pure-green upconversion emission and high-sensitivity optical thermometry of Er3+-doped stoichiometric NaYb (MoO4) 2 | |
Zhao et al. | Microwave-induced solution combustion synthesis and luminescent properties of nano-sized powders with different Nd concentrations | |
Zhang et al. | Improved thermal stability of the red-emitting Gd3+-Modulated La2LiSbO6: Eu3+ phosphors for WLED | |
Hong et al. | Enhancement of near-infrared quantum-cutting luminescence in NaBaPO4: Er3+ phosphors by Bi3+ | |
Yang et al. | Spectral adjustable Re-Cs3Cu2I5 nanocrystal-in-glass composite with long-term stability | |
Khan et al. | Eu3+ doped silica xerogel luminescent layer having antireflection and spectrum modifying properties suitable for solar cell applications | |
Yuan et al. | Synthesis and characterization of Nd3+-doped CaF2 nanoparticles | |
Li et al. | Investigation of up/down-converted luminescence and related mechanisms in Ho3+/Yb3+ co-doped Y2Zr2O7 highly transparent ceramics as phosphor material | |
Jiao et al. | Preparation and properties of Nd: YAG ultra-fine powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190524 Termination date: 20191012 |
|
CF01 | Termination of patent right due to non-payment of annual fee |