CN106479093B - 一种人工铁电超材料及其制备方法 - Google Patents

一种人工铁电超材料及其制备方法 Download PDF

Info

Publication number
CN106479093B
CN106479093B CN201610851339.1A CN201610851339A CN106479093B CN 106479093 B CN106479093 B CN 106479093B CN 201610851339 A CN201610851339 A CN 201610851339A CN 106479093 B CN106479093 B CN 106479093B
Authority
CN
China
Prior art keywords
tourmaline
ferroelectric
artificial
metamaterial
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610851339.1A
Other languages
English (en)
Other versions
CN106479093A (zh
Inventor
周济
李状
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201610851339.1A priority Critical patent/CN106479093B/zh
Publication of CN106479093A publication Critical patent/CN106479093A/zh
Application granted granted Critical
Publication of CN106479093B publication Critical patent/CN106479093B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种人工铁电超材料及其制备方法。所述人工铁电超材料为两端携带等量异种电荷的微粒分散于高介电溶剂中形成的悬浊液;悬浊液中,两端携带等量异种电荷的微粒的质量‑体积浓度为0~500mg/mL,但不为零;高介电溶剂为蓖麻油、二甲基硅油、变压器油和四氯化碳中任一种;两端携带等量异种电荷的微粒的材质为驻极体材料或电气石。本发明人工铁电超材料,可以直观观察其中的微粒(电偶极子)在交变电场中的转动,因此可以通过研究人工铁电超材料而获得对铁电体的自发极化与极化反转的进一步认识。本发明有望应用于铁电体物理学研究及超常电磁介质器件制备领域。

Description

一种人工铁电超材料及其制备方法
技术领域
本发明涉及一种超构材料及其制备方法,具体涉及一种人工铁电超材料及其制备方法,属于铁电物理学领域。
背景技术
超材料是21世纪初才出现的一个新概念,它由于具有自然界中材料所不具备的超常性质而引起研究者的广泛关注。超材料作为一种人工材料,其超常特性并非来自于材料自身,而是由其设计的人工结构决定。更重要的是,超材料的研究提供了一种新的材料研究思维:可以在不违背物理学基本规律的前提下,人工获得与自然物质具有迥然不同的超常物理性质的“新物质”。
铁电体是存在自发极化的晶体。自发极化的取向有两个或多个,并且取向可以随电场作用而改变。铁电体物理学研究的核心问题是自发极化。但自发极化产生的机理,它与晶体结构和电子结构的关系,以及极化状态在各种外界条件下的变化等基本问题,至今仍没有在同一理论框架内得到统一答案。铁电晶体通常由自发极化方向不同的大量铁电畴组成,而铁电畴又由极化方向相同的电偶极子构成。电偶极子随外加电场作用而改变取向引发了铁电畴的成核与生长,进而形成了铁电体在外加电场作用下的极化反转。极化反转导致了铁电体具有诸如电滞回线等物理特性,测试铁电体的电滞回线又可以宏观上定性地研究铁电体的极化反转。但关于该过程的微观机制目前仍处于研究中。
发明内容
本发明的目的是提供一种人工铁电超材料及其制备方法,本发明人工铁电超材料以驻极体微粒或电气石粉来模拟铁电体中的单个电偶极子,通过将大量微粒分散到高介电溶剂中,以直观地研究人工铁电超材料在电场中的极化反转与畴变化动力学行为,再通过进一步分析微粒在电场中的受力与耦合效应,获得对铁电体微观物理模型的进一步认识;并且本发明人工铁电超材料的制备方法操作简单,原料价格低廉,具有极好的应用前景。
本发明所提供的人工铁电超材料,为两端携带等量异种电荷的微粒分散于高介电溶剂中形成的悬浊液流体。
所述的人工铁电超材料中,所述悬浊液流体中,所述两端携带等量异种电荷的微粒的质量-体积浓度可为0~500mg/mL,但不为零,具体可为10~50mg/mL、10mg/mL或50mg/mL。
所述的人工铁电超材料中,所述高介电溶剂可为蓖麻油、二甲基硅油、变压器油和四氯化碳中任一种。
所述的人工铁电超材料中,所述两端携带等量异种电荷的微粒的形状可为微球、圆柱体微粒、立方体微粒或不规则微粒。
所述的人工铁电超材料中,所述两端携带等量异种电荷的微粒的尺寸为500nm~5mm,如尺寸为100×100×500μm3的立方体驻极体微粒。
所述的人工铁电超材料中,所述两端携带等量异种电荷的微粒所携带的电荷可为空间电荷和/或偶极电荷。
所述的人工铁电超材料中,所述两端携带等量异种电荷的微粒的材质可为驻极体材料或电气石。
所述的人工铁电超材料中,所述驻极体材料可为聚合物驻极体材料或无机驻极体材料;
所述聚合物驻极体材料具体可为聚乙烯(PE)、聚丙烯(PP)、聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚四氟乙烯(PTFE)、氟化乙丙烯共聚物(FEP)、聚偏氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、乙烯环氧化脂肪的氟化共聚物(Teflon AF)和偏氟-三氟乙烯共聚物(P(VDF-TrFE))中任一种或几种;
所述无机驻极体材料具体可为二氧化硅(SiO2)、氮化硅(Si3N4)和氧化铝(Al2O3)中任一种或几种。
所述的人工铁电超材料中,所述电气石可为黑电气石、镁电气石、锂电气石、纳锰电气石、钙镁电气石、钙锂电气石、钙铁电气石、铝电气石、布拉格电气石、铬镁电气石和无碱电气石中任一种或几种。
本发明进一步提供了所述人工铁电超材料的制备方法,包括如下步骤:
将所述两端携带等量异种电荷的微粒分散于所述高介电溶剂中即得所述人工铁电超材料。
上述的制备方法中,当所述两端携带等量异种电荷的微粒的材质为电气石时,选择所需尺寸的电气石粉即可,无需进行进一步处理。
上述的制备方法中,当所述两端携带等量异种电荷的微粒的材质为驻极体材料时,按照下述1)或2)的方法制备:
1)所述两端携带等量异种电荷的微粒的形状为微球时,采用电晕极化的方法在所述微球的两端注入等量异种电荷即得;
2)所述两端携带等量异种电荷的微粒的形状为圆柱体微粒、立方体微粒或不规则微粒时,采用切割的方法切割两端携带等量异种电荷的驻极体薄膜或压电片即得;
所述切割的方式可为机械切割或激光切割。
上述的制备方法中,步骤(2)中,分散后还包括如下步骤:机械搅拌至分散均匀,再进一步超声处理获得稳定性较好的悬浊液。
本发明人工铁电超材料可用于超常电磁介质器件或铁电体物理学研究。
本发明提供的人工铁电超材料,可以直观观察其中的微粒(电偶极子)在交变电场中的转动,因此可以通过研究人工铁电超材料而获得对铁电体的自发极化与极化反转的进一步认识。通过分析电场提供的电场力、溶剂提供的矫顽力、以及微粒间的耦合作用,可以获得对铁电体电畴的产生与发展的直观认识,从而为铁电体的极化反转过程提供更清晰的理论模型。本发明有望应用于铁电体物理学研究及超常电磁介质器件制备领域。
附图说明
图1为本发明实施例1中聚偏氟乙烯压电片经机械切割所得的聚偏氟乙烯驻极体微粒的光学显微镜照片。
图2为本发明实施例1聚偏氟乙烯驻极体微粒/蓖麻油体系的人工铁电超材料在交变电场中的转动行为。
图3为本发明实施例2中10000目的黑电气石粉的光学显微镜照片。
图4为本发明实施例2中10000目的黑电气石粉/蓖麻油体系的人工铁电超材料采用铁电测试系统测得的电滞回线。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、制备聚偏氟乙烯驻极体微粒/蓖麻油体系的人工铁电超材料
采用自动切割机将预极化的聚偏氟乙烯压电片(厚度500μm)切割成尺寸为100×100×500μm3的立方体驻极体微粒,如图1所示。微粒中的偶极电荷沿立方体c轴方向排列。然后将所得的驻极体微粒分散入蓖麻油中,机械搅拌至分散均匀,再进一步常温水浴超声处理30min获得稳定性较好的悬浊液,即为人工铁电超材料。
本实施例制备的人工铁电超材料中,聚偏氟乙烯驻极体微粒的质量-体积浓度为10mg/mL。
将本实施例制备的人工铁电超材料置于一个由两块平行电极构成的平行电场中,通过改变电场的强度和方向观察驻极体微粒在电场中的取向与反转行为,结果如图2所示。
由图2可以看出,随电场强度增大,微粒逐渐沿电场方向取向;反转电场方向,微粒会逐渐发生反转,与铁电体的场致反转行为类似。
实施例2、制备电气石粉/蓖麻油体系的人工铁电超材料
将10000目的黑电气石粉(如图3所示,所携带的电荷为空间电荷和偶极电荷)以50mg/mL的浓度分散入蓖麻油中,经机械搅拌和常温水浴超声处理30min,获得人工铁电超材料。
采用铁电系统测试本实施例制备的人工铁电超材料的电滞回线,测试过程中交变电压峰值设为1kV,频率为0.02Hz,结果如图4所示,由该图可以看出,本实施例制备的人工铁电超材料具有极化反转的特性。

Claims (6)

1.一种人工铁电超材料,其特征在于:所述人工铁电超材料为两端携带等量异种电荷的微粒分散于高介电溶剂中形成的悬浊液;
所述悬浊液中,所述两端携带等量异种电荷的微粒的质量-体积浓度为0~500mg/mL,但不为零;
所述高介电溶剂为蓖麻油、二甲基硅油、变压器油和四氯化碳中任一种;
所述两端携带等量异种电荷的微粒的尺寸为500nm~5mm。
2.根据权利要求1所述的人工铁电超材料,其特征在于:所述两端携带等量异种电荷的微粒的形状为微球、圆柱体微粒、立方体微粒或不规则微粒。
3.根据权利要求1或2所述的人工铁电超材料,其特征在于:所述两端携带等量异种电荷的微粒的材质为驻极体材料或电气石。
4.根据权利要求3所述的人工铁电超材料,其特征在于:所述驻极体材料为聚合物驻极体材料或无机驻极体材料;
所述聚合物驻极体材料为聚乙烯、聚丙烯、聚酰亚胺、聚对苯二甲酸乙二醇酯、聚四氟乙烯、氟化乙丙烯共聚物、聚偏氟乙烯、聚三氟氯乙烯、Teflon AF和偏氟-三氟乙烯共聚物中任一种或几种;
所述无机驻极体材料为二氧化硅、氮化硅和氧化铝中任一种或几种;
所述电气石为黑电气石、镁电气石、锂电气石、钠锰电气石、钙镁电气石、钙锂电气石、钙铁电气石、铝电气石、布格电气石、铬镁电气石和无碱电气石中任一种或几种。
5.权利要求1-4中任一项所述人工铁电超材料的制备方法,包括如下步骤:
将所述两端携带等量异种电荷的微粒分散于所述高介电溶剂中即得所述人工铁电超材料。
6.权利要求1-4中任一项所述人工铁电超材料在超常电磁介质器件或铁电体物理学中的应用。
CN201610851339.1A 2016-09-26 2016-09-26 一种人工铁电超材料及其制备方法 Active CN106479093B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610851339.1A CN106479093B (zh) 2016-09-26 2016-09-26 一种人工铁电超材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610851339.1A CN106479093B (zh) 2016-09-26 2016-09-26 一种人工铁电超材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106479093A CN106479093A (zh) 2017-03-08
CN106479093B true CN106479093B (zh) 2019-01-04

Family

ID=58268817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610851339.1A Active CN106479093B (zh) 2016-09-26 2016-09-26 一种人工铁电超材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106479093B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781442B1 (ja) * 2020-04-15 2020-11-04 ジャパンマテックス株式会社 ポリイミド−フッ素樹脂−極性結晶体微粒子混合水性分散液およびその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114263A (zh) * 2011-02-16 2011-07-06 徐国元 氟塑料驻极体医用绷带
CN105648743A (zh) * 2015-12-24 2016-06-08 天津工业大学 一种纺织用电气石改性纳米二氧化钛高性能整理剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102114263A (zh) * 2011-02-16 2011-07-06 徐国元 氟塑料驻极体医用绷带
CN105648743A (zh) * 2015-12-24 2016-06-08 天津工业大学 一种纺织用电气石改性纳米二氧化钛高性能整理剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"超材料(metamaterials)":设计思想、材料体系与应用;周济;《第五届中国功能材料及其应用学术会议论文集Ⅰ》;20040901;125-128

Also Published As

Publication number Publication date
CN106479093A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Martins et al. Effect of filler dispersion and dispersion method on the piezoelectric and magnetoelectric response of CoFe2O4/P (VDF-TrFE) nanocomposites
Yousry et al. Mechanisms for enhancing polarization orientation and piezoelectric parameters of PVDF nanofibers
Gadinski et al. Understanding of relaxor ferroelectric behavior of poly (vinylidene fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymers
Wu et al. Sound absorption of electrospun polyvinylidene fluoride/graphene membranes
Tan et al. Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles
Choi et al. Enhancement of local piezoresponse in polymer ferroelectrics via nanoscale control of microstructure
Gupta et al. Revisiting δ-PVDF based piezoelectric nanogenerator for self-powered pressure mapping sensor
Broadhurst et al. Piezo-and pyroelectric properties
Prosandeev et al. Phase Transitions in Epitaxial (<? format?>-<? format?> 110) BiFeO 3 Films from First Principles
Khurana et al. In situ polarized ultrathin PVDF film-based flexible piezoelectric nanogenerators
Martins et al. Large linear anhysteretic magnetoelectric voltage coefficients in CoFe 2 O 4/polyvinylidene fluoride 0–3 nanocomposites
Raeliarijaona et al. Mode sequence, frequency change of nonsoft phonons, and LO-TO splitting in strained tetragonal BaTiO 3
CN106479093B (zh) 一种人工铁电超材料及其制备方法
Sasmal et al. Nano to micrometer range particle size effect on the electrical and piezoelectric energy harvesting performances of hydroxide mediated crosslinked PVDF composites
Martins et al. Novel hybrid multifunctional magnetoelectric porous composite films
Liu et al. Influence of POSS as a Nanofiller on the Structure, Dielectric, Piezoelectric and Ferroelectric Properties of PVDF
Gao et al. Pickering emulsion polymerized magnetite-poly (methyl methacrylate) composite particles and their magnetorheology
CN103788550B (zh) 一种pvdf-hfp/cb压电复合材料薄膜和该薄膜的制备方法
Wang et al. Flexible, stable and durable polydopamine@ lead zirconate titanate/polyimide composite membranes for piezoelectric pressure sensors and limb motion monitoring
Ma et al. Improved piezoelectric properties of 2–2 piezoelectric single crystal composites for acoustic transducer applications via alternating current polarization
Xia et al. Clamping of ferroelectric PVDF to enhance the electromechanical performance of a 1–3 PMN-PT/PVDF piezoelectric composite
Tang et al. Temperature dependence of complete sets of material constants of Pb (In1/2Nb1/2) O3–Pb (Mg1/3Nb2/3) O3–PbTiO3 crystals using different poling methods
Revathi et al. Structural, Dielectric, and Magnetic Studies on Electrospun Magnesium Ferrite-Polyvinylidene Fluoride Core–Shell Composite Fibers
Xiao et al. Cellulose Nanorods Modified with Polyethylenimine and Carbon Dots for Applications as Piezoelectric and Fluorescent Materials
Guo et al. A pyrotoroidic transition in ferroelectric polymer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant