CN106484967A - 一种基于蒙特卡洛打靶的舵机功率计算方法 - Google Patents
一种基于蒙特卡洛打靶的舵机功率计算方法 Download PDFInfo
- Publication number
- CN106484967A CN106484967A CN201610844701.2A CN201610844701A CN106484967A CN 106484967 A CN106484967 A CN 106484967A CN 201610844701 A CN201610844701 A CN 201610844701A CN 106484967 A CN106484967 A CN 106484967A
- Authority
- CN
- China
- Prior art keywords
- power
- steering engine
- aircraft steering
- aircraft
- curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明涉及一种基于蒙特卡洛打靶的舵机功率计算方法,该方法针对飞行器单条或多条打靶仿真轨迹,得到飞行器舵机的功率随时间变化曲线,根据所述变化曲线获得飞行器舵机峰值功率、飞行器舵机最大峰值功率持续时间、飞行器舵机触地前峰值功率最短间隔时间、飞行器舵机峰值功率区间个数、飞行器舵机常值功率和飞行器舵机平均功率,该方法通过获得飞行器舵机功率相关指标,得到伺服系统在全任务周期中准确的功耗需求情况,为电源系统的设计提供可靠的设计输入。
Description
技术领域
本发明涉及一种基于蒙特卡洛打靶的舵机功率计算方法,属于飞行器舵机电源设计技术领域。
背景技术
伺服系统是航空航天领域各类飞行器最重要的控制执行机构之一,作为一个高阶多变量的强耦合系统,在运行过程中存在大量的非线性因素、不确定因素及未建模动态特性等,导致建立精确的伺服系统动态数学模型非常困难,也因此难以据此精确计算出伺服系统的功耗需求,同时由于其具有功率大、负载波动大等特点,其功耗需求直接制约着全飞行器的电源系统设计。
在传统型号设计中,对伺服系统的功耗需求计算通常采用工程经验估算的方法,即依据工程经验估算出伺服系统的工作效率,并结合标称设计飞行轨迹仿真中得到的舵机峰值功耗计算出对电源系统的峰值功耗需求,由此计算出的功耗不能准确反映伺服系统的实际工况,容易导致电源系统在缺乏准确设计输入的情况下过设计,对飞行器总体重量、体积指标的闭环造成不利影响。因此如何根据飞行器的飞行轨迹建立起科学、合理的功耗需求评估体系,对飞行器的总体设计至关重要。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种基于蒙特卡洛打靶的舵机功率计算方法,该方法通过获得飞行器舵机功率相关指标,得到伺服系统在全任务周期中准确的功耗需求情况,为电源系统的设计提供可靠的设计输入。
本发明的上述目的主要是通过如下技术方案予以实现的:
一种基于蒙特卡洛打靶的舵机功率计算方法,针对飞行器单条打靶仿真轨迹,得到飞行器舵机的功率随时间变化曲线,根据所述变化曲线获得飞行器舵机峰值功率Qmax、飞行器舵机最大峰值功率持续时间tmax、飞行器舵机触地前峰值功率最短间隔时间τmin、飞行器舵机峰值功率区间个数n0、飞行器舵机常值功率Q和飞行器舵机平均功率具体方法包括如下步骤:
(1)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Qmax,具体方法为:
将所述飞行轨迹触地前所有采样点的功率Qk按大小排序,取最大值作为飞行器舵机峰值功率Qmax,即
(2)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机最大峰值功率持续时间tmax,具体方法为:
(2.1)、设飞行器中电源系统的蓄电池组最大常值放电功率为Q0;
(2.2)、若飞行器舵机的功率随时间变化曲线中连续的两个或两个以上采样点的功率均大于Q0,则所述连续的两个或两个以上采样点形成的区域为峰值功率持续时间区域T;
(2.3)、从所述峰值功率持续时间区域T中选取峰值功率持续时间最长的区域作为最大峰值功率持续区域,该区域所对应的时间作为飞行器舵机最大峰值功率持续时间tmax;
(3)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机触地前峰值功率最短间隔时间τmin,具体方法为:
(3.1)、将飞行器舵机的功率随时间变化曲线中,相邻两个峰值功率持续时间区域Ti、Ti+1中临近边界点之间的时间作为峰值功率间隔时间,即Ti区域中最后一个采样点与Ti+1区域中第一个采样点之间的时间间隔作为峰值功率间隔时间;
(3.2)、选取峰值功率间隔时间中最小的时间,作为飞行器舵机触地前峰值功率最短间隔时间τmin;
(4)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率区间个数n0,具体方法为:
飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T的个数作为飞行器舵机峰值功率区间个数n0;
(5)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机常值功率Q,具体方法为:
(5.1)、在飞行器舵机的功率随时间变化曲线中,求出每个采样点后t时间段内的所有采样点功率的算术平均值;
(5.2)、选取最大算术平均值作为飞行器舵机常值功率Q;
(6)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机平均功率具体方法为:
在飞行器舵机的功率随时间变化曲线中,所有采样点的算术平均值作为飞行器舵机平均功率
在上述基于蒙特卡洛打靶的舵机功率计算方法中,飞行器舵机的功率Q通过如下公式计算得到:
其中:MZ为舵机铰链力矩,MI为舵机惯性力矩,Mf为舵机摩擦力矩,Md为阻尼力矩,ω为舵面转动角速度,η为舵机的工作效率;
根据每一时刻对应的MZ、MI、Mf、Md、ω、η,计算该时刻飞行器舵机的功率Q,从而得到飞行器舵机的功率随时间变化曲线。
在上述基于蒙特卡洛打靶的舵机功率计算方法中,所述步骤(2)中,若只有一个峰值,则峰值功率持续时间tmax为0。
在上述基于蒙特卡洛打靶的舵机功率计算方法中,所述步骤(5)中t时间段为2s~5s。
在上述基于蒙特卡洛打靶的舵机功率计算方法中,所述飞行器舵机峰值功率Qmax、飞行器舵机最大峰值功率持续时间tmax、飞行器舵机触地前峰值功率最短间隔时间τmin、飞行器舵机峰值功率区间个数n0、飞行器舵机常值功率Q和飞行器舵机平均功率用于飞行器舵机电源设计。
一种基于蒙特卡洛打靶的舵机功率计算方法,针对飞行器n条打靶仿真轨迹,得到n条飞行器舵机的功率随时间变化曲线,根据所述n条变化曲线获得飞行器舵机峰值功率Pmax、飞行器舵机最大峰值功率持续时间Tmax、飞行器舵机触地前峰值功率最短间隔时间Tmin、飞行器舵机峰值功率区间个数N、飞行器舵机常值功率P和飞行器舵机平均功率其中n为正整数,且n大于或等于3,具体包括如下步骤:
(1)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Pmax,具体方法为:
(1.1)、将每条飞行器舵机的功率随时间变化曲线中,所有采样点的功率Qk按大小排序,取最大值作为该条曲线中飞行器舵机峰值功率Qmax,即
(1.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机峰值功率Qmax的最大值作为飞行器舵机峰值功率Pmax;
(2)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机最大峰值功率持续时间Tmax,具体方法为:
(2.1)、设飞行器中电源系统的蓄电池组最大常值放电功率为Q0;
(2.2)、若每条飞行器舵机的功率随时间变化曲线中连续的两个或两个以上采样点的功率均大于Q0,则所述连续的两个或两个以上采样点形成的区域为峰值功率持续时间区域T;
(2.3)、从每条飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T中选取峰值功率持续时间最长的区域作为最大峰值功率持续区域,该区域所对应的时间作为该条曲线中飞行器舵机最大峰值功率持续时间tmax;
(2.4)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机最大峰值功率持续时间tmax的最大值,作为飞行器舵机最大峰值功率持续时间Tmax;
(3)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机触地前峰值功率最短间隔时间Tmin,具体方法为:
(3.1)、将每条飞行器舵机的功率随时间变化曲线中,相邻两个峰值功率持续时间区域Ti、Ti+1中临近边界点之间的时间作为峰值功率间隔时间;即Ti区域中最后一个采样点与Ti+1区域中第一个采样点之间的时间间隔作为峰值功率间隔时间;
(3.2)、选取峰值功率间隔时间中最小的时间,作为该条飞行器舵机的功率随时间变化曲线中,飞行器舵机触地前峰值功率最短间隔时间τmin;
(3.3)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机触地前峰值功率最短间隔时间τmin中的最小值,作为飞行器舵机触地前峰值功率最短间隔时间Tmin;
(4)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率区间个数N,具体方法为:
(4.1)、每条飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T的个数作为飞行器舵机峰值功率区间个数n0;
(4.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机峰值功率区间个数n0的最大值,作为飞行器舵机峰值功率区间个数N;
(5)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机常值功率P,具体方法为:
(5.1)、在每条飞行器舵机的功率随时间变化曲线中,求出每个采样点后t时间段内的所有采样点功率的算术平均值;
(5.2)、选取最大算术平均值作为该条曲线的飞行器舵机常值功率Q;
(5.3)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机常值功率Q的最大值作为飞行器舵机常值功率P;
(6)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机平均功率具体方法为:
(6.1)、在每条飞行器舵机的功率随时间变化曲线中,所有采样点的算术平均值作为该条飞曲线中飞行器舵机平均功率
(6.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机平均功率的最大值作为飞行器舵机平均功率
在上述基于蒙特卡洛打靶的舵机功率计算方法中,飞行器舵机的功率Q通过如下公式计算得到:
其中:MZ为舵机铰链力矩,MI为舵机惯性力矩,Mf为舵机摩擦力矩,Md为阻尼力矩,ω为舵面转动角速度,η为舵机的工作效率;
根据每一时刻对应的MZ、MI、Mf、Md、ω、η,计算该时刻飞行器舵机的功率Q,从而得到飞行器舵机的功率随时间变化曲线。
在上述基于蒙特卡洛打靶的舵机功率计算方法中,所述步骤(2)中,若只有一个峰值,则峰值功率持续时间tmax为0。
在上述基于蒙特卡洛打靶的舵机功率计算方法中,所述步骤(5)中t时间段为2s~5s。
在上述基于蒙特卡洛打靶的舵机功率计算方法中,所述飞行器舵机峰值功率Pmax、飞行器舵机最大峰值功率持续时间Tmax、飞行器舵机触地前峰值功率最短间隔时间Tmin、飞行器舵机峰值功率区间个数N、飞行器舵机常值功率P和飞行器舵机平均功率用于飞行器舵机电源设计。
本发明与现有技术相比具有如下有益效果:
(1)、本发明针对伺服系统在某条飞行轨迹及多条飞行轨迹中的具体工作情况,从极端工况及稳态工况两方面入手构建出一套科学合理的伺服系统功耗需求计算方法,比依据工程经验估算的传统方法更为准确,可为电源系统设计提供准确可信的设计输入,有效避免电源系统过设计;
(2)、本发明提出的基于蒙特卡洛打靶的舵机功率计算方法,基于飞行器控制系统的蒙特卡洛打靶仿真结果,得到飞行器舵机的功率随时间变化曲线,进一步获得飞行器舵机功率相关指标,从而得到伺服系统在全任务周期中的功耗需求情况,为电源系统的设计提供科学、准确的设计输入;
(3)、本发明所包含的各项指标均有明确的定义,数值稳定性好,易于从打靶仿真结果中获取,具有良好的工程实用性。
附图说明
图1为本发明飞行器舵机功率随时间变化曲线中峰值功率定义示意图;
图2为本发明飞行器舵机功率随时间变化曲线中最大峰值功率持续时间定义示意图;
图3为本发明飞行器舵机功率随时间变化曲线中最短峰值功率间隔时间定义示意图;
图4为本发明飞行器舵机功率随时间变化曲线中常值功率定义示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
在MATLAB软件中构建飞行器六自由度仿真平台,输入总体原始数据、全飞行器气动特性数据,设置仿真初始条件,并考虑各项偏差干扰因素开展多次蒙特卡洛打靶仿真,得到飞行器各条飞行轨迹的相关数据,根据相关数据计算得到飞行器舵机的功率随时间变化曲线。
飞行器舵机的功率Q的计算公式如下:
其中:Q为舵机功率,MZ为舵机(含传动机构)铰链力矩,MI为舵机(含传动机构)惯性力矩,Mf为舵机(含传动机构)摩擦力矩,Md为阻尼力矩(绝大多数情况下该力矩可忽略不计,取0),ω为舵面转动角速度,η为舵机(含传动机构)的工作效率,其中MZ、MI、Mf、Md、ω均可从仿真数据中获取,η由舵机单机测试得到。
根据每一时刻对应的MZ、MI、Mf、Md、ω、η,计算该时刻飞行器舵机的功率Q,从而得到飞行器舵机的功率随时间变化曲线。
针对单条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Qmax、飞行器舵机最大峰值功率持续时间tmax、飞行器舵机触地前峰值功率最短间隔时间τmin、飞行器舵机峰值功率区间个数n0、飞行器舵机常值功率Q和飞行器舵机平均功率具体包括如下步骤:
(1)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Qmax,具体方法为:
将所述飞行轨迹触地前所有采样点的功率Qk按大小排序,取最大值作为飞行器舵机峰值功率
如图1所示为本发明飞行器舵机功率随时间变化曲线中峰值功率定义示意图,图中采样点A所对应的功率即为飞行器舵机峰值功率Qmax。
(2)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机最大峰值功率持续时间tmax,具体方法为:
(2.1)、设定飞行器中电源系统的蓄电池组在保证正常工作电压范围的最大常值放电功率为Q0;Q0作为伺服系统功率评估的参考基准。
(2.2)、若飞行器舵机的功率随时间变化曲线中连续的两个或两个以上采样点的功率均大于Q0,则该连续的两个或两个以上采样点所形成的区域为峰值功率持续时间区域T;若只有一个峰值,则定义峰值功率持续时间tmax为0。
如图2所示为本发明飞行器舵机功率随时间变化曲线中最大峰值功率持续时间定义示意图;如图中T1、T2、T3分别为三个相邻的峰值功率持续时间区域,其中T1、T2区域均包括3个连续的采样点,T3区域包括5个连续的采样点。
(2.3)、从所述峰值功率持续时间区域T中选取峰值功率持续时间最长的区域作为最大峰值功率持续区域,该区域所对应的时间作为飞行器舵机最大峰值功率持续时间tmax;如图2中最大峰值功率持续区域为T3区域,该区域对应的时间t3为最大峰值功率持续时间tmax。
(3)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机触地前峰值功率最短间隔时间τmin,具体方法为:
(3.1)、将飞行器舵机的功率随时间变化曲线中,相邻两个峰值功率持续时间区域Ti、Ti+1中临近边界点之间的时间作为峰值功率间隔时间;如图3所示为本发明飞行器舵机功率随时间变化曲线中最短峰值功率间隔时间定义示意图;图中峰值功率持续时间区域Ti与峰值功率持续时间区域Ti+1中临近边界点C、D之间的时间间隔作为峰值功率间隔时间t1,图中峰值功率持续时间区域Ti+1与峰值功率持续时间区域Ti+2中临近边界点E、F之间的时间间隔作为峰值功率间隔时间t2。其中C点为区域Ti的最后一个采样点,D点为区域Ti+1的第一个采样点,E点为区域Ti+1的最后一个采样点,F点为区域Ti+2的第一个采样点。
(3.2)、选取峰值功率间隔时间中最小的时间,作为飞行器舵机触地前峰值功率最短间隔时间τmin;如图3中,最短间隔时间τmin为t1。相邻两个不连续峰值功率区间相邻边界点之间的时间间隔最小值-1个采样周期。
(4)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率区间个数n0,具体方法为:
飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T的个数作为飞行器舵机峰值功率区间个数n0;
(5)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机常值功率Q,具体方法为:
(5.1)、在飞行器舵机的功率随时间变化曲线中,求出每个采样点后t时间段内的所有采样点功率的算术平均值;如图4所示为本发明飞行器舵机功率随时间变化曲线中常值功率定义示意图,图中求出每个采样点后t时间段内的所有采样点功率的算术平均值,对于飞行轨迹最后t时间段内的数据取一次算术平均。t时间段视不同采样周期选2s~5s,本实施例中为5s。
(5.2)、选取最大算术平均值作为飞行器舵机常值功率Q;
(6)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机平均功率具体方法为:
在飞行器舵机的功率随时间变化曲线中,所有采样点的算术平均值作为飞行器舵机平均功率
针对飞行器n条打靶仿真轨迹,得到n条飞行器舵机的功率随时间变化曲线,根据所述n条变化曲线获得飞行器舵机峰值功率Pmax、飞行器舵机最大峰值功率持续时间Tmax、飞行器舵机触地前峰值功率最短间隔时间Tmin、飞行器舵机峰值功率区间个数N、飞行器舵机常值功率P和飞行器舵机平均功率其中n为正整数,且n大于或等于3,具体包括如下步骤:
(1)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Pmax,具体方法为:
(1.1)、将每条飞行器舵机的功率随时间变化曲线中,所有采样点的功率Qk按大小排序,取最大值作为该条飞行器舵机峰值功率Qmax,即
(1.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机峰值功率Qmax的最大值作为飞行器舵机峰值功率Pmax。
(2)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机最大峰值功率持续时间Tmax,具体方法为:
(2.1)、设定飞行器中电源系统的蓄电池组在保证正常工作电压范围的最大常值放电功率为Q0;Q0作为伺服系统功率评估的参考基准。
(2.2)、若每条飞行器舵机的功率随时间变化曲线中连续的两个或两个以上采样点的功率均大于Q0,则所述连续的两个或两个以上采样点形成的区域为峰值功率持续时间区域T。若只有一个峰值,则定义峰值功率持续时间tmax为0。
(2.3)、从每条飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T中选取峰值功率持续时间最长的区域作为最大峰值功率持续区域,该区域所对应的时间作为该条曲线中飞行器舵机最大峰值功率持续时间tmax;
(2.4)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机最大峰值功率持续时间tmax的最大值,作为飞行器舵机最大峰值功率持续时间Tmax;触地前n个tmax中最大值+2个采样周期。
(3)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机触地前峰值功率最短间隔时间Tmin,具体方法为:
(3.1)、首先定义舵机用峰值功率区间Pmaxall=[Q0,Qmax],其中Q0定义同上文。
将每条飞行器舵机的功率随时间变化曲线中,相邻两个峰值功率持续时间区域Ti、Ti+1中临近边界点之间的时间作为峰值功率间隔时间;即Ti区域中最后一个采样点与Ti+1区域中第一个采样点之间的时间间隔作为峰值功率间隔时间。
(3.2)、选取峰值功率间隔时间中最小的时间,作为该条飞行器舵机的功率随时间变化曲线中,飞行器舵机触地前峰值功率最短间隔时间τmin;
(3.3)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机触地前峰值功率最短间隔时间τmin中的最小值,作为飞行器舵机触地前峰值功率最短间隔时间Tmin;
(4)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率区间个数N,具体方法为:
(4.1)、每条飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T的个数作为飞行器舵机峰值功率区间个数n0;
(4.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机峰值功率区间个数n0的最大值,作为飞行器舵机峰值功率区间个数N。
(5)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机常值功率P,具体方法为:
(5.1)、在每条飞行器舵机的功率随时间变化曲线中,求出每个采样点后t时间段内的所有采样点功率的算术平均值;t时间段视不同采样周期选2s~5s,本实施例中为5s。
(5.2)、选取最大算术平均值作为该条飞行器舵机常值功率Q。
(5.3)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机常值功率Q的最大值作为飞行器舵机常值功率P;
(6)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机平均功率具体方法为:
(6.1)、在每条飞行器舵机的功率随时间变化曲线中,所有采样点的算术平均值作为该条曲线中飞行器舵机平均功率
(6.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机平均功率的最大值作为飞行器舵机平均功率
飞行器舵机峰值功率Qmax、飞行器舵机最大峰值功率持续时间tmax、飞行器舵机触地前峰值功率最短间隔时间τmin、飞行器舵机峰值功率区间个数n0、飞行器舵机常值功率Q和飞行器舵机平均功率用于飞行器舵机电源设计。
飞行器舵机多采用高压高功率蓄电池作为能源,为准确评估伺服系统在整个飞行轨迹中对电源的供电需求,需从放电能力(主要受伺服系统极限工况约束)、电池容量(主要受伺服系统长时间稳态工况约束)两方面对电源系统明确设计要求,据此提出了包括峰值功率、最大峰值功率持续时间、峰值功率最短间隔时间、峰值功率区间个数、常值功率、平均功率等指标在内的伺服系统功耗需求评估体系(为保证功耗评估的准确性,要求相邻两个采样点之间时间间隔不大于一个控制周期)。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。
Claims (10)
1.一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:针对飞行器单条打靶仿真轨迹,得到飞行器舵机的功率随时间变化曲线,根据所述变化曲线获得飞行器舵机峰值功率Qmax、飞行器舵机最大峰值功率持续时间tmax、飞行器舵机触地前峰值功率最短间隔时间τmin、飞行器舵机峰值功率区间个数n0、飞行器舵机常值功率Q和飞行器舵机平均功率具体方法包括如下步骤:
(1)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Qmax,具体方法为:
将所述飞行轨迹触地前所有采样点的功率Qk按大小排序,取最大值作为飞行器舵机峰值功率Qmax,即
(2)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机最大峰值功率持续时间tmax,具体方法为:
(2.1)、设飞行器中电源系统的蓄电池组最大常值放电功率为Q0;
(2.2)、若飞行器舵机的功率随时间变化曲线中连续的两个或两个以上采样点的功率均大于Q0,则所述连续的两个或两个以上采样点形成的区域为峰值功率持续时间区域T;
(2.3)、从所述峰值功率持续时间区域T中选取峰值功率持续时间最长的区域作为最大峰值功率持续区域,该区域所对应的时间作为飞行器舵机最大峰值功率持续时间tmax;
(3)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机触地前峰值功率最短间隔时间τmin,具体方法为:
(3.1)、将飞行器舵机的功率随时间变化曲线中,相邻两个峰值功率持续时间区域Ti、Ti+1中临近边界点之间的时间作为峰值功率间隔时间,即Ti区域中最后一个采样点与Ti+1区域中第一个采样点之间的时间间隔作为峰值功率间隔时间;
(3.2)、选取峰值功率间隔时间中最小的时间,作为飞行器舵机触地前峰值功率最短间隔时间τmin;
(4)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率区间个数n0,具体方法为:
飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T的个数作为飞行器舵机峰值功率区间个数n0;
(5)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机常值功率Q,具体方法为:
(5.1)、在飞行器舵机的功率随时间变化曲线中,求出每个采样点后t时间段内的所有采样点功率的算术平均值;
(5.2)、选取最大算术平均值作为飞行器舵机常值功率Q;
(6)、根据飞行器舵机的功率随时间变化曲线,获得飞行器舵机平均功率具体方法为:
在飞行器舵机的功率随时间变化曲线中,所有采样点的算术平均值作为飞行器舵机平均功率
2.根据权利要求1所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:飞行器舵机的功率Q通过如下公式计算得到:
其中:MZ为舵机铰链力矩,MI为舵机惯性力矩,Mf为舵机摩擦力矩,Md为阻尼力矩,ω为舵面转动角速度,η为舵机的工作效率;
根据每一时刻对应的MZ、MI、Mf、Md、ω、η,计算该时刻飞行器舵机的功率Q,从而得到飞行器舵机的功率随时间变化曲线。
3.根据权利要求1所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:所述步骤(2)中,若只有一个峰值,则峰值功率持续时间tmax为0。
4.根据权利要求1所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:所述步骤(5)中t时间段为2s~5s。
5.根据权利要求1~4之一所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:所述飞行器舵机峰值功率Qmax、飞行器舵机最大峰值功率持续时间tmax、飞行器舵机触地前峰值功率最短间隔时间τmin、飞行器舵机峰值功率区间个数n0、飞行器舵机常值功率Q和飞行器舵机平均功率用于飞行器舵机电源设计。
6.一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:针对飞行器n条打靶仿真轨迹,得到n条飞行器舵机的功率随时间变化曲线,根据所述n条变化曲线获得飞行器舵机峰值功率Pmax、飞行器舵机最大峰值功率持续时间Tmax、飞行器舵机触地前峰值功率最短间隔时间Tmin、飞行器舵机峰值功率区间个数N、飞行器舵机常值功率P和飞行器舵机平均功率其中n为正整数,且n大于或等于3,具体包括如下步骤:
(1)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率Pmax,具体方法为:
(1.1)、将每条飞行器舵机的功率随时间变化曲线中,所有采样点的功率Qk按大小排序,取最大值作为该条曲线中飞行器舵机峰值功率Qmax,即
(1.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机峰值功率Qmax的最大值作为飞行器舵机峰值功率Pmax;
(2)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机最大峰值功率持续时间Tmax,具体方法为:
(2.1)、设飞行器中电源系统的蓄电池组最大常值放电功率为Q0;
(2.2)、若每条飞行器舵机的功率随时间变化曲线中连续的两个或两个以上采样点的功率均大于Q0,则所述连续的两个或两个以上采样点形成的区域为峰值功率持续时间区域T;
(2.3)、从每条飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T中选取峰值功率持续时间最长的区域作为最大峰值功率持续区域,该区域所对应的时间作为该条曲线中飞行器舵机最大峰值功率持续时间tmax;
(2.4)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机最大峰值功率持续时间tmax的最大值,作为飞行器舵机最大峰值功率持续时间Tmax;
(3)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机触地前峰值功率最短间隔时间Tmin,具体方法为:
(3.1)、将每条飞行器舵机的功率随时间变化曲线中,相邻两个峰值功率持续时间区域Ti、Ti+1中临近边界点之间的时间作为峰值功率间隔时间;即Ti区域中最后一个采样点与Ti+1区域中第一个采样点之间的时间间隔作为峰值功率间隔时间;
(3.2)、选取峰值功率间隔时间中最小的时间,作为该条飞行器舵机的功率随时间变化曲线中,飞行器舵机触地前峰值功率最短间隔时间τmin;
(3.3)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机触地前峰值功率最短间隔时间τmin中的最小值,作为飞行器舵机触地前峰值功率最短间隔时间Tmin;
(4)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机峰值功率区间个数N,具体方法为:
(4.1)、每条飞行器舵机的功率随时间变化曲线中,峰值功率持续时间区域T的个数作为飞行器舵机峰值功率区间个数n0;
(4.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机峰值功率区间个数n0的最大值,作为飞行器舵机峰值功率区间个数N;
(5)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机常值功率P,具体方法为:
(5.1)、在每条飞行器舵机的功率随时间变化曲线中,求出每个采样点后t时间段内的所有采样点功率的算术平均值;
(5.2)、选取最大算术平均值作为该条曲线的飞行器舵机常值功率Q;
(5.3)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机常值功率Q的最大值作为飞行器舵机常值功率P;
(6)、根据n条飞行器舵机的功率随时间变化曲线,获得飞行器舵机平均功率具体方法为:
(6.1)、在每条飞行器舵机的功率随时间变化曲线中,所有采样点的算术平均值作为该条飞曲线中飞行器舵机平均功率
(6.2)、选取n条飞行器舵机的功率随时间变化曲线中,飞行器舵机平均功率的最大值作为飞行器舵机平均功率
7.根据权利要求6所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:飞行器舵机的功率Q通过如下公式计算得到:
其中:MZ为舵机铰链力矩,MI为舵机惯性力矩,Mf为舵机摩擦力矩,Md为阻尼力矩,ω为舵面转动角速度,η为舵机的工作效率;
根据每一时刻对应的MZ、MI、Mf、Md、ω、η,计算该时刻飞行器舵机的功率Q,从而得到飞行器舵机的功率随时间变化曲线。
8.根据权利要求6所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:所述步骤(2)中,若只有一个峰值,则峰值功率持续时间tmax为0。
9.根据权利要求6所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:所述步骤(5)中t时间段为2s~5s。
10.根据权利要求6~9之一所述的一种基于蒙特卡洛打靶的舵机功率计算方法,其特征在于:所述飞行器舵机峰值功率Pmax、飞行器舵机最大峰值功率持续时间Tmax、飞行器舵机触地前峰值功率最短间隔时间Tmin、飞行器舵机峰值功率区间个数N、飞行器舵机常值功率P和飞行器舵机平均功率用于飞行器舵机电源设计。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610844701.2A CN106484967B (zh) | 2016-09-22 | 2016-09-22 | 一种基于蒙特卡洛打靶的舵机功率计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610844701.2A CN106484967B (zh) | 2016-09-22 | 2016-09-22 | 一种基于蒙特卡洛打靶的舵机功率计算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106484967A true CN106484967A (zh) | 2017-03-08 |
CN106484967B CN106484967B (zh) | 2019-06-18 |
Family
ID=58267300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610844701.2A Active CN106484967B (zh) | 2016-09-22 | 2016-09-22 | 一种基于蒙特卡洛打靶的舵机功率计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106484967B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110717221A (zh) * | 2019-10-21 | 2020-01-21 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机能源需求精细化分析方法及设备 |
CN113656920A (zh) * | 2021-10-20 | 2021-11-16 | 中国空气动力研究与发展中心计算空气动力研究所 | 一种可降低舵机功率冗余的导弹舵面铰链力矩设计方法 |
CN114188575A (zh) * | 2021-12-10 | 2022-03-15 | 四川荣创新能动力系统有限公司 | 一种基于功率区间的多堆燃料电池系统功率调控方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030182338A1 (en) * | 2002-03-25 | 2003-09-25 | Kenji Yamamoto | Method of calculating radiation |
CN104200016A (zh) * | 2014-08-20 | 2014-12-10 | 中国运载火箭技术研究院 | 一种多舵面飞行器模态计算与验证方法 |
CN105043774A (zh) * | 2015-07-14 | 2015-11-11 | 中国运载火箭技术研究院 | 一种采用插值计算舵机功耗的方法 |
-
2016
- 2016-09-22 CN CN201610844701.2A patent/CN106484967B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030182338A1 (en) * | 2002-03-25 | 2003-09-25 | Kenji Yamamoto | Method of calculating radiation |
CN104200016A (zh) * | 2014-08-20 | 2014-12-10 | 中国运载火箭技术研究院 | 一种多舵面飞行器模态计算与验证方法 |
CN105043774A (zh) * | 2015-07-14 | 2015-11-11 | 中国运载火箭技术研究院 | 一种采用插值计算舵机功耗的方法 |
Non-Patent Citations (2)
Title |
---|
FAN YONG-LEI 等: "Application of Monte Carlo method in rudder control precision", 《JOURNAL OF MEASUREMENT SCIENCE AND INSTRUMENTATION》 * |
张艳 等: "一种基于负载匹配的伺服功率优化方法", 《万方数据库期刊库》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110717221A (zh) * | 2019-10-21 | 2020-01-21 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机能源需求精细化分析方法及设备 |
CN110717221B (zh) * | 2019-10-21 | 2023-09-22 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机能源需求精细化分析方法及设备 |
CN113656920A (zh) * | 2021-10-20 | 2021-11-16 | 中国空气动力研究与发展中心计算空气动力研究所 | 一种可降低舵机功率冗余的导弹舵面铰链力矩设计方法 |
CN114188575A (zh) * | 2021-12-10 | 2022-03-15 | 四川荣创新能动力系统有限公司 | 一种基于功率区间的多堆燃料电池系统功率调控方法 |
CN114188575B (zh) * | 2021-12-10 | 2024-03-15 | 四川荣创新能动力系统有限公司 | 一种基于功率区间的多堆燃料电池系统功率调控方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106484967B (zh) | 2019-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103746370A (zh) | 一种风电场可靠性建模方法 | |
CN103869255B (zh) | 微小型电动无人机续航时间估算方法 | |
CN104881510B (zh) | 一种直升机旋翼/尾桨气动干扰数值仿真方法 | |
CN104182560B (zh) | 飞行器颤振预测分析方法和装置 | |
CN105115692B (zh) | 一种cfd数值模拟与风洞试验相结合的气动预测方法 | |
CN105021403A (zh) | 航空发动机启动系统故障诊断方法及故障模拟系统 | |
CN105676672B (zh) | 扑翼飞行器复合飞行策略仿真建模方法 | |
CN105426970A (zh) | 一种基于离散动态贝叶斯网络的气象威胁评估方法 | |
CN106484967A (zh) | 一种基于蒙特卡洛打靶的舵机功率计算方法 | |
CN102570448B (zh) | 基于wams的电力系统分群及稳定裕度评估系统及方法 | |
CN104102769A (zh) | 基于人工智能的涡轴发动机实时部件级模型建立方法 | |
CN103729483A (zh) | 山洪灾害模拟预测装置及方法 | |
CN106295001A (zh) | 适用于电力系统中长时间尺度的准稳态变步长仿真方法 | |
Hong et al. | Least-energy path planning with building accurate power consumption model of rotary unmanned aerial vehicle | |
RU2432592C1 (ru) | Моделирующий комплекс для проверки системы управления беспилотного летательного аппарата | |
CN102645894B (zh) | 模糊自适应动态规划方法 | |
CN105676631B (zh) | 发电机组转速智能控制系统及方法 | |
Min et al. | Large-eddy simulation of corner separation in a compressor cascade | |
CN104062054B (zh) | 一种动量轮低转速贫信息条件下的力矩测量方法 | |
Chi et al. | Comparison of two multi-step ahead forecasting mechanisms for wind speed based on machine learning models | |
CN109492286B (zh) | 基于受扰轨迹动态特性的数值积分提前终止方法 | |
CN103149930B (zh) | 飞行器大迎角运动切换模型的故障诊断和容错控制方法 | |
CN106094972B (zh) | 一种基于函数模型的光伏发电系统最大功率点跟踪方法 | |
Elgindy | Optimal periodic control of Unmanned Aerial Vehicles based on Fourier integral pseudospectral and edge-detection methods | |
Zhou et al. | Trajectory prediction based on improved sliding window polynomial fitting prediction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |