CN106475038A - 激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法 - Google Patents

激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法 Download PDF

Info

Publication number
CN106475038A
CN106475038A CN201610912182.9A CN201610912182A CN106475038A CN 106475038 A CN106475038 A CN 106475038A CN 201610912182 A CN201610912182 A CN 201610912182A CN 106475038 A CN106475038 A CN 106475038A
Authority
CN
China
Prior art keywords
laser
piece
nano particle
induced
single dispersing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610912182.9A
Other languages
English (en)
Inventor
刘宪华
林青霞
赵杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201610912182.9A priority Critical patent/CN106475038A/zh
Publication of CN106475038A publication Critical patent/CN106475038A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0262Compounds of O, S, Se, Te
    • B01J20/0266Compounds of S
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法,包括如下步骤:(1)在旋转容器中加入含有硫代乙酰胺和十六烷基三甲基溴化铵的水溶液为反应液;(2)Ag片抛光后浸没于反应液中,旋转;(3)通过石英透镜将激光束聚焦在位于旋转容器中Ag片上;(4)从旋转容器中取出激光照射后的Ag片,用蒸馏水冲洗激光照射后的Ag片表面收集的产物,离心,沉积产物烘干,即得。本发明的方法简单,本发明制备的Ag‑Ag2S纳米粒子光催化剂表现出去除废水中甲基蓝(MB)的优越性能,可见光下,5min之内MB的去除率可达99.83%;吸附降解有机物后实现了纳米材料不需借助外力的沉降分离。

Description

激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法
技术领域
本发明属于水体净化领域,涉及一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂及制备方法。
背景技术
地下水中的一些有机污染物具有很高的毒性甚至会对水生生物和包括人类和其他陆生生物产生致死作用。越来越多的证据表明,电镀、纺织工业、化妆品、药品等行业向水体中排放的有机污染物是人肾脏、肝脏及膀胱癌等发病率升高的主要原因。甲基蓝(MB)和甲基橙(MO)是比较常见的有机污染物,具有复杂的芳香族分子结构,通常对光、热或氧化剂具有稳定性,非常难从废水中分离、降解。常规的去除废水中染料有机物的处理技术包括化学沉淀、生物氧化、臭氧氧化及光催化。因为常规技术都具有程序复杂且去除效率低的缺陷,所以现今大多数研究者都致力于开发环保吸附剂以求通过简单的吸附作用去除水体中的有机污染物。例如,Das等人合成负载羟基(-OH)的氧化铁纳米颗粒获得较高的吸附性能。最近的研究中,一些新兴的纳米材料表现出良好的吸附性能,如已有研究表明过渡金属氧化物(Fe、Co和Ni)纳米颗粒可以有效的从废水中去除MB。但是,水处理后的净化程序仍旧是一个亟待解决的问题,这些吸附材料或者催化还原剂只能通过离心或外部磁场协助才能够除去,这成为了应用于实际污水处理厂的一大限制。
在溶液中进行的激光诱导合成技术由于高温、高压及非平衡的处理条件,而成为一种新兴的用于合成金属稳定材料的绿色合成法。电子重建α-Ag2WO4纳米棒、碳纳米管及微米管bbc结构的制造、硅纳米球低聚物的MIT效应、新相纳米晶体的形成、Ag/AgCl异质结构立方体的制备等均为液体激光制造领域获得的最新研究进展。
但目前尚未有用激光诱导单分散Ag-Ag2S纳米粒子光催化剂的报道。
发明内容
本发明的目的是克服现有技术的不足,提供一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法。
本发明的技术方案概述如下:
一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法,包括如下步骤:
(1)在旋转容器中加入反应液,所述反应液为含有硫代乙酰胺和十六烷基三甲基溴化铵的水溶液,所述硫代乙酰胺的浓度为0.2M,十六烷基三甲基溴化铵的浓度为0.05M;
(2)Ag片抛光后浸没于反应液中,在300-400rpm条件下,旋转20-40min;
(3)在发射激光波长1064nm,脉冲持续时间10ns,频率为10Hz的条件下,通过具有65mm焦距的石英透镜将激光束聚焦在位于旋转容器中Ag片上30min,使Ag片表面的激光束平均直径为370μm,激光功率密度为6~9GW/cm2
(4)从旋转容器中取出激光照射后的Ag片,用蒸馏水冲洗激光照射后的Ag片表面收集的产物,将冲洗液在10000rpm离心5-15min,沉积产物,在烘箱中在室温干燥,得到激光诱导单分散Ag-Ag2S纳米粒子光催化剂。
本发明的优点:
1.本发明的方法简单,本发明制备的Ag-Ag2S纳米粒子光催化剂表现出去除废水中甲基蓝(MB)和甲基橙(MO)的优越性能,将9mgAg-Ag2S纳米粒子光催化剂加入30mL甲基蓝(MB)浓度为10mg/L的废水中,可见光下,5min之内MB的去除率可达99.83%;
2.相比较传统的纳米材料催化剂,本发明的方法制备的Ag-Ag2S纳米粒子光催化剂,由于SO3Na官能团的存在,在吸附降解污染物后可以自行聚集沉降于反应容器底部,通过过滤即可除去,去除率99.999%(图2),对于其在实际中的应用具有重大意义。
3.本发明的方法制备的Ag-Ag2S纳米颗粒表现出卓越的吸附性能,且在吸附降解有机物后突破性地实现了纳米材料不需借助外力的沉降分离。
附图说明
图1为激光诱导单分散Ag-Ag2S纳米粒子光催化剂在可见光下对水溶液中MB的降解。
图2 MB降解过程颜色变化。
图3 MB的降解浓度与Ag-Ag2S中Ag、Ag2S质量比的响应曲线。
图4 Ag-Ag2S混合纳米颗粒吸附MB分子的示意图。
具体实施方式
本发明激光所采用的激光器为Q-switched Nd:YAG(Yttrium Aluminum Garnet)laser(Quanta Ray,Spectra Physics),这种激光器的公开是为了使本领域技术人员能够更好地理解本发明,但并不对本发明作任何限制。
本发明各实施例中所示的TAA为硫代乙酰胺的简写;CTAB为十六烷基三甲基溴化铵的简写,MB为甲基蓝的简写。
实施例1
一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法,包括如下步骤:
(1)在旋转容器中加入反应液,所述反应液为含有TAA和CTAB的水溶液,所述TAA的浓度为0.2M,CTAB的浓度为0.05M;
(2)Ag片抛光后浸没于反应液中,在350rpm条件下,旋转30min;
(3)在发射激光波长1064nm,脉冲持续时间10ns,频率为10Hz的条件下,通过具有65mm焦距的石英透镜将激光束聚焦在位于旋转容器中Ag片上30min,使Ag片表面的激光束平均直径为370μm,激光功率密度为6~9GW/cm2
(4)从旋转容器中取出激光照射后的Ag片,用蒸馏水冲洗激光照射后的Ag片表面收集的产物,将冲洗液在10000rpm离心10min,沉积产物,在烘箱中在室温干燥,得到激光诱导单分散Ag-Ag2S纳米粒子光催化剂。
实施例2
一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法,包括如下步骤:
(1)在旋转容器中加入反应液,所述反应液为含有TAA和CTAB的水溶液,所述TAA的浓度为0.2M,CTAB的浓度为0.05M;
(2)Ag片抛光后浸没于反应液中,在300rpm条件下,旋转40min;
(3)在发射激光波长1064nm,脉冲持续时间10ns,频率为10Hz的条件下,通过具有65mm焦距的石英透镜将激光束聚焦在位于旋转容器中Ag片上30min,使Ag片表面的激光束平均直径为370μm,激光功率密度为6~9GW/cm2
(4)从旋转容器中取出激光照射后的Ag片,用蒸馏水冲洗激光照射后的Ag片表面收集的产物,将冲洗液在10000rpm离心5min,沉积产物,在烘箱中在室温干燥,得到激光诱导单分散Ag-Ag2S纳米粒子光催化剂。
实施例3
一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法,包括如下步骤:
(1)在旋转容器中加入反应液,所述反应液为含有TAA和CTAB的水溶液,所述TAA的浓度为0.2M,CTAB的浓度为0.05M;
(2)Ag片抛光后浸没于反应液中,在400rpm条件下,旋转20min;
(3)在发射激光波长1064nm,脉冲持续时间10ns,频率为10Hz的条件下,通过具有65mm焦距的石英透镜将激光束聚焦在位于旋转容器中Ag片上30min,使Ag片表面的激光束平均直径为370μm,激光功率密度为6~9GW/cm2
(4)从旋转容器中取出激光照射后的Ag片,用蒸馏水冲洗激光照射后的Ag片表面收集的产物,将冲洗液在10000rpm离心15min,沉积产物,在烘箱中在室温干燥,得到激光诱导单分散Ag-Ag2S纳米粒子光催化剂。
实施例4
实施例1制备的激光诱导单分散Ag-Ag2S纳米粒子光催化剂用于MB光催化降解,具体步骤如下:
(1)配置浓度为10mg/L的MB溶液,取样3mL标记为M0
(2)精确称取9mg激光诱导单分散Ag-Ag2S纳米粒子光催化剂置于烧杯中,加入30mL浓度为10mg/L的MB水溶液,黑暗中搅拌60min,将样品溶液分成两份,一份3mL,在6000rpm离心后,取上清标记为M60
(3)在步骤(2)剩余的另一份样品溶液放置在300W汞灯下,汞灯垂直于杯底,距液面8.5cm照射,5min后取样3mL,在6000rpm离心后,取上清液标记为M5
(4)停止照射,烧杯内剩余的液体(悬浮液)发生自然沉降,以0.22μm滤膜过滤,取滤液3mL,标记为M6,M0与M6的对比如图2,(图2MB降解过程颜色变化(左图为降解前的M0,右图为降解、过滤后的M6)
(5)用紫外-可见分光光度计分别检测M0、M60、M5于190~1100nm处吸收光谱,如图1所示,从图1中可以看出:激光诱导单分散Ag-Ag2S纳米粒子光催化剂在可见光下对水溶液中MB的降解率可在5min内达到99.83%,664nm处的吸光度由初始的2.474Abs降至5min时的0.004Abs。
实施例5不同Ag、Ag2S比率的激光诱导单分散Ag-Ag2S纳米粒子光催化剂对MB吸附容量曲线
按照实施例1的激光诱导单分散Ag-Ag2S纳米粒子光催化剂制备方法,仅将步骤(3)的激光束聚焦在位于旋转容器中Ag片上的时间分别用10min、15min、20min、30min、40min、50min,得到6种激光诱导单分散Ag-Ag2S纳米粒子光催化剂。分别对应0.4、0.6、0.8、1.0、1.2、1.4的Ag/Ag2S质量比,按照下述步骤测试其各自对于MB的处理能力:
(1)配制浓度为10mg/L的MB水溶液,取样3mL标记为M0
(2)精确称取9mg激光诱导单分散Ag-Ag2S纳米粒子光催化剂置于烧杯中,加入30mL浓度为10mg/L的MB水溶液,黑暗中搅拌60min;
(3)将上述溶液置于300W汞灯下,汞灯垂直于杯底,距液面8.5cm照射,5min后取样3mL,6000rpm离心后分别标记为M5
M0、M5分别对比MB标准曲线,得到C0、C5(mg/L),以C5-C0的差值为纵坐标,以所用的催化剂中Ag与Ag2S的质量比为横坐标作图(图3)。可以看出Ag与Ag2S的质量比小于1.0时,制得的纳米颗粒对于MB处理能力随着质量比升高而升高;Ag与Ag2S的质量比大于1.0时,制得的纳米颗粒对于MB处理能力随着质量比升高而降低;Ag与Ag2S的质量比为1.0时,达到最大处理能力,即前例所用的纳米颗粒,降解率可达99.83%。
实施例6
激光诱导单分散Ag-Ag2S纳米粒子光催化剂对水体中有机染料分子的吸附机理
通过上面的讨论我们可以分析得出激光诱导单分散Ag-Ag2S纳米粒子光催化剂吸附水体中有机染料分子的机理。即激光诱导单分散Ag-Ag2S纳米粒子光催化剂的正活性位点与MB分子的负电荷之间强大的电子-静电作用使得MB分子吸附于纳米颗粒表面,之后维持凝聚体的能力来自于带正电荷的Ag-Ag2S与MB带负电荷的-SO3 -官能团之间形成的离子键。因此,染料分子是否携带-SO3 -官能团将影响光催化降解效率。另外,由实施例5可知,Ag2S表面Ag的沉积量直接影响正活性位点的数量,因此Ag沉积过多或者过少均不利于纳米粒子对染料分子的降解能力。
图4为激光诱导单分散Ag-Ag2S纳米粒子光催化剂对水体中有机染料分子MB的吸附机理示意图。

Claims (1)

1.一种激光诱导单分散Ag-Ag2S纳米粒子光催化剂的制备方法,其特征是包括如下步骤:
(1)在旋转容器中加入反应液,所述反应液为含有硫代乙酰胺和十六烷基三甲基溴化铵的水溶液,所述硫代乙酰胺的浓度为0.2M,十六烷基三甲基溴化铵的浓度为0.05M;
(2)Ag片抛光后浸没于反应液中,在300-400rpm条件下,旋转20-40min;
(3)在发射激光波长1064nm,脉冲持续时间10ns,频率为10Hz的条件下,通过具有65mm焦距的石英透镜将激光束聚焦在位于旋转容器中Ag片上30min,使Ag片表面的激光束平均直径为370μm,激光功率密度为6~9GW/cm2
(4)从旋转容器中取出激光照射后的Ag片,用蒸馏水冲洗激光照射后的Ag片表面收集的产物,将冲洗液在10000rpm离心5-15min,沉积产物,在烘箱中在室温干燥,得到激光诱导单分散Ag-Ag2S纳米粒子光催化剂。
CN201610912182.9A 2016-10-20 2016-10-20 激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法 Pending CN106475038A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610912182.9A CN106475038A (zh) 2016-10-20 2016-10-20 激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610912182.9A CN106475038A (zh) 2016-10-20 2016-10-20 激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN106475038A true CN106475038A (zh) 2017-03-08

Family

ID=58270203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610912182.9A Pending CN106475038A (zh) 2016-10-20 2016-10-20 激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106475038A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905764A (zh) * 2020-09-21 2020-11-10 河南科技大学 一种Ag2S/Ag光催化剂的制备方法
CN114011441A (zh) * 2021-12-08 2022-02-08 青海师范大学 一种复合光催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059491A (zh) * 2012-12-28 2013-04-24 中国科学院合肥物质科学研究院 基于液相激光溅射技术无机-高分子纳米复合材料的制备方法
RU2538262C1 (ru) * 2013-06-17 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Способ получения полупроводниковых коллоидных квантовых точек сульфида серебра
CN104889388A (zh) * 2015-05-18 2015-09-09 华东理工大学 一种核壳结构银@硫化银纳米线的制备方法
CN105771874A (zh) * 2016-04-21 2016-07-20 山东大学 一种能自然沉积吸附物的银硫复合纳米吸附剂及污水中甲基蓝的去除方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059491A (zh) * 2012-12-28 2013-04-24 中国科学院合肥物质科学研究院 基于液相激光溅射技术无机-高分子纳米复合材料的制备方法
RU2538262C1 (ru) * 2013-06-17 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Способ получения полупроводниковых коллоидных квантовых точек сульфида серебра
CN104889388A (zh) * 2015-05-18 2015-09-09 华东理工大学 一种核壳结构银@硫化银纳米线的制备方法
CN105771874A (zh) * 2016-04-21 2016-07-20 山东大学 一种能自然沉积吸附物的银硫复合纳米吸附剂及污水中甲基蓝的去除方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUA ZHANG ET AL: ""Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal"", 《OPTICAL MATERIALS EXPRESS》 *
JINYAN XIONG ET AL: ""Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag2S nanowire/nanosheet heterostructure with diverse applications"", 《CRYSTENGCOMM》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905764A (zh) * 2020-09-21 2020-11-10 河南科技大学 一种Ag2S/Ag光催化剂的制备方法
CN114011441A (zh) * 2021-12-08 2022-02-08 青海师范大学 一种复合光催化剂及其制备方法
CN114011441B (zh) * 2021-12-08 2022-04-15 青海师范大学 一种复合光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Mahdavi et al. Enhanced photocatalytic degradation of toxic contaminants using Dy2O3-SiO2 ceramic nanostructured materials fabricated by a new, simple and rapid sonochemical approach
Li et al. Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants
Pathania et al. Photocatalytic degradation of highly toxic dyes using chitosan-g-poly (acrylamide)/ZnS in presence of solar irradiation
Sathiyan et al. Controllable synthesis of TiO2 nanoparticles and their photocatalytic activity in dye degradation
Toloman et al. Visible-light-driven photocatalytic degradation of different organic pollutants using Cu doped ZnO-MWCNT nanocomposites
Cai et al. A novel ZnO/biochar composite catalysts for visible light degradation of metronidazole
Purabgola et al. Graphene-based TiO2 composites for photocatalysis & environmental remediation: synthesis and progress
Galindo et al. Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations
Chaudhary et al. Ionic liquid and surfactant functionalized ZnO nanoadsorbent for recyclable proficient adsorption of toxic dyes from waste water
Bohle et al. Cationic and anionic surface binding sites on nanocrystalline zinc oxide: surface influence on photoluminescence and photocatalysis
Kargar et al. Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways
Tian et al. 0D/3D coupling of g-C3N4 QDs/hierarchical macro-mesoporous CuO-SiO2 for high-efficiency norfloxacin removal in photo-Fenton-like processes
Meng et al. Sonocatalytic degradation and catalytic activities for MB solution of Fe treated fullerene/TiO2 composite with different ultrasonic intensity
Mahmood et al. Green synthesis of Ag@ CdO nanocomposite and their application towards brilliant green dye degradation from wastewater
Sonker et al. Green synthesis of TiO2 nanosheet by chemical method for the removal of Rhodamin B from industrial waste
Zhang et al. Preparation of coal-based C-Dots/TiO2 and its visible-light photocatalytic characteristics for degradation of pulping black liquor
Ranjbari et al. Post treatment of composting leachate using ZnO nanoparticles immobilized on moving media
CN103464122B (zh) 一种石墨烯/壳聚糖吸附树脂的制备方法
Zhao et al. Cu/N-codoped TiO 2 prepared by the sol-gel method for phenanthrene removal under visible light irradiation
Yaou Balarabe et al. Photo-Oxidation of Organic Dye by Fe 2 O 3 Nanoparticles: Catalyst, Electron Acceptor, and Polyurethane Membrane (PU-Fe 2 O 3) Effects
Alsheheri Nanocomposites containing titanium dioxide for environmental remediation
Ahmed et al. Facile synthesis of novel microporous CdSe/SiO 2 nanocomposites selective for removal of methylene blue dye by tandem adsorption and photocatalytic process
CN106475038A (zh) 激光诱导单分散Ag‑Ag2S纳米粒子光催化剂的制备方法
Valadez-Renteria et al. A sustainable and green chlorophyll/TiO2: W composite supported on recycled plastic bottle caps for the complete removal of Rhodamine B contaminant from drinking water
Pitchaimuthu et al. Enhancement of zinc oxide-mediated solar light decoloration of Acid Yellow 99 dye by addition of β-CD

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170308