CN106504475A - 基于脑电信号的疲劳驾驶检测方法 - Google Patents

基于脑电信号的疲劳驾驶检测方法 Download PDF

Info

Publication number
CN106504475A
CN106504475A CN201610898005.XA CN201610898005A CN106504475A CN 106504475 A CN106504475 A CN 106504475A CN 201610898005 A CN201610898005 A CN 201610898005A CN 106504475 A CN106504475 A CN 106504475A
Authority
CN
China
Prior art keywords
fatigue
rhythm
degree
eeg
eeg signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610898005.XA
Other languages
English (en)
Other versions
CN106504475B (zh
Inventor
胡克荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Huatai International Freight Forwarding Co ltd
Original Assignee
Beihai Yishengyuan Farmers LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihai Yishengyuan Farmers LLC filed Critical Beihai Yishengyuan Farmers LLC
Priority to CN201610898005.XA priority Critical patent/CN106504475B/zh
Publication of CN106504475A publication Critical patent/CN106504475A/zh
Application granted granted Critical
Publication of CN106504475B publication Critical patent/CN106504475B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/06Alarms for ensuring the safety of persons indicating a condition of sleep, e.g. anti-dozing alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/22Motor vehicles operators, e.g. drivers, pilots, captains

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Emergency Management (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Business, Economics & Management (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种基于脑电信号的疲劳驾驶检测方法,包括以下步骤:S1:实时采集驾驶员在驾车时的脑电信号,并进行去除眨眼伪迹处理,获取EEG脑波信号;S2:对时域信号的EEG脑波进行转换,转换到频域,进而求得脑波中各个频域段特征脑波的能量值,再根据其相对能量的大小来确定疲劳程度;S3:设计BP神经网络分类器,进行识别疲劳程度的特征信号;S4:疲劳指数和疲劳程度的估计。本发明提出一种基于脑电信号的疲劳驾驶检测方法,通过对自发脑电信号进行脑电节律分析,实现实时判断驾驶员的疲劳状态,判断准确而且客观、直接。

Description

基于脑电信号的疲劳驾驶检测方法
技术领域
本发明涉及疲劳驾驶检测领域,具体涉及一种基于脑电信号的疲劳驾驶检测方法。
背景技术
近年来,机动车、驾驶人持续增长,但社会的交通安全观念明显滞后,道路交通安全面临诸多挑战。为了预防疲劳驾驶,我国交通法规定连续驾驶4小时算疲劳驾驶。但由于个体间是有差异的,需要考虑到每个驾驶员在体质、生活状况等方面的不同,这种时间的限定在执行的时候比较难以把握。因此,需要对疲劳驾驶的产生机理和检测方法进行研究,疲劳驾驶检测方法分为以下三类:基于面部特征的检测方法,基于车辆行驶状态的检测方法,基于生理信号的检测方法。
通过面部表情特征检测驾驶员的疲劳程度,不会给驾驶员带来任何的行为干扰。但这种方法对视频检测技术的要求比较高,测量的准确性和可靠性等相关的技术需要突破。
基于车辆行驶特征的疲劳检测设备不需要接触驾驶员,同样的也不会干扰其正常驾驶,以车辆的现有装置为基础,只需增加少量的硬件设施而且不会对驾驶员的正常驾驶造成干扰,因此具有很高的实用价值。其缺点是受到车辆的具体型号、道路的具体状况和驾驶员的个人驾驶习惯、经验和条件的限制,并传感器技术的限制,其准确度有待提高。
驾驶员生理参数检测法的优点是客观性强,能比较准确地反映人体的疲劳状态,并且能够反映疲劳的程度。虽然生理信号测量需要接触人的身体,检测设备会干扰驾驶员的正常操作,影响行车安全。并且,由于个体间的差异,不同人的生理信号特征会有所不同,有的区别相当大,所以有很大的局限性。但是随着传感器制造技术的进步及各种新型智能生物传感器的发展,基于驾驶员生理参数的疲劳驾驶检测方法将以其在疲劳检测精确性方面的优势,在舒适性、可靠性和实用性方面得到进一步改善和提高,并将在未来疲劳驾驶融合检测中发挥更重要的作用。
发明内容
本发明要解决的技术问题是提供一种基于脑电信号的疲劳驾驶检测方法。
基于脑电信号的疲劳驾驶检测方法,包括以下步骤:
S1:实时采集驾驶员在驾车时的脑电信号,并进行去除眨眼伪迹处理,获取EEG脑波信号;
S1-1:对脑电信号进行ICA,得到N个独立成分和混合矩阵A;
S1-2:计算每个成分的CBI(j);
S1-3:找出CBI最大的成分,把它当作候选成分;
S1-4:检查候选成分是否满足相关条件,如果满足,则是眨眼成分,否则不是;
S1-5:确定眨眼成分之后,把矩阵A中对应眨眼成分的那一列系数置为零,然后重构信号;
S2:对时域信号的EEG脑波进行转换,转换到频域,进而求得脑波中各个频域段特征脑波的能量值,再根据其相对能量的大小来确定疲劳程度,具体方法如下:
S2-1:对EEG脑波进行傅里叶变换后求得功率谱密度,将脑电信号分解为4个基本节律,即δ节律、θ节律、σ节律和β节律,δ节律、θ节律、σ节律和β节律所对应的频率范围分别是1-3.8Hz、4-7.8Hz、8-12.8Hz、13-30Hz;
S2-2:当σ节律和β节律呈主导优势时,表明人的意识是清醒的,当δ节律和θ节律占主导优势时,表明人的意识模糊甚至轻微睡眠;
S3:设计BP神经网络分类器,进行识别疲劳程度的特征信号,具体方法如下:
S3-1:建立BP网络对象;
S3-2:确定网络种类以及网络层数,采用具有一个隐含层的三层BP神经网络;
S3-3:确定传递函数,采用S型传递函数;
S3-4:确定输入层和输出层神经元个数,输入神经元个数确定为4个,输出神经元个数确定为1个;
S3-5:确定隐含层神经元个数,确定公式如下:
其中m为输入层神经元个数,n为输出层神经元个数;
根据上述公式确定隐含层神经元个数的范围为4《h《13;
S3-6:选取初始值,选取初始权值在(-1,1)之间的随机数;
S3-7:确定训练函数,使用“Trainrp”函数作为网络的训练函数;
S3-8:选取学习速率η,选取范围在0.01-0.8之间;
S3-9:选取动量因子α,选取范围在0-1之间;
S3-10:神经网络的训练与测试,采用清醒和疲劳时的样本数据作为训练集;再选取清醒时采集的样本和疲劳时采集的样本作为测试数据集。
S4:疲劳指数和疲劳程度的估计,具体方法如下:
S4-1:疲劳指数F的计算方法如下:
其中,Eδ、Eθ、Eα和Eβ分别是δ节律、θ节律、σ节律和β节律的能量值;
S4-2:疲劳指数的疲劳程度(P)计算公式如下:
S4-3:当F=1时,即脑波中Eδ+Eθ=Eα+Eβ,表明占清醒地位和疲劳地位的脑波成分均等,即疲劳程度为0.5即对应50%;
当F趋近于10时,P则趋近于1,表示疲劳程度已经趋近100%。
进一步的,所述隐含层神经元个数为8时BP网络对函数的逼近效果最好。
进一步的,所述学习效率η确定为0.1为最佳。
进一步的,所述动量因子α确定为0.9最佳。
本发明的有益效果是:
本发明提出一种基于脑电信号的疲劳驾驶检测方法,通过对自发脑电信号进行脑电节律分析,实现实时判断驾驶员的疲劳状态,判断准确而且客观、直接。
具体实施方式
以下具体实施例对本发明作进一步阐述,但不作为对本发明的限定。
基于脑电信号的疲劳驾驶检测方法,包括以下步骤:
S1:实时采集驾驶员在驾车时的脑电信号,并进行去除眨眼伪迹处理,获取EEG脑波信号;
S1-1:对脑电信号进行ICA,得到N个独立成分和混合矩阵A;
S1-2:计算每个成分的CBI(j);
S1-3:找出CBI最大的成分,把它当作候选成分;
S1-4:检查候选成分是否满足相关条件,如果满足,则是眨眼成分,否则不是;
S1-5:确定眨眼成分之后,把矩阵A中对应眨眼成分的那一列系数置为零,然后重构信号;
S2:对时域信号的EEG脑波进行转换,转换到频域,进而求得脑波中各个频域段特征脑波的能量值,再根据其相对能量的大小来确定疲劳程度,具体方法如下:
S2-1:对EEG脑波进行傅里叶变换后求得功率谱密度,将脑电信号分解为4个基本节律,即δ节律、θ节律、σ节律和β节律,δ节律、θ节律、σ节律和β节律所对应的频率范围分别是1-3.8Hz、4-7.8Hz、8-12.8Hz、13-30Hz;
S2-2:当σ节律和β节律呈主导优势时,表明人的意识是清醒的,当δ节律和θ节律占主导优势时,表明人的意识模糊甚至轻微睡眠;
S3:设计BP神经网络分类器,进行识别疲劳程度的特征信号,具体方法如下:
S3-1:建立BP网络对象;
S3-2:确定网络种类以及网络层数,采用具有一个隐含层的三层BP神经网络;
S3-3:确定传递函数,采用S型传递函数;
S3-4:确定输入层和输出层神经元个数,输入神经元个数确定为4个,输出神经元个数确定为1个;
S3-5:确定隐含层神经元个数,确定公式如下:
其中m为输入层神经元个数,n为输出层神经元个数;
根据上述公式确定隐含层神经元个数的范围为4《h《13;隐含层神经元个数为8时BP网络对函数的逼近效果最好;
S3-6:选取初始值,选取初始权值在(-1,1)之间的随机数;
S3-7:确定训练函数,使用“Trainrp”函数作为网络的训练函数;
S3-8:选取学习速率η,选取范围在0.01-0.8之间;所述学习效率η确定为0.1为最佳;
S3-9:选取动量因子α,选取范围在0-1之间;动量因子α确定为0.9最佳;
S3-10:神经网络的训练与测试,采用清醒和疲劳时的样本数据作为训练集;再选取清醒时采集的样本和疲劳时采集的样本作为测试数据集。
S4:疲劳指数和疲劳程度的估计,具体方法如下:
S4-1:疲劳指数F的计算方法如下:
其中,Eδ、Eθ、Eα和Eβ分别是δ节律、θ节律、σ节律和β节律的能量值;
S4-2:疲劳指数的疲劳程度(P)计算公式如下:
S4-3:当F=1时,即脑波中Eδ+Eθ=Eα+Eβ,表明占清醒地位和疲劳地位的脑波成分均等,即疲劳程度为0.5即对应50%;
当F趋近于10时,P则趋近于1,表示疲劳程度已经趋近100%。
实验1神经网络的训练与测试。
采用清醒和疲劳时的各90个样本数据作为训练集;再选取清醒时采集的112个样本和疲劳时采集的109个样本作为测试数据集。训练结果和测试结果如下:
1)训练一个经过了10步达到了小于目标误差0.01的要求;
2)测试集221组样本的测试结果共有8个样本分类错误,起中国误把清醒时采集的数据划分为疲劳的共2处,误把疲劳时采集的数据划分为清醒的共6处,分类正确率达96.38%。
实验2通过模拟驾驶系统设计模拟驾驶实验,来验证本发明的疲劳驾驶检测方法的正确性与有效性。
安排6名受试者进行实验,年龄介于20-30周岁之间,男女各3名。第一阶段,让受试者熟悉模拟驾驶系统操作,约15-30分钟后,对受试者进行脑电信号的采集和疲劳程度的检测。第二阶段,要求受试者进行连续4小时以上的模拟驾驶过程,并再次使用本发明的疲劳驾驶方法进行脑电采集和疲劳检测,检测结果如下:
1)第一阶段下,男性的疲劳检测结果的平均疲劳程度为7.8%,女性的疲劳检测结果的平均疲劳程度为15.3%;
2)第二阶段经过4小时的连续模拟驾驶之后,男性的疲劳检测结果的平均疲劳程度达到43.6%,女性的疲劳检测结果的平均疲劳程度为76.4%。

Claims (4)

1.基于脑电信号的疲劳驾驶检测方法,其特征在于,包括以下步骤:
S1:实时采集驾驶员在驾车时的脑电信号,并进行去除眨眼伪迹处理,获取EEG脑波信号;
S1-1:对脑电信号进行ICA,得到N个独立成分和混合矩阵A;
S1-2:计算每个成分的CBI(j);
S1-3:找出CBI最大的成分,把它当作候选成分;
S1-4:检查候选成分是否满足相关条件,如果满足,则是眨眼成分,否则不是;
S1-5:确定眨眼成分之后,把矩阵A中对应眨眼成分的那一列系数置为零,然后重构信号;
S2:对时域信号的EEG脑波进行转换,转换到频域,进而求得脑波中各个频域段特征脑波的能量值,再根据其相对能量的大小来确定疲劳程度,具体方法如下:
S2-1:对EEG脑波进行傅里叶变换后求得功率谱密度,将脑电信号分解为4个基本节律,即δ节律、θ节律、σ节律和β节律,δ节律、θ节律、σ节律和β节律所对应的频率范围分别是1-3.8Hz、4-7.8Hz、8-12.8Hz、13-30Hz;
S2-2:当σ节律和β节律呈主导优势时,表明人的意识是清醒的,当δ节律和θ节律占主导优势时,表明人的意识模糊甚至轻微睡眠;
S3:设计BP神经网络分类器,进行识别疲劳程度的特征信号,具体方法如下:
S3-1:建立BP网络对象;
S3-2:确定网络种类以及网络层数,采用具有一个隐含层的三层BP神经网络;
S3-3:确定传递函数,采用S型传递函数;
S3-4:确定输入层和输出层神经元个数,输入神经元个数确定为4个,输出神经元个数确定为1个;
S3-5:确定隐含层神经元个数,确定公式如下:
h = m ( n + 2 ) + a , a ∈ [ 1 , 10 ]
其中m为输入层神经元个数,n为输出层神经元个数;
根据上述公式确定隐含层神经元个数的范围为4《h《13;
S3-6:选取初始值,选取初始权值在(-1,1)之间的随机数;
S3-7:确定训练函数,使用“Trainrp”函数作为网络的训练函数;
S3-8:选取学习速率η,选取范围在0.01-0.8之间;
S3-9:选取动量因子α,选取范围在0-1之间;
S3-10:神经网络的训练与测试,采用清醒和疲劳时的样本数据作为训练集;再选取清醒时采集的样本和疲劳时采集的样本作为测试数据集;
S4:疲劳指数和疲劳程度的估计,具体方法如下:
S4-1:疲劳指数F的计算方法如下:
F = E δ + E θ E α + E β
其中,Eδ、Eθ、Eα和Eβ分别是δ节律、θ节律、σ节律和β节律的能量值;
S4-2:疲劳指数的疲劳程度(P)计算公式如下:
P = 1 2 F 2 , F < 1 19 18 - 5 9 F , 1 &le; F &le; 10 1 , F > 10 ;
S4-3:当F=1时,即脑波中Eδ+Eθ=Eα+Eβ,表明占清醒地位和疲劳地位的脑波成分均等,即疲劳程度为0.5即对应50%;
当F趋近于10时,P则趋近于1,表示疲劳程度已经趋近100%。
2.根据权利要求1所述的疲劳驾驶检测方法,其特征在于,所述隐含层神经元个数为8时BP网络对函数的逼近效果最好。
3.根据权利要求1所述的疲劳驾驶检测方法,其特征在于,所述学习效率η确定为0.1为最佳。
4.根据权利要求1所述的疲劳驾驶检测方法,其特征在于,所述动量因子α确定为0.9最佳。
CN201610898005.XA 2016-10-15 2016-10-15 基于脑电信号的疲劳驾驶检测方法 Expired - Fee Related CN106504475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610898005.XA CN106504475B (zh) 2016-10-15 2016-10-15 基于脑电信号的疲劳驾驶检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610898005.XA CN106504475B (zh) 2016-10-15 2016-10-15 基于脑电信号的疲劳驾驶检测方法

Publications (2)

Publication Number Publication Date
CN106504475A true CN106504475A (zh) 2017-03-15
CN106504475B CN106504475B (zh) 2019-05-10

Family

ID=58294008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610898005.XA Expired - Fee Related CN106504475B (zh) 2016-10-15 2016-10-15 基于脑电信号的疲劳驾驶检测方法

Country Status (1)

Country Link
CN (1) CN106504475B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107320115A (zh) * 2017-07-04 2017-11-07 重庆大学 一种自适应的精神疲劳评估装置及方法
CN109124625A (zh) * 2018-09-04 2019-01-04 大连理工大学 一种驾驶员疲劳状态水平分级方法
CN109480872A (zh) * 2018-11-08 2019-03-19 哈尔滨工业大学 基于脑电信号频带能量比特征的驾驶疲劳检测方法
CN109801475A (zh) * 2019-01-30 2019-05-24 浙江强脑科技有限公司 疲劳驾驶检测方法、装置及计算机可读存储介质
CN110333777A (zh) * 2019-05-20 2019-10-15 北京大学 一种利用内源性频率标记技术反映大脑脑部信号的脑机接口方法及系统
CN110413128A (zh) * 2019-08-12 2019-11-05 浙江强脑科技有限公司 基于脑电数据的汽车控制方法、装置和存储介质
CN111046779A (zh) * 2019-12-06 2020-04-21 江苏理工学院 基于单通道脑电信号的有意眨眼识别方法及装置
CN111209815A (zh) * 2019-12-28 2020-05-29 杭州电子科技大学 一种基于动量优化的bp神经网络的非接触式疲劳驾驶检测方法
CN112426162A (zh) * 2020-11-23 2021-03-02 重庆邮电大学 一种基于脑电信号节律熵的疲劳检测方法
CN113180705A (zh) * 2021-04-07 2021-07-30 北京脑陆科技有限公司 一种基于eeg脑波的疲劳检测方法、系统
CN113261974A (zh) * 2021-06-07 2021-08-17 吉林大学 一种基于多生理信号的运动疲劳监测方法
CN114435373A (zh) * 2022-03-16 2022-05-06 一汽解放汽车有限公司 疲劳驾驶检测方法、装置、计算机设备和存储介质
CN115137370A (zh) * 2022-06-01 2022-10-04 天津工业大学 一种基于脑电信号的疲劳监测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028362A1 (en) * 2002-09-24 2004-04-08 University Of Technology, Sydney Eeg-based fatigue detection
CN101596101A (zh) * 2009-07-13 2009-12-09 北京工业大学 依据脑电信号判定疲劳状态的方法
CN102274032A (zh) * 2011-05-10 2011-12-14 北京师范大学 一种基于脑电信号的驾驶员疲劳检测系统
CN103989485A (zh) * 2014-05-07 2014-08-20 朱晓斐 基于脑电波的人体疲劳度评价方法
CN104305964A (zh) * 2014-11-11 2015-01-28 东南大学 头戴式疲劳检测装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028362A1 (en) * 2002-09-24 2004-04-08 University Of Technology, Sydney Eeg-based fatigue detection
CN101596101A (zh) * 2009-07-13 2009-12-09 北京工业大学 依据脑电信号判定疲劳状态的方法
CN102274032A (zh) * 2011-05-10 2011-12-14 北京师范大学 一种基于脑电信号的驾驶员疲劳检测系统
CN103989485A (zh) * 2014-05-07 2014-08-20 朱晓斐 基于脑电波的人体疲劳度评价方法
CN104305964A (zh) * 2014-11-11 2015-01-28 东南大学 头戴式疲劳检测装置及方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107320115B (zh) * 2017-07-04 2020-03-17 重庆大学 一种自适应的精神疲劳评估装置及方法
CN107320115A (zh) * 2017-07-04 2017-11-07 重庆大学 一种自适应的精神疲劳评估装置及方法
CN109124625B (zh) * 2018-09-04 2021-07-20 大连理工大学 一种驾驶员疲劳状态水平分级方法
CN109124625A (zh) * 2018-09-04 2019-01-04 大连理工大学 一种驾驶员疲劳状态水平分级方法
CN109480872A (zh) * 2018-11-08 2019-03-19 哈尔滨工业大学 基于脑电信号频带能量比特征的驾驶疲劳检测方法
CN109801475A (zh) * 2019-01-30 2019-05-24 浙江强脑科技有限公司 疲劳驾驶检测方法、装置及计算机可读存储介质
CN110333777A (zh) * 2019-05-20 2019-10-15 北京大学 一种利用内源性频率标记技术反映大脑脑部信号的脑机接口方法及系统
CN110413128A (zh) * 2019-08-12 2019-11-05 浙江强脑科技有限公司 基于脑电数据的汽车控制方法、装置和存储介质
WO2021027593A1 (zh) * 2019-08-12 2021-02-18 浙江强脑科技有限公司 基于脑电数据的汽车控制方法、装置和存储介质
CN111046779A (zh) * 2019-12-06 2020-04-21 江苏理工学院 基于单通道脑电信号的有意眨眼识别方法及装置
CN111209815A (zh) * 2019-12-28 2020-05-29 杭州电子科技大学 一种基于动量优化的bp神经网络的非接触式疲劳驾驶检测方法
CN111209815B (zh) * 2019-12-28 2023-08-22 杭州电子科技大学 一种基于动量优化的bp神经网络的非接触式疲劳驾驶检测方法
CN112426162A (zh) * 2020-11-23 2021-03-02 重庆邮电大学 一种基于脑电信号节律熵的疲劳检测方法
CN113180705A (zh) * 2021-04-07 2021-07-30 北京脑陆科技有限公司 一种基于eeg脑波的疲劳检测方法、系统
CN113261974A (zh) * 2021-06-07 2021-08-17 吉林大学 一种基于多生理信号的运动疲劳监测方法
CN114435373A (zh) * 2022-03-16 2022-05-06 一汽解放汽车有限公司 疲劳驾驶检测方法、装置、计算机设备和存储介质
CN114435373B (zh) * 2022-03-16 2023-12-22 一汽解放汽车有限公司 疲劳驾驶检测方法、装置、计算机设备和存储介质
CN115137370A (zh) * 2022-06-01 2022-10-04 天津工业大学 一种基于脑电信号的疲劳监测方法及系统

Also Published As

Publication number Publication date
CN106504475B (zh) 2019-05-10

Similar Documents

Publication Publication Date Title
CN106504475A (zh) 基于脑电信号的疲劳驾驶检测方法
CN106057212B (zh) 基于语音个性特征和模型自适应的驾驶疲劳检测方法
CN109124625A (zh) 一种驾驶员疲劳状态水平分级方法
CN104207791B (zh) 一种疲劳驾驶检测方法
CN101491443A (zh) 驾驶人疲劳与车辆行驶轨迹的关系模型
CN110796207A (zh) 一种疲劳驾驶检测方法及系统
CN105877766A (zh) 一种基于多生理信号融合的精神状态检测系统及方法
CN105139070A (zh) 基于人工神经网络和证据理论的疲劳驾驶评价方法
CN107095670A (zh) 驾驶员反应时间预测方法
CN105868532B (zh) 一种智能评估心脏衰老程度的方法及系统
CN104182995B (zh) 一种基于驾驶疲劳的高速公路路侧景观色彩评价方法
Wang et al. Scientific creativity research based on generalizability theory and BP_Adaboost RT
CN114159079B (zh) 基于特征提取和gru深度学习模型的多类型肌肉疲劳检测方法
Lv et al. Compact vehicle driver fatigue recognition technology based on EEG signal
CN117547273A (zh) 面向驾驶员里程焦虑的生理反应检测方法及系统
CN111209815B (zh) 一种基于动量优化的bp神经网络的非接触式疲劳驾驶检测方法
CN101840506A (zh) 远程教育学生特征信号提取识别的方法
CN104156830B (zh) 基于s曲线的小型汽车驾驶培训量预测方法
Erkkilä et al. Intelligent music systems in music therapy
CN211094182U (zh) 基于脑电信号的驾驶员警觉度检测机构
CN111028853A (zh) 一种口语表达力评估方法及系统
CN111209816A (zh) 一种基于正则极限学习机的非接触式疲劳驾驶检测方法
Zhang et al. An adaptive Driver Fatigue Identification Method Based on HMM
Zhao et al. Parallel Diagnosis Model of Fatigue Driving Based on Vehicle Running Status.
CN116304642B (zh) 情绪识别预警及模型训练方法、装置、设备和存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211110

Address after: 532600 room 210, floor 2, supporting room, Pingxiang comprehensive free trade zone, Chongzuo City, Guangxi Zhuang Autonomous Region

Patentee after: Guangxi Huatai International Freight Forwarding Co.,Ltd.

Address before: 536000 No. 0801, building 3, Beibu Gulf science and technology entrepreneurship center, No. 45, Jin'an Avenue, Haicheng District, Beihai City, Guangxi Zhuang Autonomous Region

Patentee before: BEIHAI YISHENGYUAN AGRICULTURAL TRADE Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190510