CN106507575B - 一种用于高空飞行器的等离子体合成射流激励器 - Google Patents

一种用于高空飞行器的等离子体合成射流激励器 Download PDF

Info

Publication number
CN106507575B
CN106507575B CN201610885975.6A CN201610885975A CN106507575B CN 106507575 B CN106507575 B CN 106507575B CN 201610885975 A CN201610885975 A CN 201610885975A CN 106507575 B CN106507575 B CN 106507575B
Authority
CN
China
Prior art keywords
discharge electrode
jet
air bleed
plasma synthesis
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610885975.6A
Other languages
English (en)
Other versions
CN106507575A (zh
Inventor
谭慧俊
张宇超
孙姝
何小明
程林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610885975.6A priority Critical patent/CN106507575B/zh
Publication of CN106507575A publication Critical patent/CN106507575A/zh
Application granted granted Critical
Publication of CN106507575B publication Critical patent/CN106507575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

本发明公开了一种用于高空飞行器的等离子体合成射流激励器。包括激励器本体、放电腔体、阴极放电电极、阳极放电电极、多缝式射流出口。工作时,连接在激励器腔体两侧的放电电极击穿空气放电,放电腔体内的气体被瞬间加热,并从激励器本体上表面的射流出口流出,形成高速射流。本发明特别针对高空高速飞行器,利用低气压下击穿电压迅速下降的放电特性,将等离子体合成射流激励器电极间距延长,并且电极之间仍然保持火花放电,扩大了激励器的流动控制范围。同时,射流出口采用多条与放电电弧平行的直缝布置,有利于对更宽范围的气体注入动量和能量。本发明特别适合高空高速飞行器内大范围的流动控制,具有良好的工程应用前景。

Description

一种用于高空飞行器的等离子体合成射流激励器
技术领域
本发明涉及等离子流动控制领域。
背景技术
美国约翰霍普金斯大学应用物理实验室于2003年提出一种等离子体合成射流激励器作为一种新型的流动控制技术。该激励器由内置阴极与阳极的绝缘腔体以及在腔体上表面的出流小孔组成。该等离子体合成射流激励器的工作原理为:阳极与阴极分别与高压脉冲电源的正负极相连。当电源运行,在近似密闭腔体中的空气由于电极放电导致腔体内压力、温度迅速升高,高压高温气体流经出流小孔形成射流。该项技术作为主动流动控制技术,无需额外的气源,具有响应快、无机械活动部件、工作频带宽、质量轻、针对性强并且具有功率消耗低、控制能力强、参数可控且放电稳定可靠的优点,成为了目前最引人关注的一种主动流动控制激励器形式。
等离子体合成射流技术广泛应用于航空航天领域,通过对低能流体,特别是边界层内的气流注入动量与能量,从而起到有效改善流场品质,提升飞行器性能的效果。目前的等离子体合成射流激励器电极间距大都按照在一个标准大气压下工作进行设计,通常为2-5mm。这一设计可以保证激励器在标准大气压下可靠工作,但实际飞行器通常工作在高空低气压环境下。随着环境气压的下降,电极间击穿电压快速下降,同时伴随着放电能量的急剧减小。这将导致激励器的加热效应减弱、初始射流速度降低,继而导致激励器实际动量输出能力和流动控制能力均达不到工作要求。特别值得注意的是,随着放电击穿电压的降低,电极间电流密度也会迅速降低,这将有可能使放电形式由火花放电向低压辉光放电转化。而辉光放电无法短时间内迅速加热腔体内的气体并喷射出高速气流,完全达不到等离子合成射流的需求,丧失了这种控制方法本身的优势。因此常规按照标准大气压设计的等离子合成射流激励器无法在高空低气压下有效工作,必须按照巡航状态下的大气条件重新设计激励器。
另一方面,在传统的边界层射流控制方法中,射流的出口形式对于射流的气路组织以及流动控制效果也有非常显著的影响。而目前公开发表关于这种新型的利用等离子体进行流动控制方法的文献资料中,其通常都是采用单一圆孔或者单一直缝的形式,这将使得射流的控制范围非常有限,只有在射流出口附近很小的区域可以获得较好的控制效果,因此有必要借鉴传统的边界层射流控制方法,设计出更加高效的射流出口形式。
发明内容
为解决上述问题,本发明以实际飞行器在高空飞行状态下环境压力较低的背景下,提出了一种增强流动控制效果的等离子体合成射流激励器方案。
为达到上述目的,本发明等离子体合成射流激励器可采用如下技术方案:
一种用于高空飞行器的等离子体合成射流激励器,包括激励器本体、阴极放电电极、阳极放电电极,所述激励器本体内设有贯穿该激励器本体两端的通孔,激励器本体的上表面还设有若干与通孔连通的若干放气槽;所述阴极放电电极插入并固定在通孔一端,而阳极放电电极插入并固定在通孔另一端;阴极放电电极、阳极放电电极以及通孔围成放电腔体;所述若干放气槽排列成一排,且放电腔体的长度不小于所述若干放气槽排列成一排后的总长度。
相对于现有技术,本发明等离子体合成射流激励器的有益效果为:将放气槽设置为若干个并且排成一排,能够使放气槽出口的压缩波和射流形态均表现为半椭圆形,具有较大的流场平直均匀区,因此可以有效提高流动的均匀性和动量交换能力;射流出口采用多缝式并且与放电电弧平行布置,更加有利于对气体加热和射流出流,有助利于射流与低速流体的掺混和动量交换,进一步增强控制效果;同时,放气槽的数量和整体长度的增加,将显著拓宽流动控制范围;放电腔体也同时加长至不小于若干放气槽排列成一排后的总长度,这可以有效提高击穿电压和放电能量,并且可以保证在低气压条件下激励器发生稳定可靠的火花放电。本发明尤其针对飞行器通常工作在高空低气压环境下,随着环境气压的下降,电极间击穿电压快速下降,同时伴随着放电能量的急剧减小的情况下仍然能够达到上述效果,从而解决了现有技术中飞行器在高空低气压环境下所产生的问题。
为达到上述目的,本发明等离子体合成射流激励器还可采用如下技术方案:
一种用于高空飞行器的等离子体合成射流激励器,包括激励器本体、阴极放电电极、阳极放电电极,且阴极放电电极和阳极放电电极外接脉冲电源,其特征在于:所述激励器本体内设有贯穿该激励器本体两端的通孔,激励器本体的上表面还设有若干与通孔连通的若干放气槽;所述阴极放电电极插入并固定在通孔一端,而阳极放电电极插入并固定在通孔另一端;阴极放电电极、阳极放电电极以及通孔围成放电腔体;所述若干放气槽排列成且仅排列成唯一的一排,所述阴极放电电极和阳极放电电极之间的放电间距不小于26mm。
相对于现有技术,本发明等离子体合成射流激励器的有益效果为,将放气槽设置为若干个并且仅排列成唯一的一排,能够使放气槽整体出口的压缩波和射流形态均表现为半椭圆形,具有较大的流场平直均匀区,可以有效提高流动的均匀性和动量交换能力;射流出口采用多缝式并且与放电电弧平行布置,更加有利于气体加热和射流出流,有助于射流与低速流体的掺混和动量交换,增强控制效果;同时,对应着放气槽的数量和整体长度的增加至不小于26mm,将显著拓宽流动控制范围;将放电腔体同时加长至不小于若干放气槽排列成一排后的总长度,这可以有效的提高击穿电压和放电能量,并且保证在低气压条件下激励器发生可靠的火花放电。
而该等离子体合成射流激励器的使用方法为,连接在放电腔体两侧的阴极放电电极、阳极放电电极击穿空气放电,使放电腔体中产生火花放电。放电腔体中的高温高压气体从放气槽流出,形成高速射流。
附图说明
图1是本发明的等离子体合成射流激励器内部结构示意图。
图2是本发明的等离子体合成射流激励器俯视图。
图3是本发明的流场结构示意图。
图4是本发明的射流速度特性图。
具体实施方式
请参阅图1及图2所示,为本发明一种用于高空飞行器等离子体合成射流激励器,包括激励器本体1、阴极放电电极3、阳极放电电极4,阴极放电电极3、阳极放电电极4外接高压脉冲电源(未图示)。所述激励器本体1内设有贯穿该激励器本体两端的通孔2。阴极放电电极3与阳极放电电极4的制作材料为钨铜合金。激励器本体1的上表面还设有与通孔连通的若干放气槽5。所述阴极放电电极3插入并固定在通孔2一端,而阳极放电电极4插入并固定在通孔2另一端。阴极放电电极3和阳极放电电极4与通孔2之间采用耐高温硅胶密封,以确保激励器本体1的气密性及可靠连接。阴极放电电极4、阳极放电电极5以及通孔2围成放电腔体。所述若干放气槽5排列成一排,且放电腔体的长度不小于所述若干放气槽5排列成一排后的总长度。放电腔体长度的扩大可以有效的提高击穿电压和放电能量,并且保证在低气压条件下激励器发生可靠的火花放电,而且阴极放电电极3、阳极放电电极4间距增大之后,阴极放电电极3、阳极放电电极4之间的空腔体积增加,被加热的气体质量增加,使得射流持续的时间更长,对于流动控制来说具有重大意义。
所述放气槽5采用直缝形槽,该直缝形槽是与电弧平行设置,且放气槽的缝的长宽比大于10,相邻放气槽间距离不小于2mm。采用多直缝出口,出口的压缩波和射流形态均表现为半椭圆形,具有较大的流场平直均匀区(如图3所示),因此在扩大流动控制范围的同时,可以有效提高流动的均匀性和动量交换能力。同时,射流出口采用多缝式与放电电弧平行布置,更加有利于气体加热和射流出流,有利于射流与低速流体的掺混和动量交换,增强控制效果。而进一步的,在本实施方式中,所述若干放气槽排列成唯一的一排,才能够最有效的达到出口分布所形成的压缩波和射流形态均表现为半椭圆形的状态。
在本实施方式中,所述阴极放电电极3和阳极放电电极4之间的放电间距不小于26mm。并且,优选的,放电腔体的长度等于所述若干放气槽5排列成一排后的总长度。所述放气槽一共为四个,放气槽长度为5mm。通孔2的直径为2.4mm。
在该等离子体合成射流激励器使用时,所述高压脉冲电源供电电压连续可调,频率可调,其最大供电电压应不小于5KV,最大调制频率应不小于500Hz,保证电极之间是火花放电不是辉光放电。
一个针对上述实施例等离子体合成射流激励器的验证试验结果为:
采用上述实施的等离子体合成射流激励器方案进行低压实验,其流场结构如如图3所示。采用高速纹影设备测量射流流场,由于射流时间演化非常快,在毫秒的量级,因此高速摄影仪的时间间隔设置为10μs(每秒拍摄10万张图像)。从图3中可以看出射流前锋面在中心非常平整,说明射流速度很均匀。从纹影图中还可以对射流速度进行定量测量,约定将每10μs的射流平均速度作为后一时刻的瞬时速度考虑。实验中将激励器上表面长度55mm作为标尺,测量精度精确到1个像素,单像素对应实际长度0.112mm,故测量存在11.2m/s的测量误差。图4给出了多缝式激励器从放电开始到放电60μs之后的速度演化图。在放电开始后10μs,1号出口射流锋面速度达到761m/s(4号出口与1号出口对称,故4号出口射流锋面速度同样可达到761m/s),2号出口射流锋面速度为620m/s(3号出口与2号出口对称,故3号出口射流锋面速度同样可达到620m/s),远远高出常规的等离子合成射流激励器的速度100m/s~250m/s(如记载于论文:Sarah H.Popkin,“Experimental Estimation of SparkJetEfficiency”,AIAA Journal;以及Pierrick HARDY,“Plasma Synthetic Jet for flowcontrol”,AIAA-2010-5103;以及F.Laurendeau,“PIV and Electric Characterizationof a Plasma Synthetic Jet Actuator”,AIAA-2015-2465中的数据),说明本发明的激励器具有较大的初始射流速度,具有极强的动量输入能力。

Claims (10)

1.一种用于高空飞行器的等离子体合成射流激励器,包括激励器本体、阴极放电电极、阳极放电电极,其特征在于:所述激励器本体内设有贯穿该激励器本体两端的通孔,激励器本体的上表面还设有若干与通孔连通的若干放气槽;所述阴极放电电极插入并固定在通孔一端,而阳极放电电极插入并固定在通孔另一端;阴极放电电极、阳极放电电极以及通孔围成放电腔体;所述若干放气槽排列成一排,且放电腔体的长度不小于所述若干放气槽排列成一排后的总长度;所述放气槽采用直缝形槽;若干放气槽的出口共同形成射流出口,该射流出口采用多缝式并且与放电电弧平行布置。
2.根据权利要求1所述的等离子体合成射流激励器,其特征在于:放气槽的缝的长宽比大于10,相邻放气槽间距离不小于2mm。
3.根据权利要求2所述的等离子体合成射流激励器,其特征在于:所述放气槽一共为四个,放气槽长度为5mm。
4.根据权利要求1或2或3所述的等离子体合成射流激励器,其特征在于:放电腔体的长度等于所述若干放气槽排列成一排后的总长度。
5.根据权利要求4所述的等离子体合成射流激励器,其特征在于:阴极放电电极和阳极放电电极外接脉冲电源;所述脉冲电源供电电压连续可调,频率可调,脉冲电源最大供电电压不小于5KV,最大调制频率不小于500Hz。
6.根据权利要求1所述的等离子体合成射流激励器,其特征在于:阴极放电电极与阳极放电电极采用钨铜合金制作。
7.一种用于高空飞行器的等离子体合成射流激励器,其特征在于:包括激励器本体、阴极放电电极、阳极放电电极,且阴极放电电极和阳极放电电极外接脉冲电源,其特征在于:所述激励器本体内设有贯穿该激励器本体两端的通孔,激励器本体的上表面还设有若干与通孔连通的若干放气槽;所述阴极放电电极插入并固定在通孔一端,而阳极放电电极插入并固定在通孔另一端;阴极放电电极、阳极放电电极以及通孔围成放电腔体;所述若干放气槽排列成且仅排列成唯一的一排,所述阴极放电电极和阳极放电电极之间的放电间距不小于26mm,所述放气槽采用直缝形槽;若干放气槽的出口共同形成射流出口,该射流出口采用多缝式并且与放电电弧平行布置。
8.根据权利要求7所述的等离子体合成射流激励器,其特征在于:所述脉冲电源供电电压连续可调,频率可调,脉冲电源最大供电电压不小于5KV,最大调制频率不小于500Hz。
9.根据权利要求7所述的等离子体合成射流激励器,其特征在于:放电间距的长度等于所述若干放气槽排列成一排后的总长度。
10.一种如权利要求1至9中任一项等离子体合成射流激励器的使用方法,其特征在于:连接在放电腔体两侧的阴极放电电极、阳极放电电极击穿空气放电,使放电腔体中产生火花放电;放电腔体中的高温高压气体从放气槽流出,形成高速射流。
CN201610885975.6A 2016-10-10 2016-10-10 一种用于高空飞行器的等离子体合成射流激励器 Active CN106507575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610885975.6A CN106507575B (zh) 2016-10-10 2016-10-10 一种用于高空飞行器的等离子体合成射流激励器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610885975.6A CN106507575B (zh) 2016-10-10 2016-10-10 一种用于高空飞行器的等离子体合成射流激励器

Publications (2)

Publication Number Publication Date
CN106507575A CN106507575A (zh) 2017-03-15
CN106507575B true CN106507575B (zh) 2018-07-27

Family

ID=58294698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610885975.6A Active CN106507575B (zh) 2016-10-10 2016-10-10 一种用于高空飞行器的等离子体合成射流激励器

Country Status (1)

