CN106479238B - 一种改性无机防腐颜料的制备方法 - Google Patents

一种改性无机防腐颜料的制备方法 Download PDF

Info

Publication number
CN106479238B
CN106479238B CN201611054902.9A CN201611054902A CN106479238B CN 106479238 B CN106479238 B CN 106479238B CN 201611054902 A CN201611054902 A CN 201611054902A CN 106479238 B CN106479238 B CN 106479238B
Authority
CN
China
Prior art keywords
zinc
source
iron
corrosion
corrosion paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611054902.9A
Other languages
English (en)
Other versions
CN106479238A (zh
Inventor
刘金库
沈娟
薛西子
苏玉云
王凤蕊
张靓玉
苗敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN201611054902.9A priority Critical patent/CN106479238B/zh
Publication of CN106479238A publication Critical patent/CN106479238A/zh
Application granted granted Critical
Publication of CN106479238B publication Critical patent/CN106479238B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明属于无机化学技术领域,具体涉及一种改性无机防腐颜料的制备方法。本发明采用铁钴共掺杂的方式改性氧化锌纳米防腐颜料,显著提高了无机防腐颜料氧化锌的防腐性能,且在制备过程中省去前驱物长时间干燥的工序,简便快捷地制备粒径尺寸在纳米量级的铁钴共掺杂型氧化锌纳米防腐颜料。被发明制备的纳米粉体具有分散性好,粒径小且大小分布均匀,化学稳定性高,防腐性能优异等优点。

Description

一种改性无机防腐颜料的制备方法
技术领域
本发明属于无机化学领域,具体涉及一种改性无机防腐颜料的制备方法。
背景技术
纳米氧化锌作为防腐颜料在防腐涂料行业有非常大的应用潜力,但其防腐性能有待提高。而经过掺杂或表面修饰所形成的纳米复合颜料可以使氧化锌的防腐性能得到改善。Rostami M. El Saeed等人(Rostami M, Rasouli S, Ramezanzadeh B, et al.Electrochemical investigation of the properties of Co doped ZnO nanoparticleas a corrosion inhibitive pigment for modifying corrosion resistance of theepoxy coating. Corrosion Science, 2014, 88(11):387-399)研究了钴掺杂氧化锌纳米颜料的防腐性能。他们将单一氧化锌纳米颜料和不同比例进行掺杂的氧化锌纳米颜料分别加到环氧树脂中制备防腐涂料,并进行了测试。结果表明,钴掺杂比例为4%的氧化锌纳米颜料的防腐性能提高了3倍。李清等人(Xi Z, Tan C, Xu L, et al.A novel functionalHPPS/PCL/ZnO composite layer on AZ91 for anticorrosion. Materials Letters,2015, 148:134-137.)用浸涂法在AZ91镁合金表面涂抹HPPS/PCL/ZnO复合防腐颜料,并用电化学方法研究了HPPS/PCL/ZnO复合颜料的防腐性能。电化学阻抗和盐水浸泡实验表明,在模拟海水中浸泡20 d后,涂有HPPS/PCL/ZnO的复合物的涂层表面仍光滑,几乎没有变化。因此,HPPS/PCL/ZnO复合物保护效果更好。刘伟等人(HongmeiXu, Wei Liu, Lixin Cao,Ge Su, RuijingDuan,Preparation of porous TiO2/ZnO composite film and itsphotocathodic protection properties for Fe3O4 stainless steel. Applied SurfaceScience, 2014, 301: 508-514.)研究了TiO2/ZnO复合颜料的防腐性能,并将TiO2/ZnO和ZnO在钢板上进行防腐性能的对比。结果表明,由于TiO2/ZnO异质结和复合膜的多孔结构的相互作用,提供了一个更好的阴极保护膜。多孔TiO2/ZnO复合薄膜在紫外光照射下具有明显的防腐性能的提高。TiO2/ZnO复合颜料的防腐能力明显强于ZnO。GnanaprakasamChristopher等人(Christopher G, Kulandainathan M A, Harichandran G. Highlydispersive waterborne polyurethane/ZnOnanocomposites for corrosionprotection. Journal of Coatings Technology & Research, 2015, 12:657-667.)对氧化锌进行表面改性,合成了OA-ZnO复合颜料,将其加入到水性聚氨酯中形成纳米复合涂料,主要研究了分散剂对防腐颜料的影响。改性纳米氧化锌比未改性的纳米ZnO分散性更稳定。改性氧化锌纳米粒子均匀分散在水性聚氨酯涂层中,以防止腐蚀性物种的迁移到衬底上,从而防止腐蚀。极化曲线和交流阻抗的测量证明,含0.3%油酸氧化锌纳米复合材料表现出优良的耐腐蚀性。Amir Mostafaei等人(Mostafaei A, Nasirpouri F. Epoxy/polyaniline-ZnOnanorods hybrid nanocomposite coatings: Synthesis,characterization and corrosion protection performance of conducting paints.Progress in Organic Coatings, 2014, 77(1):146-159.)研究了Polyaniline-ZnO纳米棒导电复合材料,加入到环氧树脂中测试防腐效果。结果表明,环氧涂层含有导电Polyaniline-ZnO纳米复合材料具有较高的耐腐蚀性和较好的屏蔽作用。
通过对现有技术分析对比发现,目前尚无关于铁钴共掺杂型导电氧化锌纳米防腐颜料的制备技术,而该类防腐性能非常优异,有着极其广阔的应用前景。
本发明为了加速现铁钴共掺杂型导电氧化锌纳米防腐颜料的实用化步伐,创造性地提出了一种改性无机防腐颜料即铁钴共掺杂型导电氧化锌纳米防腐颜料的快捷合成方法,省去传统技术制备金属氧化物类纳米粉体材料必须经过的前驱物较长时间干燥的工序,而是直接将反应体系加热到接近分解温度,高温环境下实现干燥的同时,使铁钴共掺杂氧化锌基防腐颜料晶体中掺杂原子分布更加均匀有序,有利于稳定固溶体的形成。
本发明获得的产物同现有的其他掺杂氧化锌纳米材料相比,具有更加优异的防腐性能。由于本发明采用的制备方法具有设备简单、合成效率高、生产成本低、产物分散性好、防腐效率高等特点,因此,具有很强的工业可行性。
发明内容
本发明的目的在于提出铁钴共掺杂型氧化锌防腐颜料的快捷合成方法,获得粒径均匀、防腐性能优异的无机改性防腐颜料,推进铁钴共掺杂型氧化锌防腐颜料的实用化进程。
本发明省去了传统工艺的长时间干燥工序,而是直接加热至体系的分解温度,高温下干燥前驱物的同时实现铁钴元素对氧化锌晶格中的有效扩散、沉积、掺杂;同时反应过程中产生大量的气体,能够有效地“破碎”产物,从而获得粒径在纳米量级的铁钴共掺杂型氧化锌纳米粒子,具体步骤为:按照一定比例称取甘氨酸、锌源、钴源和铁源置于研钵中,充分研磨至体系呈粘稠透明状,然后将透明液体转移到坩埚中,再将坩埚置于马弗炉中加热至体系呈蓬松状,停留至无气体放出后继续煅烧,煅烧结束后自然冷却,得到铁钴共掺杂型氧化锌纳米防腐颜料,具体制备条件为:
甘氨酸和锌源的物质的量之比为2:1;
铁源和锌源的物质的量之比为0.25~1:10;
钴源和锌源的的物质的量之比为0.25~1:10;
产物煅烧温度为500~700℃,煅烧时间为1-5 h。
本发明中的铁钴共掺杂型氧化锌防腐颜料的制备方法,锌源为硝酸锌,铁源为硝酸铁,钴源为硝酸钴。
本发明中,研磨是为了使反应原料能够混合均匀。
本发明中,省去了前驱物干燥的过程,而是在马弗炉中直接高温处理,在蒸去混合物中游离的自由水分子的同时,还能够加速分子间的扩散,从而实现有效掺杂,获得固溶体。
本发明中,由于反应物在煅烧分解过程中会产生大量的气体,使产物体系疏松,有效地防止了产物团聚现象的发生,起到了很好的“破碎”作用,从而获得纳米粉体颜料。
本发明中,产物经过煅烧后快速冷却,为了使产物晶体结构中尽可能多地保留催化活性位,使其具有更高的光催化效率。得到产物的粒径达到了纳米量级,并具有良好的分散性。
本发明中的实验发现,利用纳米氧化锌防腐颜料和铁钴共掺杂纳米氧化锌防腐颜料制备的涂层在3.5%NaCl溶液中浸泡2h后,测定其阻抗值前者为3093Ω cm2, 铁钴共掺杂改性后的纳米氧化锌防腐颜料可达到 8487 Ω cm2以上,这说明,铁钴共掺杂的改性氧化锌纳米防腐颜料的防腐性能明显优异于单纯的氧化锌防腐颜料。
本发明具有如下优点:
1、首次提出通过铁钴共掺杂的技术手段提升氧化锌纳米防腐颜料的防腐性能。
2、甘氨酸的加入,在分解过程中膨胀并产生大量气体,使反应体系疏松,有效防止了团聚现象的发生。
3、本发明所用的原材料来源丰富而且廉价,制备工艺简单,生产过程中不产生废水、废渣等工业污染。
实施例:
下面通过具体实施例对本发明作进一步的说明。
实施例1:
按照甘氨酸与硝酸锌的摩尔比例为2:1,铁源和锌源的物质的量之比为0.25:10;钴源和锌源的的物质的量之比为0.25:10。称取上述原料置于研钵中,充分研磨至体系呈现粘稠透明状,然后将透明液体转移到坩埚中,并于210℃条件下停留至没有水蒸气放出后继续煅烧,升温至500℃条件下煅烧5h后,快速冷却,得到红褐色粉末。通过透射电子显微镜观察产物的粒径约为50 nm,产物具有很好的分散性。
实施例2
按照甘氨酸与硝酸锌的摩尔比例为2:1,铁源和锌源的物质的量之比为0.25:10;钴源和锌源的的物质的量之比为0.25:10。称取上述原料置于研钵中,充分研磨至体系呈现粘稠透明状,然后将透明液体转移到坩埚中,并于210℃条件下停留至没有水蒸气放出后继续煅烧,升温至700℃条件下煅烧1h后,快速冷却,得到红褐色粉末。通过透射电子显微镜观察产物的粒径约为80 nm,产物具有很好的分散性。
实施例3
按照甘氨酸与硝酸锌的摩尔比例为2:1,铁源和锌源的物质的量之比为0.25:10;钴源和锌源的的物质的量之比为0.5:10。称取上述原料置于研钵中,充分研磨至体系呈现粘稠透明状,然后将透明液体转移到坩埚中,并于210℃条件下停留至没有水蒸气放出后继续煅烧,升温至600℃条件下煅烧2h后,快速冷却,得到红褐色粉末。通过透射电子显微镜观察产物的粒径约为70 nm,产物具有很好的分散性。
实施例4
按照甘氨酸与硝酸锌的摩尔比例为2:1,铁源和锌源的物质的量之比为0.5:10;钴源和锌源的的物质的量之比为0.5:10。称取上述原料置于研钵中,充分研磨至体系呈现粘稠透明状,然后将透明液体转移到坩埚中,并于210℃条件下停留至没有水蒸气放出后继续煅烧,升温至600℃条件下煅烧3h后,快速冷却,得到红褐色粉末。通过透射电子显微镜观察产物的粒径约为72 nm,产物具有很好的分散性。

Claims (1)

1.一种改性无机防腐颜料的制备方法,其特征在于制备工艺省去了传统工艺的长时间干燥工序,而是直接加热至体系的分解温度,高温下干燥前驱物的同时实现铁钴元素对氧化锌晶格中的有效扩散、沉积、掺杂;同时反应过程中产生大量的气体,能够有效地“破碎”产物,从而获得粒径在纳米量级的改性无机防腐颜料即铁钴共掺杂型氧化锌纳米防腐颜料,防腐性能显著优异于未掺杂的氧化锌纳米粒子,改性无机防腐颜料即铁钴共掺杂型导电氧化锌纳米防腐颜料的具体步骤为:按照一定比例称取甘氨酸、锌源、钴源和铁源置于研钵中,充分研磨至体系呈粘稠透明状,然后将透明液体转移到坩埚中,再将坩埚置于马弗炉中加热至体系呈蓬松状,恒温停留至无气体放出后继续升温至设定温度,煅烧结束后自然冷却,得到红褐色的铁钴共掺杂型导电氧化锌纳米防腐颜料,具体制备条件为:
甘氨酸和锌源的物质的量之比为2:1;
铁源和锌源的物质的量之比为0.25~1:10;
钴源和锌源的的物质的量之比为0.25~1:10;
产物煅烧温度为500~700℃,煅烧时间为1-5 h。
CN201611054902.9A 2016-11-25 2016-11-25 一种改性无机防腐颜料的制备方法 Expired - Fee Related CN106479238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611054902.9A CN106479238B (zh) 2016-11-25 2016-11-25 一种改性无机防腐颜料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611054902.9A CN106479238B (zh) 2016-11-25 2016-11-25 一种改性无机防腐颜料的制备方法

Publications (2)

Publication Number Publication Date
CN106479238A CN106479238A (zh) 2017-03-08
CN106479238B true CN106479238B (zh) 2018-08-03

Family

ID=58275252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611054902.9A Expired - Fee Related CN106479238B (zh) 2016-11-25 2016-11-25 一种改性无机防腐颜料的制备方法

Country Status (1)

Country Link
CN (1) CN106479238B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107739546A (zh) * 2017-10-31 2018-02-27 华东理工大学 一种用钼酸锌改性的无机防腐颜料
CN111286222A (zh) * 2020-02-04 2020-06-16 华东理工大学 一种具有多级自组装魔方式立方结构固溶体防腐颜料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688067B (zh) * 2007-07-12 2013-12-11 巴斯夫欧洲公司 基于珍珠岩薄片的干扰颜料
CN101531392B (zh) * 2009-03-27 2010-12-01 华东理工大学 一种浅色导电纳米粉体材料的制备方法
CN101768015B (zh) * 2009-12-25 2012-06-20 华南理工大学 一种黑色纳米陶瓷颜料及其制备方法

Also Published As

Publication number Publication date
CN106479238A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Ma et al. Designing novel organic inhibitor loaded MgAl-LDHs nanocontainer for enhanced corrosion resistance
Aghzzaf et al. Corrosion inhibition of zinc by calcium exchanged beidellite clay mineral: A new smart corrosion inhibitor
Pourhashem et al. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings
Krishnan et al. Graphene-based anticorrosive coatings for copper
Lin et al. Rapid and highly efficient chemical exfoliation of layered MoS2 and WS2
Zou et al. Fabrication of novel heterostructured few layered WS2-Bi2WO6/Bi3. 84W0. 16O6. 24 composites with enhanced photocatalytic performance
Alibakhshi et al. A facile synthesis method of an effective anti-corrosion nanopigment based on zinc polyphosphate through microwaves assisted combustion method; comparing the influence of nanopigment and conventional zinc phosphate on the anti-corrosion properties of an epoxy coating
Jian Dong et al. One-step preparation and characterization of zinc phosphate nanocrystals with modified surface
Gurmen et al. Production and characterization of the nanostructured hollow iron oxide spheres and nanoparticles by aerosol route
Tang et al. Preparation Al2O3/ZrO2 composite coating in an alkaline phosphate electrolyte containing K2ZrF6 on aluminum alloy by microarc oxidation
Mahmoodi et al. Role of a hybrid dye-clay nano-pigment (DCNP) on corrosion resistance of epoxy coatings
Troutier-Thuilliez et al. Layered particle-based polymer composites for coatings: Part I. Evaluation of layered double hydroxides
Gharagozlou et al. Effect of synthesized NiFe2O4-silica nanocomposite on the performance of an ecofriendly silane sol–gel coating
Asaldoust et al. Construction of a unique anti-corrosion nanocomposite based on graphene oxide@ Zn3PO4/epoxy; experimental characterization and detailed-theoretical quantum mechanics (QM) investigations
Senarathna et al. Convenient routes to synthesize uncommon vaterite nanoparticles and the nanocomposites of alkyd resin/polyaniline/vaterite: the latter possessing superior anticorrosive performance on mild steel surfaces
CN106479238B (zh) 一种改性无机防腐颜料的制备方法
Qian et al. Enhanced functional properties of CeO2 modified graphene/epoxy nanocomposite coating through interface engineering
Sun et al. A novel high anti-corrosion performance polymer based composite coating with new functional fillers
Basha et al. Preparation of submicron-/nano-carbon from heavy fuel oil ash and its corrosion resistance performance as composite epoxy coating
Bouali et al. Ca2+-exchange in layered zirconium orthophosphate, α-ZrP: Chemical study and potential application for zinc corrosion inhibition
Wang et al. CeO 2 modified graphene nanoplatelets composite powders enhanced the cathodic protection of waterborne zinc-rich epoxy coatings
LU et al. Synthesis of aluminum tri-polyphosphate anticorrosion pigment from bauxite tailings
Aslanov et al. Exfoliation of crystals
Sheng et al. Synergistic effect of 2D/0D mixed graphitic carbon nitride/Fe 2 O 3 on the excellent corrosion behavior of epoxy-based waterborne coatings
Wang et al. Design and enhanced anticorrosion performance of a Zn 5 Mo 2 O 11· 5H 2 O/h-BN nanocomposite with labyrinth of nanopores

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180803

Termination date: 20181125