CN106501877A - 一种dmc控制双加热数字探空仪及其加热控制方法 - Google Patents

一种dmc控制双加热数字探空仪及其加热控制方法 Download PDF

Info

Publication number
CN106501877A
CN106501877A CN201610873329.8A CN201610873329A CN106501877A CN 106501877 A CN106501877 A CN 106501877A CN 201610873329 A CN201610873329 A CN 201610873329A CN 106501877 A CN106501877 A CN 106501877A
Authority
CN
China
Prior art keywords
humidity sensor
time domain
output
heating
processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610873329.8A
Other languages
English (en)
Inventor
孙宁
张卫国
张颖超
程恩路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Information Science and Technology
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201610873329.8A priority Critical patent/CN106501877A/zh
Publication of CN106501877A publication Critical patent/CN106501877A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature

Abstract

本发明公开了一种DMC控制双加热数字探空仪及其加热控制方法,DMC控制双加热数字探空仪包括:单片机处理器、温度传感器、气压传感器、双加热湿度传感器电路、GPS模块、GPS天线、无线发射机、发射机天线以及电源模块;双加热湿度传感器电路包括:加热电路、湿度传感器A、湿度传感器B、多路开关和振荡电路。与现有技术相比,本发明的有益效果在于:提出在高空加热条件下DMC控制加热模型和加热的策略,使系统具有很强的抗干扰能力和良好的跟踪性和鲁棒性。

Description

一种DMC控制双加热数字探空仪及其加热控制方法
技术领域
本发明属于气象探测、无线电技术领域,尤其涉及一种DMC控制双加热数字探空仪及其加热控制方法
背景技术
高空湿度随着高度有较大的空间变化率,探空湿度传感器应具有较高的灵敏度、响应速度、体积小等特点。当探空湿度传感器在通过云、雨等高湿低温环境时容易受到影响,尤其,遇到过冷水的时候容易产生冻结,从而,影响湿度的测量结果。常规做法是给探空的湿度传感器加热,以消除在上升过程中受到的环境影响。加热过程采用PID控制算法进行控制,PID控制方法由于其具有原理简单、稳定可靠、无静差等优点,在过程控制中得到广泛应用,是较经典成熟的控制方法。但是,对具有非线性(饱和、时延、回程等)和不确定性等特征的系统很难达到预期效果,而且传统的PID控制算法很难对控制效果进行预测,存在控制精度低、鲁棒性差等缺点。
Fuzzy不要求控制对象的精确数学模型,因而灵活、适应性强,可是,任何一种纯模糊控制器本质上是一种非线性PD控制,不具备积分作用,控制过程有时会出现不平滑现象,稳态误差也较难减至理想程度。
发明内容
本发明所要解决的技术问题是,提供一种DMC控制双加热数字探空仪及其加热控制方法,解决了目前高空气象数字探空仪在高空大气的低温低湿环境下导致的湿度传感器结露结冰的问题,提高了数字探空仪在高空气象条件下测量的精确度、可靠性,实现了快速准确的数据测量。
本发明提供了一种DMC控制双加热数字探空仪,包括:单片机处理器、温度传感器、气压传感器、双加热湿度传感器电路、GPS模块、GPS天线、无线发射机、发射机天线以及电源模块;
单片机处理器分别与温度传感器、电源模块、气压传感器、GPS模块、无线发射机和双加热湿度传感器电路连接,所述GPS模块与GPS天线连接,所述无线发射机与发射机天线连接;
双加热湿度传感器电路包括:加热电路、湿度传感器A、湿度传感器B、多路开关和振荡电路;加热电路与湿度传感器A和湿度传感器B集成在一个单独电路板上,所述的加热电路分别与湿度传感器A和湿度传感器B相连接,湿度传感器A和湿度传感器B通过加热电路交替加热,加热电路与单片机处理器连接,且单片机处理器通过DMC温度控制模型控制加热电路,所述湿度传感器A与湿度传感器B均与多路开关相连接,所述多路开关与振荡电路连接,振荡电路与单片机处理器连接,单片机处理器与多路开关连接;
所述单片机处理器:用于控制GPS天线输出数字中频信号,完成GPS模块数字中频信号的处理和基带解算,获取位置、速度、时间的导航信息,同时完成对分别来自温度传感器、气压传感器、湿度传感器A和湿度传感器B的温度、气压和湿度的信号采集处理,获取实时的温度、气压和湿度的信息,并完成卫星导航信息和信息的编码和调制,将调制后的无线信号发送给无线发射机,再经过发射机天线发射给地面设备;
单片机处理器对加热电路的控制方法采用DMC动态矩阵控制算法。
单片机处理器为STM32单片机处理器。
一种DMC控制双加热数字探空仪的加热控制算法,DMC动态矩阵控制算法包括:包括预测模型、滚动优化、反馈校正三个部分;
预测模型:
DMC动态矩阵控制算法是以系统的阶跃响应模型作为预测模型的;当在系统的输入端加上一阶跃响应后,在各采样时间t=T、2T、3T、…NT分别可在系统的输出端测得一序列采样值,它们可用动态系数a1、a2、a3、…、aN来表示;其中N是阶跃响应的截断点,称为模型时域长度;N的选择应使ai(i>N)已接近其稳态值a∞;根据线性系统的比例和叠加性质,利用这一模型,可由给定的输入控制增量,预测系统未来时刻的输出;
预测模型方程式(1-1):
式中:k为模型在预测时域P内的时域系数,
为预测时域P的系统输出预测矢量;为预测时域P=0时的系统预测输出值;为在长度为M的控制时域的控制增量;为由阶跃响应系数组成的动态矩阵;
M≤P≤N,M为控制时域长度,P为预测时域长度,N为模型时域长度;
滚动优化:
DMC是一种以优化确定控制策略的算法;在采样时刻t=kT的优化性能指标如下式(1-2):
式中,minJ(k)为预测时域P内的最优解,
的含义是希望预测输出与期望输出当系数等于w(k+i)最接近,
的含义是使输入的控制增量Δu尽量平缓,
i、j均为变量系数,r(k+i)为k时刻参考输出,qi、rj均为权系数;
在不同时刻,优化性能指标是不同的,但其相对形式却是一致的;所谓“滚动优化”,就是指优化时域随时间不断地向前推移;引入向量和矩阵记号:
w(k)=[w(k+1)…w(k+P)]T
其中,w(k)是给定期望值函数,k为此函数模型的函数系数,
Q=diag(q1,…,qP),R=diag(r1,…,rM);
则优化性能指标式(1-2)可改写为:
式中,Q为误差权矩阵,R为控制权矩阵;wp(k)为在预测时域P内的给定期望值函数,yP0(k)为预测时域P的初始实际输出值;
在不考虑输入输出约束的情况下,在t=kT时刻,wp(k),yp0(k)均为己知,使J(k)取最小的ΔuM(k)可通过极值必要条件求得开环最优控制规律式:
其中,J(k)为预测时域P内的解,dJ(k)是将预测时域P内的解微分,ΔuM(k)是为M时域内的控制增量,dΔuM(k)是将M时域内的控制增量微分,k为控制时域M内的时域变量系数,为看函数系数为k时的初始预测值;
反馈校正:
系统的输出预测值需要在预测模型输出的基础上,用实际输出误差修正,即:
式中:为t=(k+1)T时刻经误差校正后所预测的系统在t=(k+i),(i=1,…,N)时刻的输出;h=[h1,h2…hN]T为误差校正向量,其中,h1=1,e(k+1)为预测误差;为利用预测模型算出的初始预测输出值,则为下一个未来时刻计算的预测输出值。
与现有技术相比,本发明的有益效果为:DMC是一种基于对象阶跃响应的预测控制算法,适用于渐近稳定的线性对象,以滚动优化和在线误差校正保证控制的准确性和对参数、环境变化的鲁棒性。整个算法包括预测模型、滚动优化、反馈校正三个部分。它直接以对象的阶跃响应离散系数为模型,从而避免了通常的传递函数或状态空间方程模型参数的辨识。其采用多步预测值技术,从而能有效地解决时延过程问题,按使预测值输出与给定值偏差最小的二次性能指标实施控制,是一种最优控制技术。它具有算法简单,计算量小,鲁棒性强,适用于稳定的线性系统,系统的动态特性中具有纯滞后或非最小相位特性都不影响该算法的直接应用。
附图说明
图1为本发明双加热数字探空仪的原理框架图;
图2(a)为湿度传感器A、湿度传感器B间距为3.5mm,俯仰角为35°时,湿度传感器A、湿度传感器B表面的剪切应力的示意图;
图2(b)为湿度传感器A、湿度传感器B间距为3.5mm,俯仰角为40°时,湿度传感器A、湿度传感器B表面的剪切应力的示意图;
图2(c)为湿度传感器A、湿度传感器B间距为3.5mm,俯仰角为45°时,湿度传感器A、湿度传感器B表面的剪切应力的示意图;
图2(d)为湿度传感器A、湿度传感器B间距为3.5mm,俯仰角为50°时,湿度传感器A、湿度传感器B表面的剪切应力的示意图;
图3为湿度传感器A、湿度传感器B间俯仰角为45°时,湿度传感器A、湿度传感器B壁面剪切应力分布图;
图4为本发明加热片PID温度控制仿真结果;
图5为本发明加热片DMC温度控制仿真结果。
具体实施方式
以下结合附图对本发明的实施例做进一步的详细说明。
如图1所示,一种DMC控制双加热数字探空仪,包括:单片机处理器、温度传感器、气压传感器、双加热湿度传感器电路、GPS模块、GPS天线、无线发射机、发射机天线以及电源模块;
单片机处理器分别与温度传感器、电源模块、气压传感器、GPS模块、无线发射机和双加热湿度传感器电路连接,所述GPS模块与GPS天线连接,所述无线发射机与发射机天线连接;
双加热湿度传感器电路包括:加热电路、湿度传感器A、湿度传感器B、多路开关和振荡电路;加热电路与湿度传感器A和湿度传感器B集成在一个单独电路板上,所述的加热电路分别与湿度传感器A和湿度传感器B相连接,湿度传感器A和湿度传感器B通过加热电路交替加热,加热电路与单片机处理器连接,且单片机处理器通过DMC温度控制模型控制加热电路,所述湿度传感器A与湿度传感器B均与多路开关相连接,所述多路开关与振荡电路连接,振荡电路与单片机处理器连接,单片机处理器与多路开关连接;
所述单片机处理器:用于控制GPS天线输出数字中频信号,完成GPS模块数字中频信号的处理和基带解算,获取位置、速度、时间的导航信息,同时完成对分别来自温度传感器、气压传感器、湿度传感器A和湿度传感器B的温度、气压和湿度的信号采集处理,获取实时的温度、气压和湿度的信息,并完成卫星导航信息和信息的编码和调制,将调制后的无线信号发送给无线发射机,再经过发射机天线发射给地面设备;
单片机处理器对加热电路的控制方法采用DMC动态矩阵控制算法。
单片机处理器为STM32单片机处理器。
一种DMC控制双加热数字探空仪的加热控制算法,DMC动态矩阵控制算法包括:包括预测模型、滚动优化、反馈校正三个部分;
预测模型:
DMC动态矩阵控制算法是以系统的阶跃响应模型作为预测模型的;当在系统的输入端加上一阶跃响应后,在各采样时间t=T、2T、3T、…NT分别可在系统的输出端测得一序列采样值,它们可用动态系数a1、a2、a3、…、aN来表示;其中N是阶跃响应的截断点,称为模型时域长度;N的选择应使ai(i>N)已接近其稳态值a∞;根据线性系统的比例和叠加性质,利用这一模型,可由给定的输入控制增量,预测系统未来时刻的输出;
预测模型方程式(1-1):
式中:k为模型在预测时域P内的时域系数,
为预测时域P的系统输出预测矢量;为预测时域P=0时的系统预测输出值;为在长度为M的控制时域的控制增量;为由阶跃响应系数组成的动态矩阵;
M≤P≤N,M为控制时域长度,P为预测时域长度,N为模型时域长度;
滚动优化:
DMC是一种以优化确定控制策略的算法;在采样时刻t=kT的优化性能指标如下式(1-2):
式中,minJ(k)为预测时域P内的最优解,
的含义是希望预测输出与期望输出当系数等于w(k+i)最接近,
的含义是使输入的控制增量Δu尽量平缓,
i、j均为变量系数,r(k+i)为k时刻参考输出,qi、rj均为权系数;
在不同时刻,优化性能指标是不同的,但其相对形式却是一致的;所谓“滚动优化”,就是指优化时域随时间不断地向前推移;引入向量和矩阵记号:
w(k)=[w(k+1)…w(k+P)]T
其中,w(k)是给定期望值函数,k为此函数模型的函数系数,
Q=diag(q1,…,qP),R=diag(r1,…,rM);
则优化性能指标式(1-2)可改写为:
式中,Q为误差权矩阵,R为控制权矩阵;wp(k)为在预测时域P内的给定期望值函数。yP0(k)为预测时域P的初始实际输出值,
在不考虑输入输出约束的情况下,在t=kT时刻,wp(k),yp0(k)均为己知,使J(k)取最小的ΔuM(k)可通过极值必要条件求得开环最优控制规律式:
其中,J(k)为预测时域P内的解,dJ(k)是将预测时域P内的解微分,ΔuM(k)是为M时域内的控制增量,dΔuM(k)是将M时域内的控制增量微分,k为控制时域M内的时域变量系数,为看函数系数为k时的初始预测值;
反馈校正:
系统的输出预测值需要在预测模型输出的基础上,用实际输出误差修正,即:
式中:为t=(k+1)T时刻经误差校正后所预测的系统在t=(k+i),(i=1,…,N)时刻的输出;h=[h1,h2…hN]T为误差校正向量,其中,h1=1,e(k+1)为预测误差;为利用预测模型算出的初始预测输出值,则为下一个未来时刻计算的预测输出值。
仿真结果分析
从流体动力学(CFD)角度仿真分析得到当两个湿度传感器相距大于3mm时,一个传感器加热时,不会影响另一个传感器周围的温湿度场,所以测量结果是有效的,提出了加热的低空模式和高空模式:低空模式下(0~20km),在功率为0.6W时,当温升为46℃时,地面温升时间为5.8s。高空模式下(20km~30km),在功率为0.4W时,温升为40℃时,高空温升时间为5.8s。
传感器在上升过程中并不是直线上升的,为了使模型更贴近真实情况加入了横风的作用,模拟旋转上升的效果,同时传感器要与空气充分的接触,由于实际情况,湿度传感器A与湿度传感器B间距的大小对俯仰角的研究基本没有影响,故最终选定间距为3.5mm,海平面气候条件,俯仰角为图2中所示35°、40°、45°、50°作为研究对象。因为摩擦阻力为壁面切应力的面积分,和壁面边界层内的流动求解有关,要使得传感器与空气充分的接触,摩擦力也必然较大,故使用模型的壁面剪切应力作为参考变量。
图2为两支湿度传感器在间距为3.5mm下得到的壁面剪切应力的云图。由图2(a)可得传感器表面剪切应力为0.375Pa,其边界上有一部分区域有不同的值,图2(b)的剪切应力为0.432Pa,两支传感器有不同的变化且两支传感器的剪切应力分布不同,图2(c)表面剪切应力分布均匀且边缘变化也近似对称,故此时效果较好,图2(d)有一个传感器表面剪切应力有缓慢的变化,此时湿度测量的误差会较大。
当两支湿度传感器间距为3.5mm、俯仰角为45°时,从XY散点图的数值分布来看两支湿度传感器都较为重合,说明其受到空气的阻力基本相同,分布区间为0.1~1.7pascal,由于在边界上存在跳变数值变化较大,除去此部分主要集中在0.6~1pascal,传感器表面的剪切应力变化的区间较小,且数值较俯仰角35°、40°大,如图3所示。故选择俯仰角为45°、滚转角为90°、偏航角为0°作为湿度传感器的最优上升姿态角。
基于以上控制要求,当加热片温度从0℃升至46℃,采样周期取为20s,预测控制各参数分别选为:Ts=5,P=10,M=1,N=30,alpha=2,系统输出反馈系数H的取值h=[h1,h2…hN]T,其中h1=1,由于系统为一阶惯性系统,因此加权阵Q、R的选取可依照:Q=I(单位阵),然后在实时控制过程中来确定R。系统的阶跃响应输出曲线如图5所示。
仿真结果说明DMC控制比PID响应速度快、超调量小,稳定时间t=3.6s,满足低空模式的加热要求,考虑条件限制,难以建立高空加热模型,而传感器在-60℃以下时响应时间很长(60~200秒),低气压下加热后的散热时间较长,且此时云中的水分多以小冰晶的形式存在,传感器表面结霜的可能性较小,故可以不再进行加热处理。

Claims (3)

1.一种DMC控制双加热数字探空仪,其特征在于:包括:单片机处理器、温度传感器、气压传感器、双加热湿度传感器电路、GPS模块、GPS天线、无线发射机、发射机天线以及电源模块;
单片机处理器分别与温度传感器、电源模块、气压传感器、GPS模块、无线发射机和双加热湿度传感器电路连接,所述GPS模块与GPS天线连接,所述无线发射机与发射机天线连接;
双加热湿度传感器电路包括:加热电路、湿度传感器A、湿度传感器B、多路开关和振荡电路;加热电路与湿度传感器A和湿度传感器B集成在一个单独电路板上,所述的加热电路分别与湿度传感器A和湿度传感器B相连接,湿度传感器A和湿度传感器B通过加热电路交替加热,加热电路与单片机处理器连接,且单片机处理器通过DMC温度控制模型控制加热电路,所述湿度传感器A与湿度传感器B均与多路开关相连接,所述多路开关与振荡电路连接,振荡电路与单片机处理器连接,单片机处理器与多路开关连接;
所述单片机处理器:用于控制GPS天线输出数字中频信号,完成GPS模块数字中频信号的处理和基带解算,获取位置、速度、时间的导航信息,同时完成对分别来自温度传感器、气压传感器、湿度传感器A和湿度传感器B的温度、气压和湿度的信号采集处理,获取实时的温度、气压和湿度的信息,并完成卫星导航信息和信息的编码和调制,将调制后的无线信号发送给无线发射机,再经过发射机天线发射给地面设备;
单片机处理器对加热电路的控制方法采用DMC动态矩阵控制算法。
2.根据权利要求1所述的双加热数字探空仪,其特征在于:单片机处理器为STM32单片机处理器。
3.根据权利要求1所述的一种DMC控制双加热数字探空仪的加热控制算法,其特征在于:DMC动态矩阵控制算法包括:包括预测模型、滚动优化、反馈校正三个部分;
预测模型:
DMC动态矩阵控制算法是以系统的阶跃响应模型作为预测模型的;当在系统的输入端加上一阶跃响应后,在各采样时间t=T、2T、3T、…NT分别可在系统的输出端测得一序列采样值,它们可用动态系数a1、a2、a3、…、aN来表示;其中N是阶跃响应的截断点,称为模型时域长度;N的选择应使ai(i>N)已接近其稳态值a∞;根据线性系统的比例和叠加性质,利用这一模型,可由给定的输入控制增量,预测系统未来时刻的输出;
预测模型方程式(1-1):
y ~ P M ( k ) = y ~ P 0 ( k ) + AΔu M ( k ) - - - ( 1 - 1 ) ;
式中:k为模型在预测时域P内的时域系数,
为预测时域P的系统输出预测矢量;为预测时域P=0时的系统预测输出值;为在长度为M的控制时域的控制增量;为由阶跃响应系数组成的动态矩阵;
M≤P≤N,M为控制时域长度,P为预测时域长度,N为模型时域长度;
滚动优化:
DMC是一种以优化确定控制策略的算法;在采样时刻t=kT的优化性能指标如下式(1-2):
min J ( k ) = Σ i = 1 P q i [ ω ( k + i ) - y ~ M ( k + i | k ) ] 2 + Σ j = 1 M r j Δu 2 ( k + j - 1 ) - - - ( 1 - 2 ) ;
式中,minJ(k)为预测时域P内的最优解,
的含义是希望预测输出与期望输出当系数等于w(k+i)最接近,
的含义是使输入的控制增量Δu尽量平缓,
i、j均为变量系数,r(k+i)为k时刻参考输出,qi、rj均为权系数;
在不同时刻,优化性能指标是不同的,但其相对形式却是一致的;所谓“滚动优化”,就是指优化时域随时间不断地向前推移;引入向量和矩阵记号:w(k)=[w(k+1)…w(k+P)]T
其中,w(k)是给定期望值函数,k为此函数模型的函数系数,Q=diag(q1,…,qP),R=diag(r1,…,rM);
则优化性能指标式(1-2)可改写为:
min J ( k ) = | | w p ( k ) - y ~ P M ( k ) | | Q 2 + | | Δu M ( k ) | | R 2 - - - ( 1 - 3 ) ;
式中,Q为误差权矩阵,R为控制权矩阵;wp(k)为在预测时域P内的给定期望值函数,为预测时域P的初始实际输出值,
在不考虑输入输出约束的情况下,在t=kT时刻,wp(k),yp0(k)均为己知,使J(k)取最小的ΔuM(k)可通过极值必要条件求得开环最优控制规律式:
Δu M ( k ) = ( A T Q A + R ) - 1 A T Q ( ω p ( k ) - y ~ p 0 ( k ) ) - - - ( 1 - 4 ) ;
其中,J(k)为预测时域P内的解,dJ(k)是将预测时域P内的解微分,ΔuM(k)是为M时域内的控制增量,dΔuM(k)是将M时域内的控制增量微分,k为控制时域M内的时域变量系数,为看函数系数为k时的初始预测值;
反馈校正:
系统的输出预测值需要在预测模型输出的基础上,用实际输出误差修正,即:
y ~ c o r ( k + 1 ) = y ~ N 1 ( k ) + h e ( k + 1 ) - - - ( 1 - 5 ) ;
式中:为t=(k+1)T时刻经误差校正后所预测的系统在t=(k+i),(i=1,…,N)时刻的输出;h=[h1,h2…hN]T为误差校正向量,其中,h1=1,e(k+1)为预测误差;为利用预测模型算出的初始预测输出值,则为下一个未来时刻计算的预测输出值。
CN201610873329.8A 2016-09-30 2016-09-30 一种dmc控制双加热数字探空仪及其加热控制方法 Pending CN106501877A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610873329.8A CN106501877A (zh) 2016-09-30 2016-09-30 一种dmc控制双加热数字探空仪及其加热控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610873329.8A CN106501877A (zh) 2016-09-30 2016-09-30 一种dmc控制双加热数字探空仪及其加热控制方法

Publications (1)

Publication Number Publication Date
CN106501877A true CN106501877A (zh) 2017-03-15

Family

ID=58293456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610873329.8A Pending CN106501877A (zh) 2016-09-30 2016-09-30 一种dmc控制双加热数字探空仪及其加热控制方法

Country Status (1)

Country Link
CN (1) CN106501877A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108482634A (zh) * 2018-04-20 2018-09-04 中国气象局气象探测中心 一种探空气球球绳熔断装置
CN109084827A (zh) * 2017-06-14 2018-12-25 益加义电子有限公司 用于运行传感器装置的方法和适合于此的传感器装置
CN109143864A (zh) * 2018-09-17 2019-01-04 浙江工业大学 一种中药饮片中药材自动清洗过程水浊度预测控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2131257Y (zh) * 1992-06-09 1993-04-28 李强 遥控多路开关
US20100156663A1 (en) * 2008-12-19 2010-06-24 Honeywell International Inc. Radiosonde having hydrophobic filter comprising humidity sensor
CN104252010A (zh) * 2013-06-27 2014-12-31 深圳航天东方红海特卫星有限公司 一种无线电探空仪及其气象数据测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2131257Y (zh) * 1992-06-09 1993-04-28 李强 遥控多路开关
US20100156663A1 (en) * 2008-12-19 2010-06-24 Honeywell International Inc. Radiosonde having hydrophobic filter comprising humidity sensor
CN104252010A (zh) * 2013-06-27 2014-12-31 深圳航天东方红海特卫星有限公司 一种无线电探空仪及其气象数据测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈乐: "医用恒温箱控温系统", 《信息科技辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109084827A (zh) * 2017-06-14 2018-12-25 益加义电子有限公司 用于运行传感器装置的方法和适合于此的传感器装置
US11262477B2 (en) 2017-06-14 2022-03-01 E+E Elektronik Ges.M.B.H. Method for operating a sensor assembly and sensor assembly suitable therefor
CN109084827B (zh) * 2017-06-14 2022-03-08 益加义电子有限公司 用于运行传感器装置的方法和适合于此的传感器装置
CN108482634A (zh) * 2018-04-20 2018-09-04 中国气象局气象探测中心 一种探空气球球绳熔断装置
CN109143864A (zh) * 2018-09-17 2019-01-04 浙江工业大学 一种中药饮片中药材自动清洗过程水浊度预测控制方法

Similar Documents

Publication Publication Date Title
Dos Reis et al. Multi-season lake evaporation: energy-budget estimates and CRLE model assessment with limited meteorological observations
US10739495B2 (en) Cloud water resource detecting system and method
Took et al. Quaternion-valued short-term joint forecasting of three-dimensional wind and atmospheric parameters
Allen et al. Issues, requirements and challenges in selecting and specifying a standardized ET equation
Baker et al. PASLINK and dynamic outdoor testing of building components
CN102945508B (zh) 一种基于模型校正的风电功率预测预报方法
CN103810387A (zh) 基于modis数据的地表蒸散发全遥感反演方法及系统
CN106501877A (zh) 一种dmc控制双加热数字探空仪及其加热控制方法
Fang et al. Improving the Xin'anjiang hydrological model based on mass–energy balance
CN112800636A (zh) 一种估算无资料地区流域地表水资源量的方法及系统
CN106845663A (zh) 一种基于数值天气预报进行热负荷预测的方法
CN107085370A (zh) 混凝土仓面小气候自适应控制方法
Zhang et al. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment
CN108629056A (zh) 一种风电功率预测方法及系统
Zhang et al. Development of an ambient air temperature prediction model
CN112362693A (zh) 一种基于土壤热通量推求蒸散发量的测算方法和系统
CN103077297B (zh) 一种短时间间隔大气环境温度预测方法
Lee et al. Estimation of turbulent sensible heat and momentum fluxes over a heterogeneous urban area using a large aperture scintillometer
Li et al. Multivariable time series prediction for the icing process on overhead power transmission line
CN108663727B (zh) 利用蒸发率在世界海域范围内估算蒸发波导高度的方法
CN106291763B (zh) 一种双加热数字探空仪及其加热控制算法
CN105447593A (zh) 基于时间滞后集合的快速更新混合同化方法
CN206096514U (zh) 一种双加热数字探空仪
Henneken et al. A case study of the daily energy balance near the equilibrium line on the Greenland ice sheet
Li et al. The numerical scheme development of a simplified frozen soil model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170315