Country Link
CN (1) CN106507575B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107364583A (zh) * 2017-07-05 2017-11-21 方剑 基于合成射流技术的小型喷气飞行器
CN108116664B (zh) * 2017-12-20 2020-12-22 南京航空航天大学 基于等离子体合成射流激励器的自适应激励控制系统
CN108235553A (zh) * 2017-12-28 2018-06-29 西安理工大学 滑动放电激励器及其对细长体的等离子体流动控制方法
CN108243549B (zh) * 2018-03-15 2018-10-30 哈尔滨工业大学 具有开槽通气结构的等离子体激励器
CN108566718A (zh) * 2018-03-30 2018-09-21 西北工业大学 一种用于流动控制的高频等离子体激励器
CN108541125B (zh) * 2018-04-18 2019-06-28 南京航空航天大学 一种内部可视等离子体合成射流激励器
CN108811289A (zh) * 2018-06-12 2018-11-13 厦门大学 一种动压式等离子体合成射流发生器
CN108811292A (zh) * 2018-06-12 2018-11-13 厦门大学 一种等离子体合成射流组合激励器
CN111787680A (zh) * 2020-06-28 2020-10-16 中国人民解放军空军工程大学 一种适用于高气压条件下的等离子体合成射流激励器
CN116744528B (zh) * 2023-06-07 2024-08-06 南京航空航天大学 一种v形射流通道的等离子体合成射流激励器设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014567A (zh) * 2010-10-11 2011-04-13 中国人民解放军国防科学技术大学 动压式高能合成射流激励器
CN202841676U (zh) * 2012-09-06 2013-03-27 中国科学院等离子体物理研究所 线形阵列式大气压冷等离子体射流发生装置
CN105514792A (zh) * 2015-11-25 2016-04-20 南京航空航天大学 一种高能射流激发器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637224B2 (en) * 2014-02-21 2017-05-02 The Boeing Company Plasma-assisted synthetic jets for active air flow control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014567A (zh) * 2010-10-11 2011-04-13 中国人民解放军国防科学技术大学 动压式高能合成射流激励器
CN202841676U (zh) * 2012-09-06 2013-03-27 中国科学院等离子体物理研究所 线形阵列式大气压冷等离子体射流发生装置
CN105514792A (zh) * 2015-11-25 2016-04-20 南京航空航天大学 一种高能射流激发器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Characterization of a High-Frequency Pulsed-Plasma Jet Actuator for Supersonic Flow Control;Venkateswaran Narayanaswamy et al.;《AIAA JOURNAL》;20100228;第48卷(第2期);297-305 *
合成射流及在主动流动控制中的应用;李斌斌;《中国博士学位论文全文数据库 基础科学辑》;20131015(第10期);A004-24 *
等离子体合成射流能量效率及工作特性研究;王林 等;《物理学报》;20131231;第62卷(第12期);125207-1至125207-10 *

Also Published As

Publication number Publication date
CN106507575A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN106507575B (zh) 一种用于高空飞行器的等离子体合成射流激励器
Wang et al. Three-electrode plasma synthetic jet actuator for high-speed flow control
Moreau et al. Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry
CN108116664A (zh) 基于等离子体合成射流激励器的自适应激励控制系统
Moralev et al. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode
CN108811289A (zh) 一种动压式等离子体合成射流发生器
Li et al. Properties of surface arc discharge in a supersonic airflow
Li et al. Review of the Investigation on Plasma Flow Control in China.
CN110920869A (zh) 高频阵列式组合电弧放电激励器及其控制激波附面层干扰不稳定性的方法
Yan et al. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial
CN203504870U (zh) 大气压磁场增强型低温等离子体电刷发生装置
CN109618481A (zh) 低雷诺数条件的等离子体合成射流激励器
CN204887661U (zh) 以陶瓷作为绝缘介质的等离子体激励器装置
Sun et al. Computational and experimental analysis of Mach 2 air flow over a blunt body with plasma aerodynamic actuation
Lin et al. Performance of an electrohydrodynamic gas pump fitted within a nozzle
Aleshin et al. A multidischarge actuator system for power electrohydrodynamic action on the boundary layer of aerohydrodynamic surfaces
Khomich et al. Multi-discharge actuator systems for electrogasdynamic flow control
CN109319169A (zh) 射频放电等离子体激励改善翼型分离失速的装置及方法
CN109413831B (zh) 一种可控腔内温度的等离子体合成射流发生器及其应用
Kazanskiy et al. Active flow control on a NACA 23012 airfoil model by means of magnetohydrodynamic plasma actuator
Erfani et al. The influence of electrode configuration and dielectric temperature on plasma actuator performance
CN105514792B (zh) 一种高能射流激发器
Zhang et al. Airfoil flow control using plasma actuation and coanda effect
CN206472363U (zh) 一种双束层流等离子发生器
Tian Active Flow Control and Its Applications in Supersonic Boundary Layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant