CN106482975B - 一种淤积物原位取样分析处理方法 - Google Patents

一种淤积物原位取样分析处理方法 Download PDF

Info

Publication number
CN106482975B
CN106482975B CN201610859300.4A CN201610859300A CN106482975B CN 106482975 B CN106482975 B CN 106482975B CN 201610859300 A CN201610859300 A CN 201610859300A CN 106482975 B CN106482975 B CN 106482975B
Authority
CN
China
Prior art keywords
sediment
thickness
dry density
sample
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610859300.4A
Other languages
English (en)
Other versions
CN106482975A (zh
Inventor
杨文俊
朱帅
孙先
杨�一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Original Assignee
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang River Scientific Research Institute Changjiang Water Resources Commission filed Critical Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority to CN201610859300.4A priority Critical patent/CN106482975B/zh
Publication of CN106482975A publication Critical patent/CN106482975A/zh
Application granted granted Critical
Publication of CN106482975B publication Critical patent/CN106482975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明提供一种淤积物原位取样分析处理方法,包括:步骤一、将待测淤积物置于容器中,测量淤积物厚度L1;步骤二、将淤积物连同容器一起置入冷冻装置内冷冻,待淤积物整体冷冻完成后将其取出,测量其厚度L2;步骤三、加热实验桶以方便固体混合物取出;步骤四、用电钻和取样器取出混合物芯样;步骤五、用电锯将芯样切成等厚度n片,并计算不同深度淤积物的干容重为;步骤六、得到不同深度干容重后,得到干容重沿垂线分布曲线;步骤七、对每份样品进行颗粒分离,分别得到每小块样本级配曲线,将不同位置的淤积物的级配曲线进行比较,得出淤积物级配曲线随淤积深度的变化规律。本发明相比现有技术可以提高淤积物原位取样分析测量结果的精确性。

Description

一种淤积物原位取样分析处理方法
技术领域
本发明涉及水利工程中水文测量技术领域,具体是一种淤积物原位取样分析处理方法。
背景技术
在水文测量中,干容重是一个很重要的参数。通过现有观测手段,往往只能得到淤积物的体积,但实际应用中又往往需要知道淤积物的重量,而重量为体积与干容重的乘积,因此就需要通过测量来得到淤积物的干容重。
在大型水库中,淤积物的厚度往往能够到达几米甚至几十米上百米的水平。目前国内外淤积物的取样方法主要有坑测法和采样器取样法,两种大水深采样方法均要将采样器高速插入河床中,对淤积物样品构成破坏,采样深度也难以控制,因此现有技术很难通过原型观测的手段来确定干容重,要研究其变化规律更是难上加难。因此,现有技术只能在实验室模拟大水深的情况来研究干容重的变化规律。但即使是在实验室,研究干容重也相当困难,因为淤积物不是固态,它具有一定的流动性,在研究的过程中,淤积物的物性会发生变化,对实验结果的精确性产生影响。
发明内容
本发明提供一种淤积物原位取样分析处理方法,其将样品先进行冷冻处理,待其完全变成固体后再对样品进行切片分析,这样就能够得到每一小段淤积物的干容重及其级配,并最终得到淤积物干容重及粒径随深度的变化规律。
一种淤积物原位取样分析处理方法,其特征在于包括如下步骤:
步骤一、将待测淤积物置于容器中,测量淤积物厚度L1;
步骤二、将淤积物连同容器一起置入冷冻装置内冷冻,待淤积物整体冷冻完成后将其取出,测量其厚度L2,且L2>L1;
步骤三、将装有水沙混合物冰块的实验桶放入热水桶中加热,使挨着桶壁的冰融化,方便固体混合物取出;
步骤四、用电钻和取样器取出混合物芯样;
步骤五、用电锯将芯样切成等厚度n片:取距离淤积物上表面距离为L的一小块淤积物来分析,该切片淤积物厚度为ΔL,其体积V=取样器截面积S*切片淤积物厚度ΔL,
将其烘干后测得重量为M
可算得该深度淤积物的干容重为:
其中为修正系数,其作用是修正淤积物结冰对实验结果的影响;
步骤六、得到不同深度干容重后,得到干容重沿垂线分布曲线;
步骤七、对每份样品进行颗粒分离,分别得到每小块样本级配曲线,将不同位置的淤积物的级配曲线进行比较,即可得出淤积物级配曲线随淤积深度的变化规律。
本发明通过将待测淤积物冷冻后切片计算干容重,所采用的取样方式相比现有技术可以尽量减少实验过程对淤积物测量的影响,不会因为淤积物的物性会发生变化而影响测量结果的精确性。
附图说明
图1是本发明淤积物原位取样分析处理方法的示意图。
图2是用电钻和取样器对样本进行取样的示意图。
具体实施方式
下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述。
请参考图1,本发明提供一种淤积物原位取样分析处理方法,其包括如下步骤:
步骤一、将待测淤积物置于容器中,测量淤积物厚度L1;
步骤二、将淤积物连同容器一起置入冷冻装置(例如冰箱)内冷冻,待淤积物整体冷冻完成后将其取出,测量其厚度L2,考虑到水结冰后体积增大,L2>L1;
步骤三、将装有水沙混合物冰块的实验桶放入热水桶中加热,使挨着桶壁的冰融化,方便固体混合物取出;
步骤四、用电钻1和取样器2取出混合物芯样,如图2所示:1为电钻,2为取样器,3为从实验桶中取出的样本;
步骤五、用电锯将芯样切成等厚度n片:取距离淤积物上表面距离为L的一小块淤积物来分析,该切片淤积物厚度为ΔL,其体积V=取样器截面积S*切片淤积物厚度ΔL,
将其烘干后测得重量为M
可算得该深度淤积物的干容重为:
其中为修正系数,其作用是修正淤积物结冰对实验结果的影响。
淤积物取样一般采用环刀,但由于淤积物具有一定的流动性,在受到外力干扰时易变形,从而产生一定的误差,将其先冷冻后再进行分析可避免这种误差的产生。
步骤六、得到不同深度干容重后,得到干容重沿垂线分布曲线。
步骤七、对每份样品进行颗粒分离,分别得到每小块样本级配曲线,将不同位置的淤积物的级配曲线进行比较,即可得出淤积物级配曲线随淤积深度的变化规律。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (1)

1.一种淤积物原位取样分析处理方法,其特征在于包括如下步骤:
步骤一、将待测淤积物置于容器中,测量淤积物厚度L1;
步骤二、将淤积物连同容器一起置入冷冻装置内冷冻,待淤积物整体冷冻完成后将其取出,测量其厚度L2,且L2>L1;
步骤三、将装有水沙混合物冰块的实验桶放入热水桶中加热,使挨着桶壁的冰融化,方便固体混合物取出;
步骤四、用电钻和取样器取出混合物芯样;
步骤五、用电锯将芯样切成等厚度n片:取距离淤积物上表面距离为L的一小块淤积物来分析,该切片淤积物厚度为ΔL,其体积V=取样器截面积S*切片淤积物厚度ΔL,
将其烘干后测得重量为M
可算得该深度淤积物的干容重为:
其中为修正系数,其作用是修正淤积物结冰对实验结果的影响;
步骤六、得到不同深度干容重后,得到干容重沿垂线分布曲线;
步骤七、对每份样品进行颗粒分离,分别得到每小块样本级配曲线,将不同位置的淤积物的级配曲线进行比较,即可得出淤积物级配曲线随淤积深度的变化规律。
CN201610859300.4A 2016-09-28 2016-09-28 一种淤积物原位取样分析处理方法 Active CN106482975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610859300.4A CN106482975B (zh) 2016-09-28 2016-09-28 一种淤积物原位取样分析处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610859300.4A CN106482975B (zh) 2016-09-28 2016-09-28 一种淤积物原位取样分析处理方法

Publications (2)

Publication Number Publication Date
CN106482975A CN106482975A (zh) 2017-03-08
CN106482975B true CN106482975B (zh) 2019-05-24

Family

ID=58268122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610859300.4A Active CN106482975B (zh) 2016-09-28 2016-09-28 一种淤积物原位取样分析处理方法

Country Status (1)

Country Link
CN (1) CN106482975B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762730A (zh) * 2018-12-29 2019-05-17 无锡海核装备科技有限公司 一种生物冷冻保存装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114448A2 (en) * 2008-03-11 2009-09-17 Playtex Products, Llc Low absorbency tampon pledget and method of testing
CN103558121A (zh) * 2013-11-11 2014-02-05 重庆交通大学 一种泥沙淤积物在大水压力下干容重变化的试验装置及其试验方法
CN103558120A (zh) * 2013-11-11 2014-02-05 中国农业科学院农业资源与农业区划研究所 测定土壤容重的方法及土壤容重测定系统
CN104034861A (zh) * 2014-06-04 2014-09-10 中国科学院合肥物质科学研究院 土壤容重实时测量方法及其测量装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114448A2 (en) * 2008-03-11 2009-09-17 Playtex Products, Llc Low absorbency tampon pledget and method of testing
CN103558121A (zh) * 2013-11-11 2014-02-05 重庆交通大学 一种泥沙淤积物在大水压力下干容重变化的试验装置及其试验方法
CN103558120A (zh) * 2013-11-11 2014-02-05 中国农业科学院农业资源与农业区划研究所 测定土壤容重的方法及土壤容重测定系统
CN104034861A (zh) * 2014-06-04 2014-09-10 中国科学院合肥物质科学研究院 土壤容重实时测量方法及其测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"冰冻取样器的结构设计";李国民等;《探矿工程》;20031230;第179页 *

Also Published As

Publication number Publication date
CN106482975A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Pirone et al. In situ monitoring of the groundwater field in an unsaturated pyroclastic slope for slope stability evaluation
Nakhaei et al. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code
CN103197046B (zh) 泥石流临界土体体积含水率测量方法与泥石流预警方法
Fallico et al. Scaling analysis of hydraulic conductivity and porosity on a sandy medium of an unconfined aquifer reproduced in the laboratory
Witte et al. Geothermal response tests using controlled multi-power level heating and cooling pulses (MPL-HCP): quantifying ground water effects on heat transport around a borehole heat exchanger
RU2580316C1 (ru) Способ определения количества незамерзшей воды в мерзлых грунтах
Trautz et al. Sensible heat balance and heat-pulse method applicability to in situ soil-water evaporation
Tao et al. Linking soil macropores, subsurface flow and its hydrodynamic characteristics to the development of Benggang erosion
Sriapai et al. Physical model simulations of seawater intrusion in unconfined aquifer.
CN106482975B (zh) 一种淤积物原位取样分析处理方法
JP2015037760A (ja) 海洋電磁探査を用いた塩水帯水層内で二酸化炭素の注入挙動の評価方法
CN106680454A (zh) 一种具拦沙坝已治理崩岗土壤侵蚀模数测算方法
MM Ibrahim Comparison of Methods for saturated hydraulic conductivity determination: field, laboratory and empirical measurements (A Pre-view)
Akram et al. A comparative view of groundwater flow simulation using two modelling software-MODFLOW and MIKE SHE
CN102435540A (zh) 浅层沙土渗透系数测量系统及测量方法
Lafayette et al. Experimentation and modeling of soil evaporation in underground dam in a semiarid region
CN204027954U (zh) 径流泥沙含量实时测量装置
Li et al. In situ estimation of relative permeability from resistivity measurements
Salgado et al. Penetration rate effects on cone resistance measured in a calibration chamber
Goharrokhi Effect of hydraulic shear stress on the banks of the Red River
Jabro et al. Performance evaluation and accuracy of passive capillary samplers (PCAPs) for estimating real-time drainage water fluxes
Liso et al. Apulian caves as natural hydrogeological laboratories
Philip et al. Comparison of empirical models and laboratory saturated hydraulic conductivity measurements
Havril et al. Evolution of Fluid Flow Patterns and Heat Distribution over Geological Time Scales in a Thick Carbonate Sequence
Caputo et al. Hydraulic characterization of Pwales aquifer in Malta Island preparatory for planning managed aquifer recharge (MAR) pilot plant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant